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Abstract

Deep learning based approaches proved to be dra-

matically effective to address many computer vision ap-

plications, including “face recognition in the wild”. It

has been extensively demonstrated that methods exploiting

Deep Convolutional Neural Networks (DCNN) are power-

ful enough to overcome to a great extent many problems

that negatively affected computer vision algorithms based

on hand-crafted features. These problems include varia-

tions in illumination, pose, expression and occlusion, to

mention some. The DCNNs excellent discriminative power

comes from the fact that they learn low- and high-level rep-

resentations directly from the raw image data. Considering

this, it can be assumed that the performance of a DCNN are

influenced by the characteristics of the raw image data that

are fed to the network. In this work, we evaluate the effect

of different bounding box dimensions, alignment, position-

ing and data source on face recognition using DCNNs, and

present a thorough evaluation on two well known, public

DCNN architectures.

1. Introduction

In Computer Vision, the human face has been studied for

long time either for understanding emotional states from ex-

pressions or as biometric feature for recognizing subjects’

identity. Face recognition, in particular, compared to other

biometric modalities is attractive since it does not require

the contact with any sensor and can be performed at a dis-

tance in an uncooperative way. However, recognition based

on faces suffers from several factors that can potentially im-

pair the accuracy of the results. Many of these factors are

not directly related to the natural variability of human faces

due to sex, ethnicity, age. Some of them depend on varia-

tions of the face induced by facial expressions, beard, face

occlusions due to hair or accessories like glasses, scarves,

etc. We refer to these factors as intrinsic, since the vari-

ations associated to them directly affect the face surface.

On the other hand, other factors that make face recogni-

tion a difficult task are due to the extrinsic conditions under

which the face is captured. These include ambient illumi-

nation, pose, distance, resolution of the captured images,

availability of single or multiple images or videos. Three-

dimensional acquisitions of the face are also possible.

Most of the research work on face recognition tried to

define and extract hand-crafted features capable of captur-

ing the traits of the face that can better discriminate from

subject to subject. For many years, this has been done on

images acquired in cooperative contexts. The shift from

cooperative to uncooperative datasets, acquired in the wild

without subjects cooperation [10], contributed to substan-

tially advance the research in this field orienting it towards

more realistic solutions. Indeed, the last few years have seen

the increasing success in applying deep learning based solu-

tions to face recognition [17, 20, 22, 23]. One substantial in-

novation of deep convolutional neural networks (DCNNs) is

the idea of letting the deep architecture to automatically dis-

cover low-level and high-level representations from labeled

(or/and unlabeled) training data, which can then be used for

detecting, and/or classifying the underlying patterns. How-

ever, this implies an extremely costly training phase, where

millions of parameters must be optimized, thus requiring

a huge number of example images. This problem can be

smoothed by learning on one dataset and then reusing such

learned features in different contexts using transfer learn-

ing [24] or fine tuning [29].

Though the proliferation of deep learning based solu-

tions for face recognition, there are several aspects of their

behavior that remain not completely understood or that have

not been investigated at all. In addition, the effect on the

final recognition accuracy of intrinsic or extrinsic factors

has been evaluated only in a limited set of cases under con-

trolled conditions [16].

In this work, we present a thorough study on the ef-

fect that different bounding boxes, alignment and position-

ing variations have on deep learning based face recogni-
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tion. In addition, we also experiment how different data

sources (still images of video frames) weigh on the ef-

fectiveness of the representations learned through DCNNs.

To this end, we first identified two publicly available and

effective DCNN architectures, namely, AlexNet [13] and

vgg-vd16 [17]. We trained these networks on face data

in the “wild” taken from [17] and tested them on the pub-

licly available IARPA Janus Benchmark-A (IJB-A) [12] and

YouTube Faces [25] datasets.

We compared the results obtained by using the im-

ages/frames included in the original dataset, with respect to

the case where these images have been normalized in a pre-

processing phase. In summary, the main contributions and

outcomes of this work are: (i) a thorough experimentation

on face data in the “wild” that evaluates the effect on recog-

nition results of bounding box dimensions, alignment, po-

sitioning and data source; (ii) the evidence that deep archi-

tectures do not benefit from preprocessing operations that

normalize input data both at train and test time.

The rest of the paper is organized as follows: in Sect. 2,

we revise existing face recognition works that use deep

learning; in Sect. 3, we discuss how scale, alignment, po-

sitioning and data source affect deep learning methods for

face recognition; The deep learning based representation of

the face and the architectures of the networks used in this

work are reported in Sect. 4; A comprehensive experimen-

tation on deep learning based face recognition is given in

Sect. 5; finally, in Sect. 6, we report discussion and conclu-

sions.

2. Related Work

The literature on face recognition has been dominated

for long-time by the definition and use of hand-crafted fea-

tures such as Local Binary Patterns (LBP) [1], Histogram

of Gradients (HOG) [5] or Scale Invariant Feature Trans-

form (SIFT) [8, 14]. These features were extracted from

face images and subsequently used for training classifiers

like SVM [21]. The trained classifiers were ultimately used

to recognize the identities. In the last few years, the sce-

nario has been drastically changed by the combined avail-

ability of increasing computational resources and of very

large datasets that made possible the effective training of

neural networks with deep architecture. These learning

tools showed impressive recognition results in several vi-

sual tasks, including face recognition. In the following, we

revise some recent works that use DCNN architectures for

face recognition.

In [23], Taigman et al. proposed DeepFace, a nine-

layer deep neural network architecture for face recognition.

DeepFace comprised more than 120 million parameters us-

ing several locally connected layers without weight sharing,

rather than the standard convolutional layers. This network

was trained on an identity labeled dataset of four million

facial images belonging to more than 4,000 identities. Ex-

plicit 3D face modeling was used to align the images using

a piecewise affine transformation. The learned represen-

tations coupling the accurate model-based alignment with

the large facial database generalized well to faces in uncon-

strained environments, even with a simple classifier.

In [22], Sun et al. proposed to learn a set of high-level

feature representations through deep learning for face veri-

fication. These features, referred to as Deep hidden IDentity

features (DeepID), were learned through multi-class face

identification tasks, whilst they can be generalized to other

tasks (such as verification) and new identities unseen in

the training set. DeepID features were taken from the last

hidden layer neuron activations of DCNN. When learned

as classifiers to recognize about 10,000 face identities in

the training set and configured to keep reducing the neu-

ron numbers along the feature extraction hierarchy, these

DCNNs gradually form compact identity-related features in

the top layers with only a small number of hidden neurons.

These features were extracted from various face regions to

form complementary and over-complete representations.

The FaceNet system proposed in [20] by Schroff et al.,

learned a mapping from face images to a compact Euclidean

space, where distances directly correspond to a measure

of face similarity. Once this space is obtained, tasks such

as face recognition, verification and clustering were im-

plemented using standard techniques with FaceNet embed-

ding as feature vectors. A DCNN was trained to directly

optimize the embedding itself, rather than an intermediate

bottleneck layer as in previous deep learning approaches.

Triplets of roughly aligned matching / non-matching face

patches generated using an online triplet mining method

were used for training, with the main benefit of a better

representation efficiency. State-of-the-art face recognition

performance was obtained using only 128-bytes per face.

In the work of Parkhi et al. [17], a much simpler and yet

effective network architecture achieving near state-of-the-

art results on all popular image and video face recognition

benchmarks was proposed. On the one hand, they showed

how a very large scale dataset (2.6M images of over 2.6K

people) can be assembled by a combination of automation

and human in the loop, and discussed the trade off between

data purity and time. On the other, they traversed through

the complexities of deep network training and face recogni-

tion to present methods and procedures to achieve compa-

rable state of the art results.

The work of Masi et al. in [15], addressed unconstrained

face recognition in the wild focusing on the problem of

extreme pose variations. As opposed to other techniques

that either expect a single model to learn pose invariance

through massive amounts of training data, or normalize im-

ages to a single frontal pose, this method explicitly tackled

pose variation by using multiple pose specific models and
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Figure 1. Examples of different bounding box dimensions: (top) tight bounding boxes; (bottom) large bounding boxes.

rendered face images. DCNNs were used to learn discrim-

inative representations, called Pose-Aware Models (PAMs)

using 500K images from the CASIA WebFace dataset [28].

In a comparative evaluation, PAMs achieved better perfor-

mance than commercial products also outperforming meth-

ods that are specifically fine-tuned on the target dataset.

Unsupervised joint alignment of images has been

demonstrated to improve performance on face recognition.

The alignment reduces undesired variability due to factors

such as pose, while only requiring weak supervision in

the form of poorly aligned examples. Following this idea,

Huang et al. [9] proposed Deep funneling as a novel com-

bination of unsupervised joint alignment with unsupervised

feature learning. Specifically, they incorporated deep learn-

ing into the alignment framework. In addition, the learning

algorithm was modified for the restricted Boltzmann ma-

chine by incorporating a group sparsity penalty, leading to

a topographic organization of the learned filters and improv-

ing subsequent alignment results. The method was applied

to the LFW database. Using the aligned images produced

by this unsupervised algorithm, higher accuracy in face ver-

ification was achieved compared to prior work in both un-

supervised and supervised alignment.

In [16], a comprehensive study was presented that evalu-

ates the performance of deep learning based face represen-

tation under several conditions, including the varying head

pose angles, upper and lower face occlusion, changing il-

lumination of different strengths, and misalignment due to

erroneous facial feature localization. Face representations

were extracted using two successful and publicly available

deep learning models, namely, VggFace [17] and Lightened

CNN [26]. Images acquired in controlled conditions were

used in the experiments. The obtained results showed that

although deep learning provides a powerful representation

for face recognition, it can still benefit from preprocessing,

for example, for pose and illumination normalization. In

particular, from this study it emerged that if variations in-

cluded in test images were not included in the dataset used

to train the deep learning model, the role of preprocessing

became more important. Experimental results also showed

that deep learning based representation is robust to mis-

alignment and can tolerate facial feature localization errors

up to 10% of the inter-ocular distance.

3. Face Images Preprocessing for DCNN

The effectiveness of a face recognition system based on

CNN architectures depends on some main aspects. First, the

network architecture and learning strategy: depending on

the task, different networks and learning methodologies can

be more or less effective, for instance in face recognition

it has been demonstrated that deeper architectures obtain

better results [17]. Second, the image content: the effect

that variations in illumination, pose, expression, resolution

and others have on the final performance is a crucial aspect

that indeed has been extensively studied in controlled con-

ditions [16]. Third, the data preprocessing: this includes,

first of all, the detection and the clipping of the interested

area, i.e., the face, the compensation of nuisances such as

in-plane or out-of-plane rotations, misalignments and scale

differences. Finally, the source of the data, i.e., whether

video frames or still images are considered.

The goal of this work is to evaluate the impact that dif-

ferent factors have on the performance of a face recognition

system based on CNN representation, rather than the image

content itself. To this aim, we consider the following as-

pects: (i) bounding box dimension; (ii) alignment and (iii)

positioning.

3.1. Bounding Boxes Dimension

The dimension of the bounding box that contains the face

is relevant inasmuch as it works as a tradeoff between the

amount of useful information, i.e., the face and non-useful

information, i.e., background that will be fed to the net-

work. Tighter bounding boxes will reduce the amount of

background included, but, on the other hand, will eventu-

ally reduce the amount of facial information and vice versa.

Since many different face detection algorithms exist, it can

be beneficial to understand how these differences impact on

the representation obtained through the CNN. Two different

bounding box sizes have been considered during both train

and test:

• Tight: the dimension of this bounding box is the one
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returned by most of the available face detectors. It con-

siders a square that goes from the chin to just above the

eyebrows. The amount of background is minimized.

See examples in Fig. 1 (top row);

• Large: this bounding box is taken so as to include

the whole head. The amount of background is vari-

able depending on the head position.These bounding

boxes have been obtained enlarging detectors’ bound-

ing boxes by 15%, see Fig. 1 (bottom row).

3.2. Alignment

The alignment process consists in bringing all the faces

in the same relative position inside the crops so as to en-

hance the description semantics. Although the usefulness

of the alignment step is well founded for engineered com-

puter vision methods based on hand-crafted features, it has

not been fully investigated if the effort made to perform the

alignment is worth when using CNN representations. To

this end, we applied two different strategies on the images

used both to test and train the networks:

• Similarity Transformation: it is performed using the

eyes position, identified by either manual annotation

(if available) or exploiting a landmark detector [11].

Following a standard procedure, the image is warped

so that the line connecting the eyes is horizontal and

the distance between them is 100px. Their relative po-

sition inside the image is kept fixed. Some examples

of aligned faces are shown in Fig. 2;

• Frontalization: with the term “frontalization” we re-

fer to the process of bringing a generic face image in

a frontal pose. This implies the compensation of out-

of-plane rotations of the head and the rendering of a

virtual frontal face image. To perform the frontaliza-

tion, the method in [6, 7] has been used. It exploits the

3D information provided by a 3D Morphable Model

(3DMM). Through 2D and 3D landmark correspon-

dences, the method estimates the 3D pose of the head

and fits the 3D model to the face image. It then samples

and associates the face pixel values to the 3D model

vertices and finally renders a frontal face image. The

rendered image is pixelwise aligned by construction.

Some examples are shown in Fig. 3.

3.3. Positioning

If the alignment is not applied to the images, the rela-

tive position of the face inside the bounding box can vary,

with more pronounced variations for larger bounding boxes.

Assuming that different face detectors can produce differ-

ent outputs and that we cannot exclude detection errors, the

goal here is to evaluate if and how much this behavior af-

fects the recognition. To this aim, we consider the larger

Figure 2. Faces aligned with a similarity transformation.

Figure 3. Examples of frontalized faces.

bounding boxes (we can assume that it is always possible to

enlarge a bounding box if it is too tight) and take random or

fixed crops out of it. In doing so, we also have the chance

to understand if there are some face parts that retain more

discriminative information than others.

4. Face Representation with DCNN

We used the data collected in [17] to train two DCNN ar-

chitectures, namely AlexNet [13] and vgg-vd16 [17]. Dif-

ferent versions of these two architectures have been trained

varying the preprocessing applied to the training face im-

ages. In particular, we considered different bounding boxes

dimensions and alignments, as described in Sect. 3.1 and

Sect. 3.2, respectively.

These networks have been trained as face classifiers con-

sidering N = 2, 622 unique individuals. For each individ-

ual, an average of 1000 face images have been used dur-

ing training, for a total of 2, 622, 000 images. The final

fully-connected layer containing N linear predictors, one

per identity, along with the empirical softmax log-loss are

used to train the classifier.

4.1. AlexNet

The architecture of this network is made up of 7 convo-

lutional layers, each one followed by a rectification layer

(ReLU). Max pooling is applied after the first two convo-

lutional layers and before the first fully connected layer.

Three fully connected layers are present.

We trained five configurations of this architecture. As in-

put for the training of two of these networks, we considered

the original training images with two different bounding

boxes dimensions (tight or large), but without alignment.

Then, we trained two other configurations applying the sim-

ilarity transformation described in Sect. 3.2 to both tight and
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large bounding boxes. For these four configurations, aug-

mentation based on both random flip and the choice of a

random crop have been used during training.

Finally we trained a network considering the frontal-

ized images. In this case the training set comprises about

1, 800, 000 images; this is due to landmarks detection fail-

ures for the remaining 800, 000 images. Data augmentation

is not applied since frontalized faces are pixel-wise aligned

and thus selecting a random crop would only result in a loss

of information.

4.2. Vgg-vd16

We also consider the VggFace network that has been re-

leased by the authors of [17]. This network has eight convo-

lutional blocks each one followed by a ReLU. Max pooling

is applied every two convolutional layers until layer 10, then

every three. The last three blocks are Fully Connected (FC).

No alignment has been applied to the face images used for

training. Augmentation based on both random flip and the

choice of a random crop have been used during training.

In this work we exploit the publicly available pre-trained

model and, for a more thorough comparison, we also trained

a Vgg-vd16 network using the frontalized images and the

settings described in Sect. 4.1 for the AlexNet-frontalized.

5. Experimental Results

We evaluate the performance of the different DCNNs in a

set of experiments that involve the preprocessing operation

presented in Sect. 3. First, we evaluate face identification

and verification accuracies both for different combinations

of train and test data normalization, i.e., whether alignment

or frontalization are applied or not, and in function of the

bounding box dimension. Regarding the latter, we also con-

duct an experiment aimed at finding its optimal size. Then,

an evaluation of which face part carry the most valuable and

discriminative information is performed. Finally, a specific

protocol in which gallery and probe images are divided in

terms of the data source (i.e., still images or frames) is de-

vised, so as to figure out how much this aspect influence a

DCNN recognition accuracy.

Experiments have been carried out on the recently re-

leased IARPA Janus Benchmark-A (IJB-A) [12] and the

YouTube Faces (YTF) [25] datasets. Both are divided in

ten splits for experimental evaluation; for each trial, we use

1 split as test set and the other 9 splits as training set.

IJB-A: Released by IARPA, this dataset is specifically de-

signed to push the challenges of face recognition to the ex-

treme, including face imagery coming both as still images

or video frames captured under severe variations of imag-

ing conditions, focusing on the extreme cases. The dataset

comprises a total of 25800 images and video frames of 500

subjects. There are two main protocols defined: face identi-

fication (1:N) and face verification (1:1); in both the proto-

cols the identities to be matched or retrieved are expressed

by means of templates, i.e., sets of images/frames of the

same subject. This setting is sometimes referred in litera-

ture as template based face recognition. Specifically, in the

identification protocol, identities in the probe set have to be

retrieved among the ones in the gallery set. In the gallery,

each template corresponds to a single identity while in the

probe set a single identity can have more than one template.

YouTube Faces: The YTF dataset collects videos from

YouTube and it is specifically designed to study the prob-

lem of face verification in videos. The dataset contains 3425

videos (the average video length is 181 frames) of 1595 sub-

jects, and the task is to decide whether two video sequences

contain the same subject.

5.1. Recognition Pipeline

In order to assess the role that different image prepro-

cessing procedures have on the final performance, we fol-

lowed a standard recognition pipeline, exploiting the trained

DCNNs as feature extractors and applying the preprocess-

ing methods described in Sect. 3 to the test images. For all

the tests, the output of the last fully connected layer is used

as 4096-dimensional face descriptor. The latter is extracted

from the images and their horizontally flipped version; the

final descriptor is obtained as the average of the two. The

descriptors of the training set are used to compute a PCA

projection matrix to perform dimensionality reduction on

the test set. Finally, we perform the matching, though in

a slightly different manner for the IJB-A and YTF; specifi-

cally, for the IJB-A, the cosine distance between each image

included in each template is computed and the sum of the

minimum of the distances and their average is taken as fi-

nal measure. We found that including the average improves

the results since it attenuates the effect of possible outliers

in the templates, acting as distance between the centroids

of the sets. For YTF instead, for each video sequence, the

average descriptor is coarsely obtained from all the frames

and used as final descriptor for the subject in the sequence.

The verification is then performed by computing the cosine

distance between pairs of descriptors.

5.2. Preprocessing Analysis

Results for the identification and verification protocols

on the IJB-A are reported in Table 1 and 2, respectively.

The second and third columns indicate the type of prepro-

cessing; Large or Tight refer to the bounding box dimen-

sion while Original or Aligned refer to whether a similarity

transformation is applied to the images or not. All the pos-

sible combinations of train and test data have been exper-

imented and for each training data type, the best configu-

ration is reported in bold (excluding the configurations that

use the frontalized version of the images). From the results,

we can first observe that there is a clear advantage in using
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Table 1. Results on the IJB-A dataset using AlexNet architecture with different train and test data preprocessing methods.
Identification 1:N Verification 1:1

Net Train Data Test Data TAR@0.01FAR TAR@0.001FAR Rank@1 Rank@10 TAR@0.01FAR TAR@0.001FAR

AlexNet Aligned Large Aligned Large 0.873± 0.012 0.728± 0.029 0.861± 0.014 0.967± 0.004 0.850± 0.018 0.731± 0.028

AlexNet Aligned Large Aligned Tight 0.806± 0.014 0.603± 0.022 0.797± 0.011 0.947± 0.007 0.795± 0.019 0.651± 0.031

AlexNet Aligned Large Original Large 0.870± 0.008 0.712± 0.018 0.857± 0.011 0.971± 0.003 0.845± 0.017 0.709± 0.030

AlexNet Aligned Large Original Tight 0.832± 0.008 0.638± 0.026 0.819± 0.008 0.956± 0.005 0.833± 0.020 0.693± 0.035

AlexNet Original Large Aligned Large 0.887± 0.010 0.738± 0.020 0.872± 0.008 0.971± 0.004 0.854± 0.018 0.732± 0.033

AlexNet Original Large Aligned Tight 0.825± 0.010 0.633± 0.018 0.811± 0.014 0.955± 0.008 0.807± 0.022 0.668± 0.029

AlexNet Original Large Original Large 0.894± 0.010 0.753± 0.022 0.886± 0.010 0.977± 0.003 0.862± 0.020 0.731± 0.025

AlexNet Original Large Original Tight 0.867± 0.009 0.697± 0.016 0.857± 0.007 0.968± 0.004 0.857± 0.021 0.720± 0.040

AlexNet Aligned Tight Aligned Large 0.728± 0.025 0.516± 0.025 0.724± 0.023 0.919± 0.009 0.742± 0.026 0.606± 0.037

AlexNet Aligned Tight Aligned Tight 0.827± 0.013 0.666± 0.031 0.817± 0.016 0.939± 0.006 0.808± 0.024 0.687± 0.038

AlexNet Aligned Tight Original Large 0.754± 0.019 0.541± 0.027 0.749± 0.017 0.932± 0.008 0.754± 0.027 0.616± 0.031

AlexNet Aligned Tight Original Tight 0.816± 0.013 0.632± 0.024 0.807± 0.019 0.946± 0.005 0.819± 0.017 0.682± 0.050

AlexNet Original Tight Aligned Large 0.596± 0.024 0.330± 0.023 0.582± 0.022 0.859± 0.018 0.651± 0.020 0.515± 0.025

AlexNet Original Tight Aligned Tight 0.717± 0.023 0.497± 0.024 0.717± 0.020 0.911± 0.011 0.731± 0.019 0.582± 0.040

AlexNet Original Tight Original Large 0.653± 0.019 0.384± 0.031 0.642± 0.022 0.896± 0.013 0.690± 0.025 0.539± 0.024

AlexNet Original Tight Original Tight 0.749± 0.020 0.507± 0.050 0.750± 0.021 0.924± 0.009 0.779± 0.024 0.604± 0.079

AlexNet Frontalized Frontalized 0.839± 0.014 0.698± 0.032 0.832± 0.019 0.952± 0.006 0.817± 0.021 0.563± 0.125

Table 2. Results on the IJB-A dataset using the VggFace architecture with different train and test data preprocessing methods.
Identification 1:N Verification 1:1

Net Train Data Test Data TAR@0.01FAR TAR@0.001FAR Rank@1 Rank@10 TAR@0.01FAR TAR@0.001FAR

VggFace - Aligned Large 0.903± 0.010 0.760± 0.028 0.890± 0.011 0.975± 0.004 0.883± 0.017 0.749± 0.030

VggFace - Aligned Tight 0.880± 0.015 0.712± 0.027 0.867± 0.013 0.967± 0.006 0.853± 0.017 0.707± 0.039

VggFace - Original Large 0.926± 0.011 0.804± 0.022 0.910± 0.014 0.983± 0.003 0.896± 0.016 0.759± 0.041

VggFace - Original Tight 0.914± 0.011 0.746± 0.032 0.894± 0.011 0.979± 0.003 0.888± 0.017 0.735± 0.052

Vgg-vd-16 Frontalized Frontalized 0.852± 0.010 0.725± 0.022 0.849± 0.008 0.938± 0.006 0.824± 0.021 0.574± 0.122

larger bounding boxes both in training and testing the net-

works. This suggests that the networks are able to separate

between useful (face) and non useful (background) content

themselves while training, taking advantage from the larger

amount of available information. If larger bounding boxes

are used in the training phase, however, the performance

loss using tighter boxes in the test phase is evidently less

than the opposite case. This is somewhat not surprising,

since it is evident that the networks cannot recognize visual

information unseen during the training. A more surprising

fact instead is that, for each testing configuration, better re-

sults are achieved when using larger boxes with non aligned

data to train the networks. This evidence suggests that the

networks are able to account for and be somewhat invariant

to similarity transformations. This capability is beneficial

also if aligned data is being tested (note that the original

VggFace architecture used in this work exploits non aligned

data for training). The fact that this is not true when using

tighter boxes can be ascribed to the lack of meaningful vi-

sual information. We can reasonably suppose from the ex-

perimental evidence that the available visual content is not

sufficient to make the network fully extrapolate the features

that carry the identity information. Finally, it is worth to

stress that the consistency between training and testing data

is of fundamental importance; for all the different training

configurations, the best performance are obtained with test-

ing data that is consistent with the training one.

Acknowledged that larger bounding boxes lead to im-

proved representations, an analysis on the optimal dimen-

sion is conducted. The DCNN used in this experiment is the

AlexNet architecture trained on large non aligned images.

Fig. 4 reports results obtained enlarging and reducing the

bounding box of a certain percentage starting from a base

dimension, that is the one that precisely contains the whole

head. The results evidence that the latter is the optimal di-

mension. One could have instead expected that, since the

network has been trained on larger boxes, the performance

could have benefit from an enlargement. However, we ob-

serve that, being equal the percentage, the accuracy drop is

relative when enlarging the box while being more signifi-

cant when reducing its dimension. This suggests us that the

DCNN indeed takes advantage from all the available use-

ful information and suffers more when that information is

missing rather than when more background is included.

Table 3 reports results obtained simulating different

shifts in the bounding box position that can occur due to de-

tection errors. As shown in Fig. 5, we considered 3 cases:

the first case (Fig. 5 (a)) simulates slight errors in the de-

tection; the images are resized to 256 × 256 and random

224×224 crops are selected. Fig. 5 (b) and (c) instead refer

to more extreme cases, where respectively only the upper

or the lower halves of the face are visible. We here aim at

assessing which face regions carry the most of the identity

information. A similar analysis regarding the occlusion of

face parts is also conducted in [16], where subjects wearing

sunglasses (eyes region occlusion) and scarfs (mouth-nose

region occlusion) are considered. In [16] the authors show

that occlusions of the eyes region dramatically worsen the
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Figure 4. Recognition performance as a function of the dimension

of the bounding box.

Table 3. Comparison of different bounding box positioning for the

best configuration of train and test data.
AlexNet

TAR@FAR 0.01 Rank 1 Rank 10

Lower-Half 0.612± 0.023 0.600± 0.018 0.881± 0.011

Upper-Half 0.724± 0.016 0.707± 0.015 0.924± 0.008

Random-Crop 0.886± 0.011 0.869± 0.011 0.974± 0.003

Best Configuration 0.894± 0.010 0.886± 0.010 0.977± 0.003

VggFace

Lower-Half 0.684± 0.022 0.700± 0.018 0.921± 0.011

Upper-Half 0.745± 0.017 0.743± 0.014 0.936± 0.005

Random-Crop 0.918± 0.010 0.899± 0.011 0.981± 0.003

Best Configuration 0.926± 0.011 0.910± 0.014 0.983± 0.003

recognition, while occlusions of the lower area do not in-

fluence much the results. Differently, in our experiments,

we included the eyes region in both the cases (Fig. 5(b)-(c))

so as to deepen which of the two regions carries more dis-

criminative information. Considering the asymmetric verti-

cal position of the eyes, in order to retain approximately the

same amount of visual information, we cut out a slightly

smaller region for the upper half case (Fig. 5 (b)). The sizes

of the crops are the 28% and 35% of the image height for

the upper and lower halves respectively. Consistently with

the finding of [16], Table 3 shows that removing the upper

half of the face leads to a more significant drop of perfor-

mance than excluding the lower half. Nonetheless, we can

conclude that, since the eyes region is present in both, the

eyebrows and forehead parts are of greater importance for

the final representation. Randomly shifting the position of

the bounding box, and so removing a small portion of the

content, is instead not that crucial as data augmentation is

applied in training the network.

(a) Random crop (b) Upper half (c) Lower half

Figure 5. Examples of: (a) random bounding box of the face; (b)

upper part of the face visible; (c) lower part of the face visible.
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Figure 6. Rank-1 accuracy using different sources for gallery and

probe; (left) AlexNet; (right) VggFace.

5.3. Data Source Analysis

As data coming from both video sequences and still im-

ages is available in the IJB-A dataset, we devised a protocol

to evaluate the impact of the data source. In this protocol

four setups in which gallery and probe sets contain exclu-

sively still images or frames are considered. To this end,

we select the subset of the IJB-A identities that have at least

one still image and one frame. Since in the original protocol

identities in the probe set can be missing in the gallery set,

this selection is made only for the gallery, so as to maintain

the same set across all the setups. It resulted that, for each

split, 95 out of the total 112 gallery identities are retained in

all the setups. For the probe set instead, images are filtered

out depending on whether still images or frames are used.

In Fig. 6 is shown that actually the data source does in-

fluence the accuracy. For both the DCNN architectures a

performance drop is observed when gallery and probe data

come from different sources, with a much more significant

loss when the gallery is composed of video frames. Being

aware that generally video frames have a lower resolution

than still images, we believe that the different capturing for-

mats still lead to changes in the image content and so in the

extracted representation. This suggests us that can be useful

to include video frames in the training set of a DCNN.
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Table 4. State of the art results on the IJB-A dataset. *Best configurations for both AlexNet and VggFace have been selected. Best results

are reported in bold and second best are underlined.
Identification 1:N Verification 1:1

Method TAR@0.01FAR TAR@0.001FAR Rank@1 Rank@10 TAR@0.01FAR TAR@0.001FAR

UMD (DCNN+metric) [3] – – 0.852± 0.018 0.954± 0.007 0.787± 0.043 –

UMD (DCNNfusion) [2] – – 0.903± 0.012 0.977± 0.007 0.838± 0.042 –

PAMs [15] – – 0.840± 0.012 0.946± 0.007 0.826± 0.018 0.652± 0.037

Template Adaptation [4] 0.774± 0.050 – 0.928± 0.010 0.986± 0.003 0.939± 0.013 0.836± 0.027

TPE [19] 0.932± 0.010 0.753± 0.030 0.932± 0.010 0.977± 0.005 0.900± 0.010 0.813± 0.020

All-In-One CNN + TPE [18] 0.792± 0.020 – 0.947± 0.008 0.988± 0.003 0.922± 0.010 0.823± 0.020

NAN [27] 0.817± 0.041 – 0.958± 0.005 0.986± 0.003 0.941± 0.008 0.881± 0.011

AlexNet* 0.894± 0.010 0.753± 0.022 0.886± 0.010 0.977± 0.003 0.862± 0.020 0.731± 0.025

VggFace* 0.926± 0.011 0.804± 0.022 0.910± 0.014 0.983± 0.003 0.896± 0.016 0.759± 0.041

5.4. Comparison with State of the Art

For the sake of completeness, we compare the best con-

figuration for both the two considered DCNNs with state of

the art methods on the IJB-A and YTF datasets. Results are

reported in Table 4 and Fig. 7, respectively. Results on the

IJB-A show that our best configurations get very competi-

tive results.

For what concerns the YTF dataset, we considered the

original frames (without any preprocessing) to extract the

DCNN descriptors. As for the bounding boxes, the pro-

vided annotations define a crop that resembles the tight one

shown in Fig. 1. As we found that the best option is to

have a large bounding box, we conducted the experiment

two times, using both the original annotations and an en-

larged version. The bounding boxes have been enlarged of

15% so as to approximately match the optimal dimension

in the latter case. Considering that consistency between

train and test data improves the results, when using the orig-

inal YTF annotations, we extract feature descriptors with

AlexNet trained on tight bounding boxes. The ROC curves

in Fig. 7 surprisingly show that the best performance is ob-

tained with the latter configuration, which outperforms the

state of the art. One reason for this behavior can be found in

the way in which the matching is performed. It is reasonable

to believe that computing the average face descriptor when

a certain amount of background is included in the bounding

box can have a negative effect on the representation.

6. Conclusions

In this paper, we investigated nuisance factors that can

influence face recognition performance. We focused on the

images preprocessing steps, for both training and testing.

From the experimental evidence we can mainly conclude

that there exist a strong dependency between train and test

data and that actually the image representation derived from

the DCNNs does not benefit from image normalization op-

erations. Moreover, we evidenced that the data source com-

binations (images or frames) has a certain impact on the

final performance.
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Figure 7. ROC curves on the YouTube Faces database for the

trained architectures and the state of the art.

From this analysis some useful insights have also been

derived that can help to lighten the effort in developing new

solutions for face recognition in the wild exploiting DCNN.
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