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Figure 1: Visual results of different super-resolution methods.

Abstract

Face Super-Resolution (SR) is a domain-specific super-

resolution problem. The facial prior knowledge can be

leveraged to better super-resolve face images. We present

a novel deep end-to-end trainable Face Super-Resolution

Network (FSRNet), which makes use of the geometry prior,

i.e., facial landmark heatmaps and parsing maps, to super-

resolve very low-resolution (LR) face images without well-

aligned requirement. Specifically, we first construct a

coarse SR network to recover a coarse high-resolution (HR)

image. Then, the coarse HR image is sent to two branches:

a fine SR encoder and a prior information estimation net-

work, which extracts the image features, and estimates land-

mark heatmaps/parsing maps respectively. Both image fea-

tures and prior information are sent to a fine SR decoder to

recover the HR image. To generate realistic faces, we also

propose the Face Super-Resolution Generative Adversarial

Network (FSRGAN) to incorporate the adversarial loss into

FSRNet. Further, we introduce two related tasks, face align-

ment and parsing, as the new evaluation metrics for face SR,

which address the inconsistency of classic metrics w.r.t. vi-

sual perception. Extensive experiments show that FSRNet

and FSRGAN significantly outperforms state of the arts for

very LR face SR, both quantitatively and qualitatively.

∗indicates equal contributions. This work was partially done when Yu

Chen was visiting University of Adelaide. J. Yang is the corresponding

author.

1. Introduction

Face Super-Resolution (SR), a.k.a. face hallucination,

aims to generate a High-Resolution (HR) face image from a

Low-Resolution (LR) input. It is a fundamental problem

in face analysis, which can greatly facilitate face-related

tasks, e.g., face alignment [16, 25, 36], face parsing [23],

face recognition [34, 41], and 3D face reconstruction [29],

since most existing techniques would degrade substantially

when given very LR face images.

As a special case of general image SR, there exists face-

specific prior knowledge in face images, which can be

pivotal for face SR and is unavailable for general image

SR [22, 32, 33]. For example, facial correspondence field

could help recover accurate face shape [46], and facial com-

ponents reveal rich facial details [31,40]. However, as com-

pared in Tab. 1, the previous face SR methods that utilize

facial priors all adopt multi-stage, rather than end-to-end,

training strategies, which is inconvenient and complicated.

Based on deep Convolutional Neural Network (CNN),

in this work, we propose a novel end-to-end trainable Face

Super-Resolution Network (FSRNet), which estimates fa-

cial landmark heatmaps and parsing maps during training,

and then uses these prior information to better super-resolve

very LR face images. It is a consensus that end-to-end train-

ing is desirable for CNN [16], which has been validated in

many areas, e.g., speech recognition [8] and image recog-

nition [20]. Unlike previous Face SR methods that estimate

local solutions in separate stages, our end-to-end framework

learns the global solution directly, which is more convenient

and elegant. To be specific, since it is non-trivial to estimate
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Method
VDSR [17] SRResNet [22] StructuredFH [40] CBN [46] URDGN [42] AttentionFH [2] LCGE [31]

FSRNet (ours)
(CVPR’16) (CVPR’17) (CVPR’13) (ECCV’16) (ECCV’16) (CVPR’17) (IJCAI’17)

Facial Prior KNWL × × Components Dense corres. field × × Components Landmark/parsing maps

Deep Model
√ √

×
√ √ √ √ √

End-to-End
√ √

× ×
√ √

×
√

Unaligned
√ √

×
√

× × ×
√

Scale Factor 2/3/4 2/4 4 2/3/4 8 4/8 4 8

Table 1: Comparisons with previous state-of-the-art super-resolution methods. VDSR and SRResNet are generic image SR methods.

StructuredFH, CBN, URDGN, AttentionFH and LCGE are face SR methods.

facial landmarks and parsing maps directly from LR inputs,

we first construct a coarse SR network to recover a coarse

HR image. Then, the coarse HR image is sent to a fine SR

network, where a fine SR encoder and a prior estimation

network share the coarse HR image as the input, followed

by a fine SR decoder. The fine SR encoder extracts the im-

age features, while the prior estimation network estimates

landmark heatmaps and parsing maps jointly, via multi-task

learning. After that, the image features and facial prior

knowledge are fed into a fine SR decoder to recover the fi-

nal HR face. The coarse and fine SR networks constitute our

basic FSRNet, which already significantly outperforms the

state of the arts (Fig. 1). To further generate realistic HR

faces, Face Super-Resolution Generative Adversarial Net-

work (FSRGAN) is introduced to incorporate the adversarial

loss into the basic FSRNet. As in Fig. 1, FSRGAN recov-

ers more realistic textures than FSRNet, and clearly shows

superiority over the others.

It’s a consensus that Generative Adversarial Network

(GAN)-based models recover visually plausible images but

may suffer from low Peak Signal-to-Noise Ratio (PSNR),

Structural SIMilarity (SSIM) or other quantitative metrics,

while Mean Squared Error (MSE)-based deep models re-

cover smooth images but with high PSNR/SSIM. To quanti-

tatively show the superiority of GAN-based model, in [22],

26 users conducted a mean opinion score testing. However,

such a testing is not objective and difficult to follow for fair

comparison. To address this problem, we introduce two re-

lated face analysis tasks, face alignment and parsing, as the

new evaluation metrics for face SR, which are demonstrated

to be suitable for both MSE and GAN-based models.

In summary, the main contributions of this work include:

• To the best of our knowledge, this is the first deep face

super-resolution network utilizing facial geometry prior in

a convenient and elegant end-to-end training manner.

• Two kinds of facial geometry priors: facial landmark

heatmaps and parsing maps are introduced simultaneously.

• The proposed FSRNet achieves the state of the art

when hallucinating unaligned and very low-resolution (16×
16 pixels) face images by an upscaling factor of 8, and the

extended FSRGAN further generates more realistic faces.

• Face alignment and parsing are adopted as the novel

evaluation metrics for face super-resolution, which are fur-

ther demonstrated to resolve the inconsistency of classic

metrics w.r.t. the visual perception.

2. Related Work

We review the prior works from two perspectives, and

contrast with the most relevant papers in Tab. 1.

Facial Prior Knowledge There are many face SR methods

that use facial prior knowledge to better super-resolve LR

faces. Early techniques assume that faces are in a controlled

setting with small variations [38]. Baker and Kanade [1]

proposed to learn a prior on the spatial distribution of the

image gradient for frontal face images. Wang et al. [37]

implemented the mapping between LR and HR faces by an

eigen transformation. Kolouri et al. [18] learnt a nonlinear

Lagrangian model for HR face images, and enhanced the

degraded image by finding the model parameters that could

best fit the given LR data. Yang et al. [40] incorporated

the face priors by using the mapping between specific facial

components. However, the matchings between components

are based on the landmark detection results that are difficult

to estimate when the down-sampling factor is large.

Recently, deep convolutional neural networks have been

successfully applied to the face SR task. Zhu et al. [46]

super-resolved very LR and unaligned faces in a task-

alternating cascaded framework. In their framework, face

hallucination and dense correspondence field estimation are

optimized alternatively. Besides, Song et al. [31] proposed a

two-stage method, which first generated facial components

by CNNs and then synthesized fine-grained facial structures

through a component enhancement method. Different from

the above methods that conduct face SR in multiple steps,

our FSRNet fully leverages facial landmark heatmaps and

parsing maps in an end-to-end training manner.

End-to-end Training End-to-end training is widely used in

general image SR. Tai et al. [32] proposed Deep Recursive

Residual Network (DRRN) to address the issue of model

parameters and accuracy, which recursively learns the resid-

ual unit in a multi-path model. The authors also proposed a

deep end-to-end persistent memory network to address the

long-term dependency problem in CNN for image restora-

tion [33]. Moreover, Ledig et al. [22] proposed Super-

Resolution Generative Adversarial Network (SRGAN) for

photo-realistic image SR using a perceptual loss function

that consists of an adversarial loss and a content loss.

There are also many face SR methods adopting the end-

to-end training strategy. Yu et al. [42] investigated GAN [7]

to create perceptually realistic HR face images. The au-
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Figure 2: Network structure of the proposed FSRNet. ‘Conv’ indicates a convolutional layer with “pre-activation” structure [11].

‘k3n64s1’ indicates the kernel size to be 3× 3, the feature map number to be 64 and the stride to be 1.

thors further proposed transformative discriminative auto-

encoder to super-resolve unaligned, noisy and tiny LR face

images [43]. More recently, Cao et al. [2] proposed an

attention-aware face hallucination framework, which re-

sorts to deep reinforcement learning for sequentially dis-

covering attended patches and then performing the facial

part enhancement by fully exploiting the global image in-

terdependency. Different from the above methods that only

rely on the power of deep models, our FSRNet is not only

an end-to-end trainable Neural Network, but also combines

the rich information from the facial prior knowledge.

3. Face Super-Resolution Network

3.1. Overview of FSRNet

Our basic FSRNet F consists of four parts: coarse SR

network, fine SR encoder, prior estimation network and fi-

nally a fine SR decoder. Denote x as the low-resolution in-

put image, y and p as the recovered high-resolution image

and estimated prior information by FSRNet.

Since the very low-resolution input image may be too

indistinct for prior estimation, we first construct the coarse

SR network to recover a coarse SR image,

yc = C(x), (1)

where C denotes the mapping from a LR image x to a coarse

SR image yc by the coarse SR network. Then, yc is sent to

the prior estimation network P and fine SR encoder F , as,

p = P(yc), f = F(yc), (2)

where f is the features extracted by F . After encoding, the

SR decoder D is utilized to recover the SR image by con-

catenating the image feature f and prior information p,

y = D(f ,p). (3)

Given a training set of N samples {x(i), ỹ(i), p̃(i)}Ni=1,

where ỹ(i) is the ground-truth HR image of the LR image

x(i) and p̃(i) is the corresponding ground-truth prior infor-

mation, FSRNet has the loss function,

LF(Θ) =
1

2N

N∑

i=1

{‖ỹ(i) − y
(i)
c ‖2 + α‖ỹ(i) − y

(i)‖2

+ β‖p̃(i) − p
(i)‖2},

(4)

where Θ denotes the parameter set, α and β are the weights

of the coarse SR loss and prior loss, and y(i),p(i) are the

recovered HR image and estimated prior information of the

i-th image respectively.

3.2. Details inside FSRNet

We now present the details of our FSRNet, which con-

sists of a coarse and a fine SR network, where the fine SR

network contains three parts: a prior estimation network, a

fine SR encoder and a fine SR decoder.

3.2.1 Coarse SR network

First, we use a coarse SR network to roughly recover a

coarse HR image. The motivation is that it is non-trivial

to estimate facial landmark positions and parsing maps di-

rectly from a LR input image. Using the coarse SR net-

work may help to ease the difficulties for estimating the pri-

ors. The architecture of the coarse SR network is shown in

Fig. 2. It starts with a 3×3 convolution followed by 3 resid-

ual blocks [10]. Then another 3 × 3 convolutional layer is

used to reconstruct the coarse HR image.

3.2.2 Fine SR Network

In the following fine SR network, the coarse HR image is

sent to two branches, prior estimation network and fine en-
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coder network, to estimate facial priors and extract features,

respectively. Then the decoder jointly uses results of both

branches to recover the fine HR image.

Prior Estimation Network Any real-world object has dis-

tinct distributions in its shape and texture, including face.

Comparing facial shape with texture, we choose to model

and leverage the shape prior for two considerations. First,

when reducing the resolution from high to low, the shape is

better preserved compared to the texture, and hence is more

likely to be extracted to facilitate super-resolution. Second,

it is much easier to represent shape prior than texture prior.

E.g., face parsing estimates the segmentations of different

face components, and landmarks provide the accurate loca-

tions of facial keypoints, even at low resolution [26]. Both

represent facial shapes, while parsing carries more granular-

ity. In contrast, it is not clear how to represent the higher-

dimensional texture prior for a specific face.

Inspired by the recent success of stacked heatmap regres-

sion in human pose estimation [3, 28], we adopt the Hour-

Glass (HG) structure to estimate facial landmark heatmaps

and parsing maps in our prior estimation network. Since

both priors represent the 2D face shape, in our prior estima-

tion network, the features are all shared between these two

tasks, except the last layer. The detailed structure of prior

estimation network is shown in Fig. 2. To effectively con-

solidate features across scales and preserve spatial informa-

tion in different scales, the hourglass block uses a skip con-

nection mechanism between symmetrical layers. An 1 × 1
convolution layer follows to post-process the obtained fea-

tures. Finally, the shared hourglass feature is connected to

two separate 1 × 1 convolution layers to generate the land-

mark heatmaps and the parsing maps.

Fine SR Encoder For fine SR encoder, inspired by the

success of ResNet [10] in SR [22, 32], we utilize the resid-

ual blocks for feature extraction. Considering the computa-

tion cost, the size of our prior features is down-sampled to

64 × 64. To make the feature size consistent, the fine SR

encoder starts with a 3× 3 convolutional layer of stride 2 to

down-sample the feature map to 64× 64. Then the ResNet

structure is utilized to extract image features.

Fine SR Decoder The fine SR decoder jointly uses the

features and priors to recover the final fine HR image. First,

the prior feature p and image feature f are concatenated

as the input of the decoder. Then a 3 × 3 convolutional

layer reduces the number of feature maps to 64. A 4 × 4
deconvolutional layer is utilized to up-sample the feature

map to size 128 × 128. Then 3 residual blocks are used to

decode the features. Finally, a 3 × 3 convolutional layer is

used to recover the fine HR image.

3.3. FSRGAN

As we know, GAN has shown great power in super-

resolution [22], which generates photo-realistic images with

Coarse SR 

Network

Fine SR 

Encoder

Fine SR 

Decoder

Ground-Truth Prior

Image features

Figure 3: Structure of “upper-bound” model. The ground-truth

priors are directly concatenated with image features. Removing

priors in the red box and increasing the number of image features

by the number of channels in prior induce to the baseline model.

superior visual effect than MSE-based deep models. The

key idea is to use a discriminative network to distinguish the

super-resolved images and the real high-resolution images,

and to train the SR network to deceive the discriminator.

To generate realistic high-resolution faces, our model

utilizes GAN in the conditional manner [13]. The objective

function of the adversarial network C is expressed as:

LC(F,C) = E[logC(ỹ,x)]+E[log(1−C(F(x),x)], (5)

where C outputs the probability of the input been real and E

is the expectation of the probability distribution. Apart from

the adversarial loss LC, we further introduce a perceptual

loss [15] using high-level feature maps (i.e., features from

‘relu5 3’ layer) of the pre-trained VGG-16 network [30] to

help assess perceptually relevant characteristics,

LP = ‖φ(y)− φ(ỹ)‖2, (6)

where φ denotes the fixed pre-trained VGG model, and

maps the images y/ỹ to the feature space. In this way, the

final objective function of FSRGAN is:

argmin
F

max
C

LF(Θ) + γC LC(F,C) + γP LP, (7)

where γC and γP are the weights of GAN and perceptual

loss, respectively.

4. Prior Knowledge for Face Super-Resolution

In this section, we would like to answer two ques-

tions: (1) Is facial prior knowledge really useful for face

super-resolution? (2) How much improvement does differ-

ent facial prior knowledge bring? To answer these ques-

tions, we conduct several tests on the 2, 330-image Helen

dataset [21]. The last 50 images are used for testing and

the others are for training. We perform data augmentation

on the training images. Specifically, we rotate the original

images by 90◦, 180◦, 270◦ and flip them horizontally. This

results in 7 additional augmented images for each original

one. Besides, each image in Helen dataset has a ground

truth label of 194 landmarks and 11 parsing maps.

Effects of Facial Prior Knowledge First, we demonstrate

that facial prior knowledge is significant for face super-

resolution, even without any advanced processing steps.
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(b)

(c)(a)
Parsing Landmark Both

Figure 4: Effects of facial priors. (a) Comparison between base-

lines and models with ground truth priors. The upper bound per-

formance of landmark priors with different numbers of landmarks

(b), and parsing priors with different types of parsing maps (c).

We remove the prior estimation network and construct a

single-branch baseline network. Based on the baseline net-

work, we introduce the ground truth facial prior information

(i.e., landmark heatmaps and parsing maps) to the “con-

catenation” layer to construct a new network, as shown in

Fig. 3. For fair comparison, we keep the feature map num-

ber of “concatenation” layer the same between two net-

works, which means the results can contrast the effects of

the facial prior knowledge. Fig. 4 presents the performance

of 3 kinds of settings, including setting with or without

parsing maps, landmark heatmaps, or both maps, respec-

tively. As we can see, the models using prior information

significantly outperform the corresponding baseline models

with the PSNR improvement of 0.4 dB after using landmark

heatmaps, 1.0 dB after using parsing maps, and 1.05 dB

after using both priors, respectively. These huge improve-

ments on PSNR clearly signify the positive effects of facial

prior knowledge to face SR.

Upper Bound Improvements from Priors Next, we focus

on specific prior information, and study the upper bound

improvements that different priors bring. Specifically, for

facial landmarks, we introduce 3 sets of landmarks, i.e., 49,

97 and 194 landmarks, respectively. For parsing maps, we

introduce the global and local parsing maps, respectively.

The global parsing map is shown in Figs. 5(b-c), while

Fig. 5(d) shows the local parsing maps containing differ-

ent facial components. From the results of different priors

in Fig. 4, we observe that: (1) Parsing priors contain richer

information for face SR and bring more improvements than

the landmark prior. (2) Global parsing maps are more useful

than local parsing maps. (3) More landmark heatmaps have

minor improvements than the version using 49 landmarks.

The above results and analysis demonstrate the effects of

both facial priors, and show the upper bound performance

that we achieve if the priors are predicted perfectly. Since

we use the recent popular facial alignment/parsing frame-

work as the prior estimation network, the powerful learning

ability enables the network to leverage the priors as much

as possible, and hence can benefit the face SR. Apart from

(b) (d)(a) (c)

Figure 5: Parsing maps of Helen images. (a) Original image.

(b) Color visualization map generated by 11 ground truth parsing

maps [23]. It is used as part of the global parsing map. (c) Global

parsing maps from the ground truth. (d) Local parsing maps from

the ground truth, containing left eyebrow, right eyebrow, left eye,

right eye, nose, upper lip, inner mouth, and lower lip, respectively.

the benefit to PSNR, introducing facial prior may bring

other advantages, such as more precise recovery of the face

shape, as reflected by less errors on face alignment and pars-

ing. More details are presented in the next section.

5. Experiments

5.1. Implementation Details

Datasets We conduct extensive experiments on 2 datasets:

Helen [21] and celebA [27]. Experimental setting on Helen

dataset is described in Sec. 4. For celebA dataset, we use

the first 18, 000 images for training, and the following 100
images for evaluation. It should be noted that celebA only

has a ground truth of 5 landmarks. We further use a recent

alignment model [4] to estimate the 68 landmarks and adopt

GFC [23] to estimate the parsing maps as the ground truth.

Training Setting We coarsely crop the training images ac-

cording to their face regions and resize to 128×128 without

any pre-alignment operation. For testing, any popular face

detector [9] can be used to obtain the cropped image as the

input. Same as [22], color images are used for training. The

input low-resolution images are firstly enlarged by bicubic

interpolation, and hence have the same size as the output

high-resolution images. For implementation, we train our

model with the Torch7 toolbox [5]. The model is trained

using the RMSprop algorithm with an initial learning rate

of 2.5 × 10−4, and the mini-batch size of 14. We empiri-

cally set α = 1, β = 1, γC = 10−3 and γP = 10−1 for

both datasets. Training a basic FSRNet on Helen dataset

takes ∼6 hours on 1 Titan X GPU.

5.2. Ablation Study

Effects of Estimated Priors We conduct ablation study on

the effects of the prior estimation network. Since our SR

branch has the similar network structure as SRResNet [22],

we clearly show how the performance improves with dif-

ferent kinds of facial priors based on the performance of

SRResNet. In this test, we estimate the facial priors through

the prior estimation network instead of using the ground

truth conducted in Sec. 4. Same as the tests conducted
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Figure 6: Ablation study on effects of estimated priors.

in Fig. 4 (a), we conduct 3 experiments to estimate the

landmark heatmaps, parsing maps, or both maps, respec-

tively. In each experiment, we further compare our basic

FSRNet with two other network structures. Specifically,

by removing the prior estimation network from our basic

FSRNet, the remaining parts constitute the first network,

named ‘Baseline v1’, which has the similar structure and

hence similar performance as SRResNet. The second net-

work, named ‘Baseline v2’, has the same structure as our

basic FSRNet except that there is no supervision on the

prior estimation network.

Fig. 6 shows the results of different network structures.

It can be seen that: (1) The second networks always out-

perform the first networks. The reason may be even without

the supervision, the second branch learns additional features

that provide more high-frequency signals to help SR. (2)

Compared to the second networks, the supervision on prior

knowledge further improves the performance, which indi-

cates the estimated facial priors indeed have positive effects

on face super-resolution. (3) The model using both priors

achieves the best performance, which indicates richer prior

information brings more improvement. (4) The best per-

formance reaches 25.87 dB, which is lower than the perfor-

mance (i.e., 26.55 dB) when using ground truth. That means

our estimated priors are not perfect and a better prior esti-

mation network may result in higher model performance.

Effects of Hourglass Numbers As discussed in Sec. 4,

a powerful prior estimation network may lead to accurate

prior estimation. Here, we study the effect of the hourglass

number h in the prior estimation network. Specifically, we

test h = 1/2/4, and the PSNR results are 25.69, 25.87,

and 25.95 dB, respectively. Since using more hourglasses

leads to a deeper structure, the learning ability of the prior

estimation network grows, and hence better performance.

To intuitively show the adjustments in stacking more hour-

glasses, we show the landmark estimations of the first and

second stacked hourglass in Fig 7. It can be observed that

the estimation is obviously improved in the second stacking.

Effects of End-to-end Training Next, we show that end-

to-end training helps both prior estimation and face SR.

Specifically, we train coarse SR, prior branch and fine SR of

FSRNet separately on Helen dataset, which achieve 24.21
dB, 5.61 NRMSE and 25.65 dB respectively (vs. 24.26 dB,

CFAN CFSS SDM DeepAlign FSRNet S1 FSRNet S2

9.45 7.26 7.88 6.50 9.44 7.04

Figure 7: Landmark estimations by FSRNet on CelebA. First

row: Results of the first stacked HG (FSRNet S1). Second row:

Results of the second HG (FSRNet S2). Please zoom in to see

the improvements. Bottom: NRMSEs of the first four methods are

achieved by testing directly on the ground-truth HR images.

5.28 NRMSE and 25.87 dB of FSRNet). End-to-end train-

ing obviously contributes to performance improvement.

5.3. Comparisons with StateoftheArt Methods

We compare FSRNet with state-of-the-art SR meth-

ods, including generic SR methods like SRResNet [22],

VDSR [17] and SRCNN [6]; and facial SR methods like

GLN [35] and URDGN [42]. For fair comparison, we use

the released codes of the above models and train all models

with the same training set. For URDGN [42], we only train

the generator to report PSNR/SSIMs, but the entire GAN

network for qualitative comparisons.

Face Super-Resolution First, we compare FSRNet with

the state of the arts quantitatively. Tab. 2 summarizes quan-

titative results on the two datasets. Our FSRNet signifi-

cantly outperforms state of the arts in both PSNR and SSIM.

Not suprisingly, FSRGAN achieves low PSNR/SSIMs. Be-

sides, we also present FSRNet aug, which sends multiple

augmented test images during inference and then fuse the

outputs to report the results. This simple yet effective trick

brings significant improvements.

Qualitative comparisons of FSRNet/FSRGAN with prior

works are illustrated in Fig. 8. Benefiting from the facial

prior knowledge, our method produces relatively sharper

edges and shapes, while other methods may give more

blurry results. Moreover, FSRGAN further recovers sharper

facial textures than FSRNet.

We next compare FSRGAN with two recent face SR

methods: Wavelet-SRNet [12] and CBN [46]. We fol-

low the same experimental setting on handling occlued

face as [12] and directly import the 16 × 16 test exam-

ples from [12] for super-resolving 128 × 128 HR images.

As shown in Fig. 9, FSRGAN achieves relatively sharper

shapes (e.g., nose in all cases) than the state of the arts.

Face Alignment Apart from evaluating PSNR/SSIM,

we introduce face alignment as a novel evaluation met-

ric for face super-resolution, since accurate face recovery
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Dataset Bicubic SRCNN VDSR SRResNet GLN URDGN FSRNet FSRNet aug FSRGAN

Helen 23.69/0.6592 23.97/0.6779 24.61/0.6980 25.30/0.7297 24.11/0.6922 24.22/0.6909 25.87/0.7602 26.21/0.7720 25.10/0.7234

celebA 23.75/0.6423 24.26/0.6634 24.83/0.6878 25.82/0.7369 24.55/0.6867 24.63/0.6851 26.31/0.7522 26.60/0.7628 25.20/0.7023

Table 2: Benchmark super-resolution, with PSNR/SSIMs for scale factor 8. Red/blue color indicate the best/second best performance.

Input (Bicubic)Target VDSR URDGN SRResNet FSRNet (Ours) FSRGAN (Ours)

Figure 8: Qualitative comparisons. Top two examples are of Helen and others are of celebA. Please zoom in to see the differences.

Dataset Bicubic SRCNN VDSR SRResNet GLN URDGN FSRNet FSRNet aug FSRGAN Target

Helen 5.89/0.2908 5.58/0.3442 5.29/0.3691 4.87/0.4555 5.72/0.3694 5.22/0.4070 4.18/0.5758 4.13/0.5817 3.94/0.6128 3.32/0.6744

celebA 13.3/0.2319 12.7/0.2912 12.4/0.3329 11.3/0.5453 12.2/0.4058 12.2/0.3553 10.6/0.6195 10.6/0.6269 10.2/0.6518 9.45/−

Table 3: Quantitative comparisons on alignment (NRMSE)/parsing (IoU). For celebA, parsing maps from target HR images are the GT.

BicubicTarget CBN Wavelet-SRNet FSRGAN (Ours)

Figure 9: Comparisons with CBN and Wavelet-SRNet.

should lead to accurate shape/geometry, and hence accu-

rate landmark points. We adopt a popular alignment model

CFAN [44] to estimate the landmarks of different recovered

images. The upper part of Fig. 10 shows the recovered im-

ages of SRResNet and our FSRNet, including the results

from coarse SR net and final output. The bottom part shows

the facial landmarks estimated by CFAN on different re-

covered images, which are directly displayed on the target

image for clear comparisons. Tab. 3 also presents the Nor-

malized Root Mean Squared Error (NRMSE) results, which

is a popular metric in face alignment and lower NRMSE in-

dicates better alignment performance. From the results we

can see that: (1) It is challenge for the state-of-the-art align-

ment models to estimate landmarks directly from very low-

resolution images. The estimated landmarks of the bicu-

bic image exhibit large errors around mouth, eyes or other

components. In FSRNet, the coarse SR net can ease the

alignment difficulty to some extent, which leads to lower

NRMSE than the input bicubic image. (2) Compared to

SRResNet, our final output provides visually superior esti-

mation on mouth, eyes and shape, and also achieves a large

margin of 0.9 quantitatively. That demonstrates the effec-

tiveness of using landmark priors for training.
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23.47/0.6267 PSNR/SSIM24.16/0.6670 25.33/0.7196 26.58/0.7659

Bicubic TargetCoarseSR SRResNet FineSR

Bicubic/CoarseSR SRResNet/FineSR

Figure 10: Qualitative comparison of face alignment.

Face Parsing We also introduce face parsing as another

evaluation metric for face super-resolution. Although our

prior estimation network can predict the parsing maps from

the LR inputs, for fair comparison, we adopt a recent fa-

cial parsing model GFC [23] to generate the parsing maps

for the recovered images of all methods, including the bicu-

bic inputs, our coarse SR net, SRResNet, our fine SR net,

and targets, respectively. Intersection-over-union (IoU) is

reported in Tab. 3. As we can see, the coarse SR net also

has positive effects on face parsing. Fig. 11 presents the es-

timated parsing maps by [23], the parsing maps from our fi-

nal HR images recover complete and accurate components,

while SRResNet may generate wrong shapes or even lose

components (e.g., mouth).

Here, we adopt two side tasks, face alignment and pars-

ing, as the new evaluation metrics for face super resolu-

tion. They can subjectively evaluate the quality of geom-

etry in the recovered images, which is complementary to

the classic PSNR/SSIM metrics that focus more on photo-

metric quality. Further, Tab. 3 shows that FSRGAN out-

performs FSRNet on both metrics, which is consistent with

the superior visual quality in Fig. 8. This consistency actu-

ally addresses one issue in GAN-based SR methods, which

has the superior visual quality, but lower PSNR/SSIM. This

also shows that GAN-based methods can better recover the

facial geometry, in addition to perceived visual quality.

Prior Estimation Priors estimated by FSRNet are by-

products of our model. Here, we first compare the land-

marks directly estimated by FSRNet with methods [19, 39,

44, 45] using their released codes, as shown in the bottom

of Fig. 7 and Fig. 12. It should be noted that our method

starts with the LR images while others are tested directly

on the ground-truth 8× HR images. Despite the disadvan-

tage in the input image resolution, our method outperforms

most recent methods and is competitive with the state of the

art [19]. It should also be noted that estimating 194 points

is more difficult than 68 points [45], especially on the low-

resolution faces. Then we also compare the IoU of parsing

maps estimated by FSRNet with GFC in Fig. 12.

15.7/0.62/0.75 16.7/0.67/0.69615.9/0.64/0.72 16.0/0.65/0.73 16.2/0.66/0.71

14.9/0.55/1.24 17.6/0.65/0.78515.5/0.58/1.38 15.9/0.58/1.18 17.0/0.60/0.95

BicubicTarget CoarseSR SRResNet FineSR FSRGAN

PSNR/SSIM/MSE

PSNR/SSIM/MSE

Figure 11: Qualitative comparison of face parsing.

IoU=0.7069IoU=0.7059Input (Bicubic) NRMSE=3.16/2.58 IoU=0.6632IoU=0.6460Input (Bicubic) NRMSE=4.12/3.35

IoU=0.6882IoU=0.6666Input (Bicubic) NRMSE=2.98/2.63 IoU=0.8088IoU=0.8175Input (Bicubic) NRMSE=3.54/3.58

Figure 12: Visualizations of estimated prior. Green indicates

results from prior branch. Red indicates results from final SR im-

age, by GFC [23] for parsing and CFAN [44] for 68 landmarks.

Time Complexity Unlike CBN that needs multiple steps

and trains multiple models for face hallucination, our

FSRNet is lightweight, faster and more convenient to use,

which only needs one forward process for inference and

costs 0.012s on Titan X GPU, for a 128 × 128 image. For

comparison, CBN has four cascades and totally consumes

3.84s [46], while the traditional face SR requires more time,

e.g., [24] needs 8 minutes and [14] needs 15− 20 minutes.

6. Conclusions

In this paper, a novel deep end-to-end trainable Face

Super-Resolution Network (FSRNet) is proposed for face

super-resolution. The key component of FSRNet is the prior

estimation network, which not only helps to improve the

photometric recovery in terms of PSNR/SSIM, but also pro-

vides a solution for accurate geometry estimation directly

from very LR images, as shown in the results of facial

landmarks/parsing maps. Extensive experiments show that

FSRNet is superior to the state of the arts on unaligned face

images, both quantitatively and qualitatively. Following the

main idea of this work, future research can be expanded in

various aspects, including designing a better prior estima-

tion network, e.g., learning the fine SR network iteratively,

and investigating other useful facial priors, e.g., texture.
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