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Abstract

Recent work in affective computing focused on affect

from facial expressions, and not as much on body. This

work focuses on body affect. Affect does not occur in iso-

lation. Humans usually couple affect with an action; for

example, a person could be running and happy. Recogniz-

ing body affect in sequences requires efficient algorithms

to capture both the micro movements that differentiate be-

tween happy and sad and the macro variations between dif-

ferent actions. We depart from traditional approaches for

time-series data analytics by proposing a multi-task learn-

ing model that learns a shared representation that is well-

suited for action-affect-gender classification. For this pa-

per we choose a probabilistic model, specifically Condi-

tional Restricted Boltzmann Machines, to be our building

block. We propose a new model that enhances the CRBM

model with a factored multi-task component that enables

scaling over larger number of classes without increasing

the number of parameters. We evaluate our approach on

two publicly available datasets, the Body Affect dataset and

the Tower Game dataset, and show superior classification

performance improvement over the state-of-the-art.

1. Introduction

Recent work in the field of affective computing [1] fo-

cus on face data [2], audiovisual data [3], and body data

[4]. One of the main challenges of affect analysis is that

it does not occur in isolation. Humans usually couple af-

fect with an action in natural interactions; for example, a

person could be walking and happy, or knocking on a door

angrily as shown in Fig. 1. These activities are performed

differently given the gender of the actor. To recognize

body action-affect-gender, efficient temporal algorithms are

needed to capture the micro movements that differentiate

between happy and sad as well as capture the macro varia-

tions between the different actions. The focus of our work is

∗Both authors equally contributed to this work

on single-view, multi-task action-affect-gender recognition

from skeleton data captured by motion capture or Kinect

sensors. Our work leverages the knowledge and work done

by the graphics and animation community [5, 6, 7] and uses

machine learning to enhance it and make it accessible for

a wide variety of applications. We use the Body Affect

dataset produced by [7] and the Tower Game [8] dataset

as the test cases for our novel multi-task approach.

Time series analysis is a difficult problem that requires

efficient modeling, because of the large amounts of data it

introduces. There are multiple approaches that designed

features to reduce the data dimensionality and then use a

simpler model to do classification [9, 10]. We depart from

these methods and propose a model that learns shared repre-

sentation using multi-task learning. We choose Conditional

Restricted Boltzmann Machines, which are non-linear prob-

abilistic generative models for modeling time series data, as

our building block. They use an undirected bipartite graph

with binary latent variables connected to a number of vis-

ible variables. A CRBM-based generative model enables

modeling short-term phenomenon. CRBMs do not require

as many parameters as RNNs and LSTMs since they do

not contain any lateral connectivity and they are appropriate

for this problem since we are not modeling long term phe-

nomenon. We propose a new hybrid model that enhances

the CRBM model with multi-task, discriminative, compo-

nents based on the work of [11]. This work leads to a su-

perior classification performance, while also allowing us to

model temporal dynamics efficiently. We evaluate our ap-

proach on the Body Affect [7] and Tower Game [8] datasets

and show how our results are superior to the state-of-the-art.

Our contributions: Multi-task learning model for uni-

modal and multimodal time-series data; Evaluations on two

multi-task public datasets [7, 8].

Paper organization: Sec. 2 discusses prior work; Sec. 3

gives a brief background of similar models that motivate our

approach, followed by a description of our model; Sec. 4 de-

scribes the inference algorithm; Sec. 5 specifies our learn-

ing algorithm; Sec. 6 shows quantitative results of our ap-

proach, followed by the conclusion in sec. 7.
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Figure 1. Examples from the Body Affect dataset [7] of a person Knocking with various affects. The trajectory color corresponds to time,

where black is the beginning of the sequence, reddish-black is the middle, and red is the end of the sequence.

2. Prior work

In this section we first review literature on activity

recognition in RGB-D and Motion Capture Sequences

in Sec. 2.1; second we review Multi-Task Learning ap-

proaches in Sec. 2.2; finally we review temporal, energy-

based, representation learning in Sec. 2.3.

2.1. Body Affect Analysis

Initial work on activity recognition in RGB-D sequences

has been popular in recent years with the availability of

cheap depth sensors. Since initial work [12], there have

been an increasing number of approaches addressing the

problem of activity recognition using skeletal data [9]. Prior

to activity recognition in RGB-D sequences, datasets were

captured using motion capture sensors. During that time, re-

search focused on graphics applications such as generating

animation and transitions between animations using signal

processing techniques rather than machine learning or com-

puter vision. Their main goal was to generate natural look-

ing skeletons for animation. Some methods used knowledge

of signal processing to transform a neutral skeleton pose

to reflect a certain emotion [5]. These methods were very

constrained to the type of motion and were engineered to

reproduce the same motions. Other work used a language

based modeling of affect [6] where they modeled actions

(verbs) and affect (adverbs) using a graph. They were able

to produce results using a combination of low level func-

tions to interpolate between example motions. More recent

work [13] modeling non-stylized motion for affect commu-

nication used segmentation techniques which divided com-

plex motions into a set of motion primitives that they used

as dynamic features. Unlike our approach, their mid-level

features were hand engineered rather than learned, which

is very limited, does not scale and is prone to feature de-

sign flaws. More recent work such as [7] collected natural

body affect datasets where they have varied identity, gen-

der, emotion, and actions of the actors but not used it for

classification.

2.2. MultiTask Learning

Multi-task learning is a natural approach for problems

that require simultaneous solutions of several related prob-

lems [14]. Multi-task learning approaches can be grouped

into two main sets. The first set focuses on regularizing

the parameter space. The main assumption is that there is

an optimal shared parameter space for all tasks. These ap-

proaches regularize the parameter space by using a specific

loss [15], methods that manually define relationships [16],

or more automatic ways that estimate the latent structure

of relationships between tasks [17, 18, 19, 20, 21]. The

second set focuses on correlating relevant features jointly

[22, 23, 24, 25]. Other work focused on the schedule of

which tasks should be learned [26]. Multi-task learning

achieved good results on vision problems such as: person

re-identification [27], multiple attribute recognition [28],

and tracking [29]. Recently, Deep Multi-Task Learning

(DMTL) emerged with the rise of deep learning. Deep

Neural Networks (DNNs) were used to address multi-task

learning and were applied successfully to facial landmark

detection [30], scene classification [31], object localization

and segmentation [32] and attribute prediction [33]. Other

work used multi-task autoencoders [34] for object recog-

nition in a generalized domain [35], where the tasks were

the different domains. Other work used multi-task RNNs

for interaction prediction in still images [36]. Most of the
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Deep Multi-task Learning approaches only focused on us-

ing DNN-based models applied to still images. Our ap-

proach is the first DMTL for temporal and multimodal se-

quence analysis.

2.3. Representation Learning

Deep learning has been successfully applied to many

problems [37]. Restricted Boltzmann Machines (RBMs)

form the building blocks in energy-based deep networks

[38, 39]. In [38, 39], the networks are trained using the

Contrastive Divergence (CD) algorithm [40], which demon-

strated the ability of deep networks to capture the distribu-

tions over the features efficiently and to learn complex rep-

resentations. RBMs can be stacked together to form deeper

networks known as Deep Boltzmann Machines (DBMs),

which capture more complex representations. Recently,

temporal models based on deep networks have been pro-

posed, capable of modeling a rich set of time series analy-

sis problems. These include Conditional RBMs (CRBMs)

[41] and Temporal RBMs (TRBMs) [42, 43, 44]. CRBMs

have been successfully used in both visual and audio do-

mains. They have been used for modeling human motion

[41], tracking 3D human pose [45], and phone recognition

[46]. TRBMs have been applied for transferring 2D and 3D

point clouds [47], and polyphonic music generation [48].

3. Model

Rather than immediately defining our Multi-Task CRBM

(MT-CRBM) model, we discuss a sequence of models,

gradually increasing in complexity, such that the different

components of our final model can be understood in iso-

lation. We start with the basic CRBM model (sec. 3.1),

then we extend the CRBM to a new discriminative (D-

CRBM) model (sec. 3.2), then we extend the D-CRBM

to our main multi-task model (MT-CRBM) (sec. 3.3), and

finally we define a multi-task multimodal model (MTM-

CRBM) (sec. 3.4).

3.1. Conditional Restricted Boltzmann Machines
(CRBMs)

CRBMs [41] are a natural extension of RBMs for mod-

eling short term temporal dependencies. A CRBM, shown

in Figure 2(a), is an RBM which takes into account history

from the previous N time instances, t−N, . . . , t− 1, when

considering time t. This is done by treating the previous

time instances as additional inputs. Doing so does not com-

plicate inference. Some approximations have been made to

facilitate efficient training and inference, more details are

available in [41]. A CRBM defines a probability distribu-

(a) CRBM

(b) D-CRBM

(c) MT-CRBMs

(d) MTM-CRBMs

Figure 2. The deep learning models described in sections 3.1, 3.2,

3.3, and 3.4: (a) CRBM (b) DCRBM (c) MTCRBM (d) MTM-

CRBM. The MT-CRBMs learn a shared representation layer for all

tasks. In addition to the shared layer, the MTM-CRBMs learn an

extra representation layer for each of the modalities, which learn

modality-specific representations.
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tion pC as a Gibbs distribution (1).

pC(ht,vt|v<t) = e−EC(vt,ht|v<t))/Z(θ),

Z(θ) =
∑

h,v e
−EC(ht,vt|v<t),

θ =

[ {a,b} -bias,
{A,B} -auto regressive,
{W } -fully connected.

]
(1)

The visible vectors from the previous N time instances, de-

noted as v<t, influence the current visible and hidden vec-

tors. The probability distributions are defined in (2).

pC(vi|h,v<t) = N (ci +
∑

j hjwij , 1),

pC(hj = 1|v,v<t) = σ(dj +
∑

i viwij),

ci = ai +
∑

p Apivp,<t , dj = bj +
∑

p Bpjvp,<t.
(2)

The new energy function EC(ht,vt|v<t) in (3) is defined

in a manner similar to that of the RBM.

EC(ht,vt|v<t) =
∑

i

(ci−vi,t)
2

2
−

∑
j djhj,t −

∑
i,j vi,twijhj,t,

(3)

Note that A and B are matrices defining dynamic biases for

vt and ht, consisting of concatenated vectors of previous

time instances of a and b.

3.2. Discriminative CRBMs (DCRBMs)

We extend the CRBMs to the D-CRBMs shown in Fig-

ure 2(b). D-CRBMs are based on the D-RBM model pre-

sented in in [11], generalized to account for temporal phe-

nomenon using CRBMs. D-CRBMs define the probability

distribution pDC as a Gibbs distribution (4).

pDC(yt,ht,vt|v<t) = e−EDC(yt,ht,vt|v<t)/Z(θ) (4)

The probability distribution over the visible layer will fol-

low the same distributions as in (2). The hidden layer h is

defined as a function of the labels y and the visible nodes v.

A new probability distribution for the classifier is defined to

relate the label y to the hidden nodes h (5).

pDC(vi,t|ht,v<t) = N (ci +
∑

j hjwij , 1),

pDC(hj,t = 1|yt,vt,v<t) = σ(dj +
∑

k yk,tujk +
∑

i vi,twij),

pDC(yk,t|h) = e
sk+

∑
j ujkhj

∑
k∗ e

sk∗+
∑

j ujk∗hj
.

(5)

The new energy function EDC is defined as in (6).

EDC(yt,ht,vt|v<t) = EC(ht,vt|v<t)
︸ ︷︷ ︸

Generative

−
∑

k

skyk,t −
∑

j,k

hj,tujkyk,t

︸ ︷︷ ︸

Discriminative

(6)

3.3. MultiTask CRBMs (MTCRBMs)

In the same way the CRBMs can be extended to the DC-

RBMs by adding a discriminative term to the model, we

can extend the CRBMs to be multi-task MT-CRBMs Fig-

ure 2(c). MTCRBMs define the probability distribution pMT

as a Gibbs distribution (7). The MT-CRBMs learn a shared

representation layer for all tasks.

pMT(y
L
t ,ht,vt|v<t) =

e−EDC(yL
t ,ht,vt|v<t)

Z(θ) . (7)

The probability distribution over the visible layer will fol-

low the same distributions as in (5). The hidden layer h is

defined as a function of the multi-task labels yL and the vis-

ible nodes v. A new probability distribution for the multi-

task classifier is defined to relate the multi-task labels yL to

the hidden nodes h as shown in (8).

pMT(vi,t|ht,v<t) = N (ci +
∑

j hjwij , 1),

pMT(hj,t = 1|yLt ,vt,v<t)
= σ(dj +

∑

l,k y
l
k,tu

l
jk +

∑

i vi,twij),

pMT(y
l
k,t|h) =

exp[slk+
∑

j
ul
jkhj ]

∑
k∗ exp[sl

k∗+
∑

j
ul
jk∗hj ]

.

(8)

The energy for the model shown in Figure 2(c), EMT, is

defined as in (9).

EMT(y
L
t ,vt,ht|v<t) = EC(vt,ht|v<t)

︸ ︷︷ ︸

Generative

−
∑

k,l

slky
l
k,t −

∑

j,k,l

hj,tujky
l
k,t

︸ ︷︷ ︸

Multi-Task

(9)

3.4. Multimodal MTCRBMs (MTMCRBMs)

We can naturally extend MT-CRBMs to MTM-CRBMs.

A MTM-CRBMs combines a collection of unimodal MT-

CRBMs, one for each visible modality. The hidden repre-

sentations produced by the unimodal MT-CRBMs are then

treated as the visible vector of a single fusion MT-CRBMs.

The result is a MTMCRBM model that relates multiple tem-

poral modalities to multi-task classification labels. MTM-

CRBMs define the probability distribution pMTM as a Gibbs

distribution (10). The MTM-CRBMs learn an extra repre-

sentation layer for each of the modalities, which learns a

modality specific representation as well as the shared layer

for all the tasks.

pMTM(yL
t ,ht,h

1:M
t ,v1:M

t |v1:M
<t )

= exp[−EMTM(yL
t ,ht,h

1:M
t ,v1:M

t |v1:M
<t )]/Z(θ).

(10)
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(a) Unimodal MTCRBM

(b) Fusion MTCRBM

Figure 3. This figure specifies the inference algorithm. We first

classify the unimodal data by activating the corresponding hidden

layers hm
t as shown in (a), followed by classifying the multimodal

data by activating the fusion layer ht as shown in (b).

Similar to the MT-CRBMs(8), the hidden layer h is defined

as a function of the labels yL and the visible nodes v. A

new probability distribution for the classifier is defined to

relate the label yL to the hidden nodes h is defined as in

(11).

pMTM(vmi,t|h
m
t ,vm

<t) = N (cmi +
∑

j h
m
j wm

ij , 1),

pMTM(hm
j,t = 1|yLt ,vm

t ,vm
<t) = σ(dmj +

∑
l,k yl

k,t
ul
jk

+
∑

i v
m
i,tw

m
ij ),

pMTM(yl
k,t

|hm
t ) =

exp[slk+
∑

j u
m,l
jk

hm
j,t]

∑
l∗ exp[sl

k∗+
∑

j u
m,l

jk∗hm
j,t

]
,

pMTM(hn,t = 1|yLt ,h1:M
t ,h1:M

<t ) =
σ(fn +

∑
l,k yl

k,t
ul
nk

+
∑

m,j h
m
j,tw

m
jn),

pMTM(yl
k,t

|h) =
exp[slk+

∑
j ul

nkhn]
∑

k∗ exp[sl
k∗+

∑
n ul

nk∗hn]
.

(11)

where,

cmi = ami +
∑

p A
m
p,iv

m
p,<t,

dmj = bmj +
∑

p B
m
p,jvp,<t,

fn = en +
∑

m,r C
m
r,nh

m
r,<t.

(12)

The new energy function EMTM is defined in (13) similar to

that of the MT-CRBMs (7).

EMTM(yL
t ,ht,h

1:M
t ,v1:M

t |v1:M
<t ) =

∑

m

EMT(y
L
t ,h

m
t ,vm

t |vm
<t)

︸ ︷︷ ︸

Unimodal

−
∑

j

fnhn,t −
∑

j,k,m

hm
j,twjnhn,t

︸ ︷︷ ︸

Fusion

−
∑

k,l

slky
l
k,t −

∑

n,k,l

hn,tu
l
nky

l
k,t

︸ ︷︷ ︸

Multi-Task

(13)

4. Inference

We first discuss inference for the MTM-CRBM since it is

the most general case. To perform classification at time t in

the MTM-CRBM given v1:M
<t and v1:M

t we use a bottom-up

approach, computing the mean of each node given the acti-

vation coming from the nodes below it; that is, we compute

the mean of hm
t using vm

<t and vm
t for each modality, then

we compute the mean of ht using h1:M
<t , then we compute

the mean of yL
t for each task using ht, obtaining the classi-

fication probabilities for each task. Figure 3 illustrates our

inference approach. Inference in the MT-CRBM is the same

as the MTM-CRBM, except there is only one modality, and

inference in the D-CRBM is the same as the MT-CRBM,

except there is only one task.

5. Learning

Learning our model is done using Contrastive Diver-

gence (CD) [40], where 〈·〉data is the expectation with re-

spect to the data and 〈·〉recon is the expectation with re-

spect to the reconstruction. The learning is done using two

steps: a bottom-up pass and a top-down pass using sam-

pling equations from (5) for D-CRBM, (8) for MT-CRBM,

and (11) for MTM-CRBM. In the bottom-up pass the re-

construction is generated by first sampling the unimodal

layers p(hm
t,j = 1|vm

t ,vm
<t, yl) for all the hidden nodes

in parallel. This is followed by sampling the fusion layer

p(ht,n = 1|yLk,t,h
1:M
t ,h1:M

<t ). In the top-down pass the

unimodal layer is generated using the activated fusion layer

p(hm
t,j = 1|ht, y

L
k,t). This is followed by sampling the vis-

ible nodes p(vmt,i|h
m
t ,vm

<t) for all the visible nodes in par-

allel. The gradient updates are described in (14). Similarly
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learning of D-CRBM and MT-CRBM could be done.

∆ai ∝ 〈vmi 〉data − 〈vmi 〉recon,
∆bj ∝ 〈hm

j 〉data − 〈hm
j 〉recon,

∆en ∝ 〈hn〉data − 〈hn〉recon,
∆slk ∝ 〈ylk〉data − 〈ylk〉recon,
∆Am

p,i,<t ∝ vmk,<t(〈v
m
i,t〉data − 〈vmi,t〉recon),

∆Bm
p,j,<t ∝ vmi,<t(〈h

m
j,t〉data − 〈hm

j,t〉recon),
∆Cm

r,n,<t ∝ hm
j,<t(〈hn,t〉data − 〈hn,t〉recon),

∆wm
i,j ∝ 〈vmi hm

j 〉data − 〈vmi hm
j 〉recon,

∆wj,k ∝ 〈hm
j hn〉data − 〈hm

j hn〉recon,

∆ul,m
jk ∝ 〈ylkh

m
j 〉data − 〈ylkh

m
j 〉recon,

∆uL
nk ∝ 〈ylkhn〉data − 〈ylkhn〉recon.

(14)

6. Experiments

We now describe the datasets in (sec 6.1), specify the

implementation details in (sec 6.2), and present our quanti-

tative results in (sec 6.3).

6.1. Datasets

Our problem is very particular in that we focus on

multi-task learning for body affect. In the literature [4, 9]

most of the datasets were either single task for activity

recognition, not publicly available, too few instances, or

only RGB-D without skeleton. We found two available

datasets to evaluate our approach that are multi-task.

The first dataset is the Body Affect dataset [7], collected

using a motion capture sensor, which consists of a set of

actors performing several actions with different affects.

The second dataset is the Tower Game [8], collected

using a Kinect sensor, which consists of an interaction

between two humans performing a cooperative task, with

the goal of classifying different components of entrain-

ment. In the following subsections we describe the datasets.

Body Affect Dataset: This dataset [7] consists of a library

of human movements captured using a motion capture

sensor, annotated with actor, action, affect, and gender.

The dataset was collected for studying human behavior

and personality properties from human movement. The

data consists of 30 actors (15 female and 15 male) each

performing four actions (walking, knocking, lifting, and

throwing) with each of four affect styles (angry, happy,

neutral, and sad). For each actor, there are 40 data in-

stances: 8 instances of walking (2 directions x 4 affects), 8

instances of knocking (2 repetitions x 4 affects), 8 instances

of lifting (2 repetitions x 4 affects), 8 instances of throwing

(2 repetitions x 4 affects), and 8 instances of the sequences

(2 repetitions x 4 affects). For knocking and lifting and

throwing there were 5 repetitions per data instances. Thus,

the 24 records of knocking, lifting, and throwing contain

120 separate instances, yielding a total of 136 instances per

actor and a total of 4,080 instances. We split dataset into

50% training using 15 actors and 50% testing using the

other 15 actors.

Tower Game Dataset: This dataset [8] is a simple game of

tower building often used in social psychology to elicit dif-

ferent kinds of interactive behaviors from the participants.

It is typically played between two people working with a

small fixed number of simple toy blocks that can be stacked

to form various kinds of towers. The data consists of 112

videos which were divided into 1213 10-second segments

indicating the presence or absence of these behaviors in

each segment. Entrainment is the alignment in the behavior

of two individuals and it involves simultaneous movement,

tempo similarity, and coordination. Each measure was rated

low, medium, or high for the entire 10 seconds segment.

50% of that data was used for training and 50% were used

for testing. In this dataset we call each person’s skeletal

data a modality, where our goal is to model mocap-mocap

representations.

6.2. Implementation Details

For pre-processing the Tower Game dataset, we followed

the same approach as [50] by forming a body centric trans-

formation of the skeletons generated by the Kinect sensors.

We use the 11 joints from the upper body of the two players

since the tower game almost entirely involves only upper

body actions and gestures are done using the upper body.

We used the raw joint locations normalized with respect to

a selected origin point. We use the same descriptor pro-

vided by [51, 52]. The descriptor consists of 84 dimensions

based on the normalized joints location, inclination angles

formed by all triples of anatomically connected joints, az-

imuth angles between projections of the second bone and

the vector on the plane perpendicular to the orientation of

the first bone, bending angles between a basis vector, per-

pendicular to the torso, and joint positions. As for the Body

Affect dataset we decided to use the full body centric rep-

resentation [53] for motion capture sensors resulting in 42

dimensions per frame.

For the Body Affect dataset we trained a three-task

model for the following three tasks: Action (AC) ∈
{Walking, Knocking, Lifting, Throwing}, Affect (AF) ∈
{Neutral, Happy, Sad, Angry}, Gender (G) ∈ {Male,

Female}. The data is split into a training set consisting of

50% of the instances, and a test set consisting of the remain-

ing 50%. For the Tower Game dataset we trained a three-

task model for the following tasks,: Tempo Similarity (TS),

Coordination (C), and Simultaneous Movement (SM), each

in {Low, Medium, High}. The data is split into a training

set consisting of 50% of the instances, and a test set consist-

ing of the remaining 50%.

We tuned our model parameters. For selecting the
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model parameters we used a grid search. We varied

the number of hidden nodes per layer in the range of

{10, 20, 30, 50, 70, 100, 200}, as well as the auto-regressive

nodes in the range of {5, 10}, resulting a total of 2744
trained models. The best performing model on the Body

Affect dataset has the following configuration v = 42, h =
30, v<t = 42 × 10 and the best performing model on

the Tower Game dataset has the following configuration

vm = 84, hm = 30, vm<t = 10 × 84 for each of the modal-

ities and for the fusion layer in the Tower Game dataset

h1:M = 60, h = 60, h1:M
<t = 10× 60.

Note that in our MT-CRBM model, the tasks are as-

sumed conditionally independent given the hidden repre-

sentation. Thus the number of parameters needed for the

hidden-label edges is H ·
∑L

k=1 Yk, where H is the di-

mensionality of the hidden layer and Yk is the number of

classes for task k. Contrast this to the number of parame-

ters needed if instead the tasks are flattened as a Cartesian

product, H ·
∏L

k=1 Yk. Our factored representation of the

multiple tasks uses only linearly many parameters instead

of the exponentially many parameters needed for the flat-

tened representation.

6.3. Quantitative Results

We first define baselines and variants of the model,

followed by the average classification accuracy results on

the two datasets.

Baselines and Variants: Since we compare our approach

against the results presented in [8] we decided to use the

same baselines they used. They used SVM classifiers

on a combination of features. SVM+RAW: The first set

of features consisted of first order static and dynamic

handcrafted skeleton features. The static features are

computed per frame. The features consist of relation-

ships between all pairs of joints of a single actor, and

the relationships between all pairs of joints of both the

actors. The dynamic features are extracted per window

(a set of 300 frames). In each window, they compute

first and second order dynamics of each joint, as well as

relative velocities and accelerations of pairs of joints per

actor, and across actors. The dimensionality of their static

and dynamic features is (257400 D). SVM+BoW100 and

SVM+BoW300: To reduce their dimensionality they used,

Bag-of-Words (BoW) (100 and 300 D) [54, 52]. We also

evaluate our approach using HCRF [55]. We define our

own model’s variants, D-CRBMs which is our single-task

model presented in Section 3.2, MT-CRBMs which is our

multi-task model presented in Section 3.3, MTM-CRBMs

the multi-modal multi-task model presented in Section

3.4 and DM-CRBMs an extension to the D-CRBMs to be

multimodal similar to MTM-CRBMs. We also add two

(a) MT-CRBMs-Deep

(b) MTM-CRBM-Deep

Figure 4. Deep variants of the models presented in sections 3.3 and

3.4. (a) MT-CRBMs-Deep (b) MTM-CRBMs-Deep. The Deep

variants add an extra representation layer for each of the tasks,

which learns a task specific representation.

new variants1 MT-CRBMs-Deep and MTM-CRBMs-Deep

shown in Fig.4, which are a deeper version of the original

models, by adding a task specific representation layer.

Classification: For the Body Affect dataset, Table 1 shows

the results of the baselines as well as our model and its

variants. For the Tower Game dataset, Table 2 shows our

average classification accuracy using different features and

baselines combinations as well as the results from our mod-

els. We can see that the MT-CRBMs-Deep model outper-

forms all the other models for both cases, thereby demon-

strating its effectiveness on predicting multi-task labels cor-

1This model is initially prototyped by [56] in the deep learning book.
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Table 1. Average Classification Accuracy on The Body Affect

Dataset.
Classifier (labels) AC(4) AF(4) G(2)

Random Guess 25.0 25.0 50.0

SVM+Raw 35.6 32.2 65.1

SVM+BoW100 41.3 34.1 71.4

SVM+BoW300[52] 39.9 32.8 69.5

HCRF[55] 44.8 34.7 74.1

D-CRBMs 52.6 30.7 78.4

MT-CRBMs 53.5 31.2 78.2

MT-CRBMs-Deep 54.5 32.7 78.4

Table 2. Average Classification Accuracy on The Tower Game

Dataset.
Classifier (labels) TS (3) C (3) SM (3)

Random Guess 33.3 33.3 33.3

SVM+Raw [8] 59.3 52.2 39.5

SVM+BoW100 [8] 65.6 55.8 44.3

SVM+BoW300 [52] 54.4 47.5 42.8

HCRF[55] 67.2 58.8 44.5

DM-CRBMs 76.5 62.0 49.2

MTM-CRBMs 86.2 70.0 63.5

MTM-CRBMs-Deep 87.2 70.0 72.8

rectly. Furthermore, the MTM-CRBMs-Deep model outper-

forms all the SVM variants which used high dimensional

handcrafted features, demonstrating its ability to learn a rich

representation starting from the raw skeleton features. Note

that only the MTM-CRBMs and MTM-CRBMs-Deep per-

formed well on predicting the different tasks simultaneously

with a relatively large margin better than the other models,

using a shared representation that uses less parameters than

our D-CRBMs model that treats all the labels flat.

7. Conclusion and Future Work

We have proposed a collection of hybrid models, both

discriminative and generative, that model the relationships

in and distributions of temporal, multimodal, multi-task

data. An extensive experimental evaluation of these mod-

els on two different datasets demonstrates the superiority of

our approach over the state-of-the-art for multi-task classifi-

cation of temporal data. This improvement in classification

performance is accompanied by new generative capabilities

and an efficient use of model parameters via factorization

across tasks.

The factorization of tasks used in our approach means

the number of parameters grows only linearly with the num-

ber of tasks and classes. This is seen to be significant when

contrasted with a single-task model that uses a flattened

Cartesian product of tasks, where the number of parameters

grows exponentially with the number of tasks. Our factor-

ized approach makes adding additional tasks a trivial matter.

The generative capabilities of our approach enable new

and interesting applications. A future direction of work is

to further explore and improve these generative applications

of the models.
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