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Abstract

Convolutional Neural Network(CNN) based semantic

segmentation require extensive pixel level manual anno-

tation which is daunting for large microscopic images.

The paper is aimed towards mitigating this labeling effort

by leveraging the recent concept of generative adversar-

ial network(GAN) wherein a generator maps latent noise

space to realistic images while a discriminator differenti-

ates between samples drawn from database and generator.

We extend this concept to a multi task learning wherein

a discriminator-classifier network differentiates between

fake/real examples and also assigns correct class labels.

Though our concept is generic, we applied it for the chal-

lenging task of vessel segmentation in fundus images. We

show that proposed method is more data efficient than a

CNN. Specifically, with 150K, 30K and 15K training exam-

ples, proposed method achieves mean AUC of 0.962, 0.945

and 0.931 respectively, whereas the simple CNN achieves

AUC of 0.960, 0.921 and 0.916 respectively.

1. Introduction

Semantic segmentation refers to pixel level assignment

of class labels. The task is particularly more difficult than

object detection because a semantic segmenter is penal-

ized even for misclassifying a single pixel. With the ad-

vent of deep learning paradigms, semantic segmentation

has reached new benchmarks in natural scene understand-

ing [17, 25], large scale medical imaging[31] and micro-

scopic images [4, 30, 38]. But, pixel level manual anno-

tation is a costly and time consuming process. The paper

is specifically targeted towards mitigating this extensive la-

beling bottleneck via a multi task setting using generative

adversarial networks (GAN).

Fundus imaging (See Fig. 2) is a paradigm of pho-

tographing the internal surface of eye including retina, reti-

Figure 1. Proposed model for GAN based semantic segmentation

on fundus images. The generator network (G) takes in a 300-

D standard normal noise vector to create a fake example, G(z)

via a series of deconvolution [25] operations. The task of the

Discriminator-Classifier network (DC) is to assign correct class

label (vessel or background) to real examples coming from stored

training database while assigning G(z) to Fake class. In contrast,

goal of G is to fool DC in assigning G(z) to any one of the training

labels.

nal vasculature, optic disc, macula, and posterior pole or the

fundus. A fundus camera is a specialized low power micro-

scope with an attached camera and operates on the princi-

ple of indirect ophthalmoscope [40]. Fundus angiograpgy

or study of blood vessel network is a key step in detection

of diabetic retinopathy [37], localizing of foveal avascular

region [8], thinning of arteries [7] and laser surgery [11].

The vascular network also finds application in biometrics

[21]. Automated segmentation of blood vessels from fundus

image is a challenging task due to intricate branching pat-

terns, noisy background and illumination difference. Thus

automated vessel segmentation as a first step toward com-

puter aided analysis of fundus still remains an active re-

search [5, 20] avenue. Though automated vessel segmenta-

42



tion in fundus images was a well researched topic from last

decade [22, 28, 24], the algorithms depended on indigenous

hand crafted features. But, in recent years, the paradigm

has shifted towards data driven learning by leveraging hier-

archical feature representation capability of deep neural net-

works. Algorithms exploiting deep autoencoders and con-

volutional neural networks (CNN) has set up new bench-

marks for retinal vessel segmentation [5, 13, 20]. There

are broadly two paradigms of applying deep learning algo-

rithms for vessel segmentation, viz., a) Central pixel pre-

diction: In this method, a training algorithm is fed with

a fixed sized rectangular image patch and label of central

pixel is assigned as the class label of the patch. Some of

the initial deep learning algorithms for this task used deep

stacked denoising auto encoder for reconstructing patches

extracted from training images. This is a stage wise unsu-

pervised learning framework in which the neural network

greedily learns to efficiently encode fundus patches into

lower dimensional space. Next step is to refine the en-

tire network end-to-end with class labels. Recent works by

[18, 13, 32] closely follows this method. Authors have also

used end-to-end supervised training of CNNs on the image

patches [19]. In this paper we focus on central pixel predic-

tion. b) Structure prediction: Recent works on semantic

segmentation for natural images show that it is more ben-

eficial to predict class labels for all pixels of a given patch

rather than the central pixel. This is poplar in computer vi-

sion community as deep structural learning [15] since it aids

in better encapsulation of neighboring structure information

for making class predictions. These models are also popu-

lar as fully convolutional semantic segmenters (FCN) [17].

Such FCNs have been successfully applied for retinal vessel

segmentation to achieve benchmark performances [1].

But training a CNN is data extensive task. This paper

aims at reducing manual annotation effort by posing the

segmentation problem in a semi supervised learning frame-

work which leverages using the recent concept of genera-

tive adversarial network [6]. It is to be noted that the con-

tribution of the paper is not in achieving new state-of-the-

art performance in vessel segmentation but rather to show-

case the data efficacy of GAN based semantic segmentation

paradigm. Though the concept is generic, we apply the pro-

posed method for label free angiography on fundus images.

Our main contributions in this work are summarized below:

• To our best knowledge, this is the fist work which

leverages GAN for semi supervised learning on large

scale fundus imaging modality for automated blood

vessel segmentation.

• We achieve comparable performance (sometimes even

better) with recent CNN based segmentation tech-

niques while using upto 9X times less training data

• We show that performance of simple CNN based seg-

Figure 2. Exemplary training fundus images with corresponding

manual annotation of blood vessels from DRIVE dataset. The task

of automated vessel segmentation is particularly challenging due

to significant illumination variation, abrupt torosity of vessels and

complex vascular network.

menter starts deteriorating faster on smaller datasets

compared to GAN-CNN

• For the first time, we generate 32×32 dimensional syn-

thetic fundus patches from latent noise vectors. The

synthetic samples closely resemble the original train-

ing examples.

• We show that the difference of performances between

simple CNN and GAN-CNN is statistically significant

when trained on smaller training sets.

2. Generative Adversarial Learning

Generative adversarial network (GAN) [6] presents a

two player min-max game between a generator (G) and dis-

criminator (D) network. The idea is to simultaneously train

the D and G networks. G is trained to map random vectors

z ∈ R
Z to synthetic image vector, x̃ = G(z). The objec-

tive of D network is to distinguish between real examples,

x ∼ pdata(x), from synthetic examples, G(z) ∼ pG(z) gen-

erated by G. D(x) represents the probability that a sample x

belongs to original data distribution. Gradient of output of

D with respect to its input is used by G to update its own pa-

rameters. Specifically, D and G play a two player min-max

game with value function V(G,D):

min
G

max
D

V (D,G) = E
x∼pdata(x)[logD(x)]

+ E
z∼pz(z)[log(1−D(G(z)))] (1)

Though, initially GAN was proposed as an approximate

sampler from original data distribution, the concept of ad-

versarial learning have been successfully applied over diver-

sified computer vision applications such as image super res-

olution [14], image impainting [41], image-to-image trans-

lation [16] and video frame prediction [23] to name a few.

3. Proposed Method

3.1. Semi Supervised Learning with GAN

The original version of GAN can be implemented with

2-way softmax output from discriminator network to find
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a distribution over [REAL, FAKE]. For the task of semi

supervised learning on a database of K classes, the con-

cept can be easily extended to incorporate a K + 1-way

softmax layer at output of discriminator [26, 34] ; where,

now the prediction labels will be [Class 1, Class, 2,.., Class

K, FAKE]. The revised Discriminator can be termed as a

Discriminator-Classifier network (DC net). Let, pDC(c =
k|x) define the probability of belonging to class k given

an example x by the DC net. k=1,2,...K denotes labels

from database (in our case K=2; vessel patch and back-

ground patch) and k=K+1 denotes the FAKE class. So,

pDC(c = K + 1|x) denotes the probability that x is fake

corresponding to 1-D(G(z)) in Eq. 1. The DC net now has

to minimize two types of losses, viz. a) classification loss

and b)adversarial loss. Classification loss, Lc is given by:

Lc = −E(x,y)∼pdata(x,y)log pDC(y|x; y < K + 1) (2)

Adversarial loss, Lavd, is given by,

Ladv = −Ex∼Glog pDC(y = K + 1|x) (3)

The DC net is optimized to minimize Eqs. 2 and 3. The

generator is updated in such a way so that the DC net places

minimum probability over class k=K+1 and thereby fooling

DC net to believe that the fake example belongs to one of

the legitimate K classes of the database. So, for training the

generator, we need to maximize, LG,

LG = −Ex∼Glog pDC(y = K + 1|x) (4)

At test time, a real test examples, xt is assigned a label,

y∗(x), according to,

y∗(x) = argmax
y

pDC(c = y|x) (5)

The basic diagram of our method is shown in Fig. 1.

DC net can be seen as a multi task learning network

[39, 2] where the two tasks of the network is to assign cor-

rect class label to a real training sample, x ∼ pdata(x),
while to assign high probability to FAKE class when fed

with synthetic example, G(z). It has been shown in nu-

merous computer vision applications, that multi task learn-

ing aids in improving performance over individual tasks

provided that the tasks are related [3]. In [34], the au-

thors achieve state-of-the-art semi supervised performance

on MNIST and CIFAR datasets using GAN framework.

Invigorated by the success of GAN in semi supervised

learning setting, we incorporate a similar learning strategy

for semantic segmentation for large scale fundus images.

Pixel level annotation is much tedious than image level tag-

ging; thereby bolstering the importance of our contribution

towards data efficient semantic segmentation modeling.

3.2. Network Architecture

The network architecture is visualized in Fig. 1. We

closely adhere to the GAN network specifications of DC-

GAN [29] 1. Noise vector, z is randomly sampled from

300-D zero mean unit variance normal distribution. z is

then projected to a 32,768-D space and transformed back

to a 8×8 cuboid with 512 channels. Three stages of de-

convolution are used for upsampling from 8×8 to 64×64

dimension. Though batch normalization [9] was initially

suggested in DCGAN, recently, it has been observed that

batch normalization introduces irrelevant stochasticity for

small batch sizes. Following [10], we apply instance nor-

malization after every deconvolution followed by Rectified

linear unit (ReLU) as non linear activation.

The DC network receives a 64×64 image and passes it

through a series of leaky ReLU activated convolutional lay-

ers with instance normalization. At last layer, it produces

a 3-way softmax output corresponding to background,

vessel and fake respectively. Let CILR(f,r,s) denote a con-

volutional layer with leaky Relu activation after instance

normalization. The layer operates with a receptive field of

r×r with stride of s along height and width and yields f

filters. The architecture of the DC network is as follows:

CILR(96,3,1)-CILR(96,3,1)-CILR(96,3,2)-dropout(0.5)-

CILR(192,3,1)-CILR(192,3,1)-CILR(192,3,2)-

dropout(0.5)-CILR(192,3,1)-CILR(192,1,1)-global avg-

softmax(3); where dropout(k) is the standard dropout layer

for regularization [35] with keep node probability of k

and global avg is global average along height and width

dimension followed by 3-way softmax layer.

4. Experiments

In this section we provide the details of training dataset,

training procedures and provide comparative analysis to

show the effectiveness of using proposed GAN-CNN for se-

mantic segmentation over simple CNN.

4.1. Fundus Dataset

The experiments have been performed on the fundus im-

ages of DRIVE dataset [36]. The dataset contains 20 images

for training and 20 for testing. Blood vessel in each image

is manually marked by an observer trained by experienced

ophthalmologist. This marking is taken as gold standard.

For testing images, there was an additional human marker

to compare efficacy of automated vessel segmentation algo-

rithms with human perfection.

4.2. Preprocessng

It has been shown in [13], that then green channel in

color fundus imaging is most discriminative in segmenting

1Our code is adapted from https://github.com/carpedm20/DCGAN-

tensorflow
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blood vessels. Following this, we considered only the green

channel and performed histogram equalization to mitigate

effects of non uniform illumination. Next, 64×64 dimen-

sional patches were extracted and label of central pixel is

assigned as the class label of the entire patch. Following

[13], vessel patches are extracted from skeletonized ground

truth maps while background patches are extracted from di-

lated maps. This helps in better prediction of pixels at the

border of vessels.

Table 1. Comparison of mean AUC of proposed GAN-CNN and

simple CNN based segmentation on test set of DRIVE dataset.

Comparison is done after training on different sized dataset. p-

value (Welch’s t-test [33]) indicates that there is significant differ-

ence between the mean AUCs of the proposed method and simple

CNN, specially when trained on smaller training sets.

Dataset GAN-CNN(Proposed) CNN p-value

150K 0.962 0.960 0.1

30K 0.945 0.921 10−3

15K 0.931 0.916 10−5

4.3. Training Details

For understanding the difference of performance be-

tween proposed GAN-CNN and simple CNN based

method, we train on three different sized dataset, viz.,

a)150K b) 30K c) 15K consisting on 150×103, 30×103 and

15×103 training patches respectively. On each dataset, we

train the simple CNN and GAN-CNN from scratch.

ADAM optimizer[12] is used for updating both the G

and DC net. Initial learning rate for both G and DC is kept

at 10−4 with a decay factor of 0.8 after every 20 epochs.

Slope of leaky ReLU was maintained at 0.1. Trying to op-

timize the generator network with Eq. 4 is practically not

advisable [6] because in the early phase of training, magni-

tudes of gradients propagated to generator are small. Thus,

we instead minimize,

LG = −Ex∼Glog{1− pDC(y = K + 1|x)} (6)

4.4. Results

In retinal vessel segmentation literature, area under the

Receiver Operation Curve, i.e., AUC is taken as a standard

metric of comparison [5, 18, 19]. A larger AUC signifies

a better segmenter. First, we compare the data efficiency

of our proposed GAN-CNN and simple CNN based seg-

menter. In Table 1, we report the mean AUC of the two

methods trained on 150K, 30K and 15K datasets and tested

on the 20 test images. With 150K training, performances

of both GAN-CNN and simple CNN are comparable with

mean AUC values of 0.962 and 0.960 respectively. But, the

superiority of GAN-CNN is manifested with reduction of

training data. At 30K training, mean AUC of GAN-CNN is

0.9405 while that of simple CNN is 0.921; at 15K training,

Table 2. Comparison of mean AUC of some of the contemporary

deep learning based retinal vessel segmentation algorithm. Our

proposed methods manifest comparable performance even when

trained with much smaller training datasets. It is to be noted that in

this preliminary work we have not performed extensive grid search

for best learning rate scheduling or architecture fine tuning. So,

there is future scope to enhance the data efficiency of our model

even further.

Method Dataset Size AUC

Maji et al. [18] 60K 0.928

Lahiri et al. [13] 120K 0.950

Fu et al.[5] 330K 0.947

Maji et al. [19] 60K 0.919

Liskowski et al. [1] 3857K 0.963

GAN-CNN (Proposed) 30K 0.945

GAN-CNN (Proposed) 15K 0.931

the corresponding values are 0.931 and 0.916 respectively.

We also visualize the ROC curves of the two methods on

the entire test dataset in Fig. 3. It can be seen that the ROC

curve of proposed GAN-CNN is always higher than simple

CNN when trained on smaller scale dataset. Table 1 and

Fig. 3 thus strongly advocates use of GAN based segmen-

tation models specially while training on limited amount of

labeled data.

Table 1 shows that the mean AUC of GAN-CNN is

greater than that of simple CNN. To test the significance

of this observation we perform a Welch’s t-test which is a

special adaptation of Student’s t-test for unequal variances

[33]. The null hypothesis in this case is that the mean AUCs

of both paradigms of segmenters are same. The p-value

for Welch’s t-test comes out to be 0.1, 10−5 and 10−7 on

150K, 30K and 15K training set respectively. This shows

that the difference of mean AUCs between GAN-CNN and

simple CNN is significant specially when trained on limited

dataset. For the 150K dataset training, differences in per-

formance of GAN-CNN and CNN are statistically insignif-

icant.

We also compare the performance of our model trained

on limited data with some of the contemporary deep learn-

ing based techniques for automated retinal vessel segmen-

tation. The competing methods are a) Maji et al. [18] :

The authors first train a denoised stacked auto encoder for

vessel reconstruction followed by supervised refinement of

the autoencoder network. The learnt features are then fed

to an ensemble of random forest for final classification; b)

Lahiri et al. [13]: Here, a 2-stage ensemble (based on boot-

strap sampling and architectural variation) of stacked de-

noised autoencoder is used for classifying a central pixel to

either vessel or background class; c) Liskowski et al. [1]:

An end-to-end CNN based network is proposed with differ-

ent variants of image preprocessing and structured predic-
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(a) (b)

Figure 3. ROC curves of proposed GAN-CNN and simple CNN on the combined 20 test images of DRIVE retina dataset. 30K and 15K

dataset contains total 30,000 and 15,000 training patches respectively. Curves of GAN-CNN always tends to be higher on the ROC plots

compared to simple CNN based segmenter. The visualization bolsters our claim that training a GAN based CNN for semantic segmentation

is data efficient.

tion; d) Fu et al. [5]: The authors train a deep CNN fol-

lowed by finer refinement using conditional random fields

e) Maji et al. [19]: An ensemble of deep CNNs is used for

pixelwise prediction. We tabulate the comparative perfor-

mances in Table 2. It is to be noted that even with much

smaller dataset size, our proposed method performs com-

parable (sometimes even better) than the competing tech-

niques trained with 2X-10X times more training data. Also,

in this preliminary work, we have not done extensive grid

search for hyper parameter tuning or architectural refine-

ment. In a follow up work we wish to perform a detailed

refinement with an envision of further enhancement of data

efficiency of our model.

In Fig. 4, we visualize an exemplary set of examples

generated by the generator network of our GAN based

model and real training patches from the database. It can be

appreciated that the parameterization of the trained genera-

tor enables it to map a 300-D latent space to viable 64×64

dimensional fundus patches. Specially, the anatomy of ves-

sel representation learnt by the generator is worth consider-

ing.

5. Conclusion

In this paper we proposed a semi supervised paradigm

of semantic segmentation using generative adversarial net-

works. The training of the proposed method was shown

to be more data efficient compared to normal CNN train-

ing. Our preliminary work thus advocates future researchers

working on large scale microscopic images to leverage

GAN based CNN model for semantic segmentation to re-

duce manual labeling effort. There are some immediate ex-

tensions possible from the presented work. One possibility

is to make use of large amount of unlabeled data by forcing

the DC-net to place low likelihood for fake class to these ex-

amples [26]. Another possibility to use use class conditional

generator [27] network to force it to generate class specific

fake examples and forcing the DC-net to classify these fake

examples. Both of these methods are further steps towards

improving the performance of the combined DC-net.
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