
SketchyGAN: Towards Diverse and Realistic Sketch to Image Synthesis

Wengling Chen

Georgia Institute of Technology

wchen342@gatech.edu

James Hays

Georgia Institute of Technology, Argo AI

hays@gatech.edu

Figure 1: A sample of sketch-to-photo synthesis results from our 50 categories. Best viewed in color.

Abstract

Synthesizing realistic images from human drawn

sketches is a challenging problem in computer graphics and

vision. Existing approaches either need exact edge maps, or

rely on retrieval of existing photographs. In this work, we

propose a novel Generative Adversarial Network (GAN) ap-

proach that synthesizes plausible images from 50 categories

including motorcycles, horses and couches. We demon-

strate a data augmentation technique for sketches which

is fully automatic, and we show that the augmented data

is helpful to our task. We introduce a new network build-

ing block suitable for both the generator and discriminator

which improves the information flow by injecting the input

image at multiple scales. Compared to state-of-the-art im-

age translation methods, our approach generates more re-

alistic images and achieves significantly higher Inception

Scores.

1. Introduction

How can we visualize a scene or object quickly? One of

the easiest ways is to draw a sketch. Compared to photogra-

phy, drawing a sketch does not require any capture devices

and is not limited to faithfully sampling reality. However,

sketches are often simple and imperfect, so it is challenging

to synthesize realistic images from novice sketches. Sketch-

based image synthesis enables non-artists to create realistic

images without significant artistic skill or domain expertise

in image synthesis. It is generally hard because sketches are

sparse, and novice human artists cannot draw sketches that

precisely reflect object boundaries. A real-looking image

synthesized from a sketch should respect the intent of the

artist as much as possible, but might need to deviate from

the coarse strokes in order to stay on the natural image man-

ifold. In the past 30 years, the most popular sketch-based

image synthesis techniques are driven by image retrieval

methods such as Photosketcher [14] and Sketch2photo [6].

Such approaches often require carefully designed feature

representations which are invariant between sketches and

photos. They also involve complicated post-processing pro-

cedures like graph cut compositing and gradient domain

blending in order to make the synthesized images realistic.

The recent emergence of deep convolutional neural net-

works [34, 33, 19] has provided enticing methods for image

synthesis, among which Generative Adversarial Networks

(GANs) [15] have shown great potential. A GAN frames

its training as a zero-sum game between the generator and

the discriminator. The goal of the discriminator is to de-

cide whether a given image is fake or real, while the gen-

erator tries to generate realistic images so the discriminator

will misclassify them as real. Sketch-based image synthesis

can be formulated as an image translation problem condi-

tioned on an input sketch. There exist several methods that

use GANs to translate images from one domain to another

[26, 60]. However, none of them is specifically designed for

image synthesis from sketches.

In this paper, we propose SketchyGAN, a GAN-based,

end-to-end trainable sketch to image synthesis approach

that can generate objects from 50 classes. The input is a

sketch illustrating an object and the output is a realistic im-

age containing that object in a similar pose. This is chal-

lenging because: (i) paired photos and sketches are difficult

to acquire so there is no massive database to learn from. (ii)

There is no established neural network method for sketch to

image synthesis for diverse categories. Previous works train

models for single or few categories [29, 49].

We resolve the first challenge by augmenting the Sketchy

database [48], which contains nearly 75,000 actual hu-

man sketches paired with photos, with a larger dataset of

paired edge maps and photos. This augmentation dataset

is obtained by collecting 2,299,144 Flickr images from 50
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(a) Photo (b) Edge map (c) Sample sketches of (a)

Figure 2: Comparison between an edge map and sketches

of the same image. The photo and sketches are from the

Sketchy Database. Compared to sketches, the edge map

contains more background information. The sketches, in

contrast, do not precisely reflect actual object boundaries

and are not spatially aligned with the object.

categories and synthesizing edge maps from them. Dur-

ing training, we adjust the ratio between edge map-image

and sketch-image pairs so that the network can transfer its

knowledge gradually from edge-image synthesis to sketch-

image synthesis. For the second challenge, we build a

GAN-based model, conditioned on an input sketch, with

several additional loss terms which improve synthesis qual-

ity. We also introduce a new building block called Masked

Residual Unit (MRU) which helps generate higher quality

images. This block takes an extra image input and utilizes

its internal mask to dynamically decide the information flow

of the network. By chaining these blocks we are able to in-

put a pyramid of images at different scales. We show that

this structure outperforms naive convolutional approaches

and ResNet blocks on our sketch to image synthesis tasks.

Our main contributions are:

• We present SketchyGAN, a deep learning approach

to sketch to image synthesis. Unlike previous non-

parametric approaches, we do not do image retrieval

at test time. Unlike previous deep image translation

methods, our network does not learn to directly copy

input edges (effectively colorizing instead of convert-

ing sketches to photos). Our method is capable of gen-

erating plausible objects from 50 diverse categories.

Sketch-based image synthesis is very challenging and

our results are not generally photorealistic, but we

demonstrate an increase in quality compared to exist-

ing deep generative models.

• We demonstrate a data augmentation technique for

sketch data that address the lack of sufficient human-

annotated training data.

• We formulate a GAN model with additional objective

functions and a new network building block. We show

that all of them are beneficial for our task, and lacking

any of them will reduce the quality of our results.

2. Related Work

Sketch-Based Image Retrieval and Synthesis. There

exist numerous works on sketch-based image retrieval [12,

13, 22, 3, 4, 53, 24, 23, 27, 52, 38, 54, 35]. Most meth-

ods use bag of words representations and edge detection

to build features that are (ideally) invariant across both do-

mains. Common shortcomings include the inability to per-

form fine-grained retrieval and the inability to map from

badly drawn sketch edges to photo boundaries. To address

these problems, Yu et al. [58] and Sangkloy et al. [48]

train deep convolutional neural networks(CNNs) to relate

sketches and photos, treating the sketch-based image re-

trieval as a search in the learned feature embedding space.

They show that using CNNs greatly improves performance

and they are able to do fine-grained and instance-level re-

trieval. Beyond the task of retrieval, Sketch2Photo [6]

and PhotoSketcher [14] synthesize realistic images by com-

positing objects and backgrounds retrieved from a given

sketch. PoseShop [7] composites images of people by let-

ting users input an additional 2D skeleton into the query so

that the retrieval will be more precise.

Sketch-Based Datasets. There are only a few datasets

of human-drawn sketches and they are generally small due

to the effort needed to collect drawings. One of the most

commonly used sketch dataset is the TU-Berlin dataset [11]

which contains 20,000 human sketches spanning 250 cate-

gories. Yu et al. [58] introduced a new dataset with paired

sketches and images, but there are only two categories –

shoes and chairs. There is also the CUHK Face Sketches

[55] containing 606 face sketches drawn by artists. The

newly published QuickDraw dataset [17] has an impressive

50 million sketches. However, the sketches are particularly

crude because of a 10 second time limit. The sketches lack

detail and tend to be iconic or canonical views. The Sketchy

database [48], in contrast, has more detailed drawings in a

greater variety of poses. It spans 125 categories with a to-

tal of 75,471 sketches of 12,500 objects. Critically, it is the

only substantial dataset of paired sketches and photographs

spanning diverse categories so we choose to use this dataset.

Image-to-Image Translation with GANs. Generative

Adversarial Networks(GANs) have shown great potential in

generating natural, realistic images [1, 16, 42]. Instead of

directly optimizing per pixel reconstruction error, which of-

ten leads to blurry and conservative results, GANs use a dis-

criminator to distinguish unrealistic images from real ones

thus forcing the generator to produce sharper images. The

“pix2pix” work of Isola et al. [26] demonstrates a straight-

forward approach to translate one image to another using

conditional GANs. Conditional settings are also adapted

in other image translation tasks, including sketch coloring

[49], style transformation [57] and domain adaptation [2]

tasks. In contrast with using conditional GANs and paired

data, Liu et al. [39] introduce an unsupervised image trans-

lation framework consists of CoupledGAN [40] and a pair

of variational autoencoders [31]. More recently, CycleGAN

[60] shows promising results on unsupervised image trans-
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(a) input (b) HED (c) binarization

and thinning

(d) small

component

removal

(e) erosion (f) spur removal (g) distance field

Figure 3: Pipeline of edge map creation. Images from in-

termediate steps show that each step helps remove some ar-

tifacts and make the edge maps more sketch-like.

lation by enforcing cycle-consistency losses.

3. Sketchy Database Augmentation

In this section, we discuss how we augment the Sketchy

database [48] with Flickr images and synthesize edge maps

which we hope approximate human sketches. The dataset is

publicly available. Section 3.2 describes image collection,

image content filtering, and category selection. Section 3.3

describes our edge map synthesis. Section 3.4 describes the

way we use the augmented dataset.

3.1. Edges vs Sketches

Figure 2 visualizes the difference between image edges

and sketches. A sketch is set of human-drawn strokes mim-

icking the approximate boundary and internal contours of

an object, and an edge map is machine-generated array of

pixels that precisely correspond to photo intensity bound-

aries. Generating photos from sketches is considerably

harder than from edges. Unlike edge maps, sketches are

not precisely aligned to object boundaries, so a generative

model needs to learn spatial transformations to correct de-

formed strokes. Second, edge maps usually contain more

information about backgrounds and details, while sketches

do not, so a generative model must insert more information

itself. Finally, sketches may contain caricatured or iconic

features, like the “tiger” stripes on the cat’s face in Figure

2c, which a model must learn to handle. Despite these con-

siderable differences, edge maps are still a valuable aug-

mentation to the limited Sketchy database.

3.2. Data Collection

Learning the mapping between edges or sketches to pho-

tos requires significant training data. We want thousands of

Figure 4: Images synthesized from the same input sketch

with different noise vectors. The network learned to change

a significant portion of the image (the flower), which is not

conditioned by the input sketch. In each case, the bee re-

mains plausible.

images per category. ImageNet only has around 1,000 im-

ages per class, and photos in COCO tend to be cluttered

and thus not ideal as object sketch exemplars. Ideally we

want photographs with one dominant object as is the case

for the Sketchy database photographs. Accordingly, we col-

lect images directly from Flickr through the Flickr API by

querying category names as keywords. 100,000 images are

gathered for each category, sorted by “relevance”. Two dif-

ferent models are used for filtering out unrelated images.

We use an Inception-ResNet-v2 network [50] to filter im-

ages from the 38 ImageNet [46] categories that overlap with

Sketchy, and a Single Shot MultiBox Detector [41] to detect

whether an image contains an object in the 18 COCO [37]

categories that overlap with Sketchy. For SSD, the bound-

ing box of a detected object must cover more than 5% of

the image area or the image is discarded. After filtering, we

obtain a dataset with an average of 46,265 images per Ima-

geNet category and 61,365 images per COCO category. For

the remainder of the paper, we use 50 out of the 56 avail-

able categories after excluding six categories that often have

a human as a main object. The excluded classes are harp,

violin, umbrella, saxophone, racket, and trumpet.

3.3. Edge Map Creation

We use edge detection and several post-processing steps

to obtain sketch-like edge maps. The pipeline is illus-

trated in Figure 3. The first step is to detect edges with

Holistically-nested edge detection (HED) [56] as in Isola et

al. [26]. After binarizing the output and thinning all edges

[59], we clean isolated pixels and remove small connected

components. Next we perform erosion with a threshold on

all edges, further decreasing number of edge fragments. Re-

maining spurs are then removed. Because edges are very

sparse, we calculate an unsigned euclidean distance field for

each edge map to obtain a dense representation (see Figure

3g). Similar distance-field representations are used in recent

works on 3D shape recovery [51, 18]. We also calculate dis-

tance fields for sketches in the Sketchy database.

3.4. Training Adaptation from Edges to Sketches

Because our final goal is a network that generates im-

ages from sketches, it is necessary to train the network on

both edge maps and sketches. To simplify training process,

we use a strategy that gradually shifts the inputs from edge
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Figure 5: Complete structure of our network. Since we are

using MRU blocks, both the generator and the discriminator

can take multi-scale inputs.

maps to sketches: at the beginning of training, the train-

ing data are mostly pairs of images and edge maps. Dur-

ing training, we slowly increase the proportion of sketch-

image pairs. Let imax be the maximum number of training

iterations, icur be the number of current iteration, then the

proportion of sketches and edge maps at current iteration is

given by:

Psk = 0.1 +min(0.8, (
icur

imax

)λ) (1)

Pedge = 1− Psk (2)

respectively, where λ is an adjustable hyperparameter indi-

cating how fast the portion of sketches grows. We use λ = 1
in our experiments. It is easy to see that Psk grows from

0.1 slowly to 0.9. Using this training schedule, we elimi-

nate the need of separate pre-training on edge maps, so the

whole training process is unified. We compare this method

to training on edge maps first then fine-tuning on sketches.

We find that discrete pre-training and then fine-tuning leads

to lower inception scores on the test set compared to a grad-

ual ramp from edges to sketches (6.73 vs 7.90).

4. SketchyGAN

In this section we present a Generative Adversarial Net-

work framework that transforms input sketches into images.

Our GAN learns a mapping from an input sketch x to an

output image y, so that G : x → y. The GAN has two

parts, a generator G and a discriminator D. Section 4.1

introduces the Masked Residual Unit (MRU), Section 4.2

illustrates the network structure, and Section 4.3 discusses

the objective functions.

Figure 6: Structure of a Masked Residual Unit (MRU). It

takes in feature maps xi and an extra image I , then outputs

new feature maps yi.

4.1. Masked Residual Unit (MRU)

We introduce a network module which allows a ConvNet

to be repeatedly conditioned on an input image. The module

uses a learned internal mask to selectively extract new fea-

tures from the input images to combine with feature maps

computed by the network thus far. We call this module the

Masked Residual Unit or MRU.

Figure 6 shows the structure of Masked Residual Unit

(MRU). Qualitative and quantitative comparison to DC-

GAN [45] and ResNet generative architectures can be found

in Section 5.3. An MRU block takes two inputs: input fea-

ture maps xi and an image I , and outputs feature maps yi.

For convenience we only discuss the case in which inputs

and outputs have the same spacial dimension. Let [·, ·] de-

note concatenation, Conv(x) denote convolution on x, and

f(x) be an activation function. We want to first merge the

information in input image I into input feature maps xi. A

naive approach will be concatenating them along the feature

depth dimension and performing convolution:

zi = f(Conv([xi, I])) (3)

However it is better if the block can decide how much infor-

mation it wants to preserve upon receiving the new image.

So instead we use the following approach:

zi = f(Conv([mi ⊙ xi, I])) (4)
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Figure 7: Image generated by pix2pix variations and our

method. The four columns labeled by a to d are: (a)

pix2pix on Sketchy (b) pix2pix on Augmented Sketchy (c)

Label-supervised pix2pix on Augmented Sketchy and (d)

our method. Comparing to our method, pix2pix results are

blurry and noisy, often containing color patches and un-

wanted artifacts.

where

mi = σ(Conv([xi, I])) (5)

is a mask over the input feature maps. Multiple convolu-

tional layers can be stacked here to increase performance.

We then want to dynamically combine the information from

the newly convolved feature maps and the original input

feature maps, so we use another mask

ni = σ(Conv([xi, I])) (6)

to combine the input feature maps with the new feature

maps to get the final output:

yi = (1− ni)⊙ zi + ni ⊙ xi (7)

The second term in Equation 7 serves as a residual connec-

tion. Because there are internal masks to determine infor-

mation flow, we call this structure masked residual unit. We

can stack multiple of these units and input the same image

at different scales repetitively so that the network can re-

trieve information from the input image dynamically on its

computation path.

The MRU formulation is similar to that of the Gated Re-

current Unit (GRU) [8]. However, we are driven by differ-

ent motivations and there are several crucial differences: 1)

We are motivated by repetitively inputting the same image

to improve the information flow. GRU is designed to ad-

Model Inception Score

pix2pix, Sketchy only 3.94

pix2pix, Augmented 4.53

pix2pix, Augmented+Label 5.49

Ours 7.90

Real Image 15.46

Table 1: Comparison of our method to baselines methods.

We compared to three variants of pix2pix, and our method

shows a much higher score on test images.

dress vanishing gradients in recurrent neural networks. 2)

GRU cells are recurrent so part of the output is fed back

into the same cell, while MRU blocks are cascaded so the

outputs of a previous block are fed into the next block. 3)

GRU shares weights for each step so it can only receive

fixed length inputs. No two MRU blocks share weights, so

we can shrink or expand the size of output feature maps like

normal convolutional layers.

4.2. Network Structure

Our complete network structure is shown in Figure 5.

The generator uses an encoder-decoder structure. Both the

encoder and the decoder are built with MRU blocks, where

the sketches are resized and fed into every MRU block on

the path. In our best results in Figure 9, we also apply skip-

connections between encoder and decoder blocks, so the

output feature maps from encoder blocks will be concate-

nated to the outputs of corresponding decoder blocks. The

discriminator is also built with MRU blocks but will shrink

in spatial dimension. At the end of the discriminator, we

output two logits, one for the GAN loss and one for classi-

fication loss.

4.3. Objective Function

Let x, y be either an image or a sketch, z be a noise

vector, and c be a class label, Our GAN objective function

can be expressed as

LGAN (D,G) =Ey∼Pimage
[log D(y)]+

Ex∼Psketch,z∼Pz
[log(1−D(G(x, z)))]

(8)

and the objective of generator LGAN (G) will be to mini-

mize the second term.

It is shown that giving the model side information will

improve the quality of generated images [43], so we use

conditional instance normalization [10] in the generator and

pass in labels of input sketches. In addition, we let the dis-

criminator predict class labels out of the images it sees. The

auxiliary classification loss of discriminator maximize the

9420



Figure 8: Visual results from DCGAN, CRN, ResNet and

MRU. The MRU structure emphasize more on the main ob-

ject than the other three.

Model Num of params
Inception

Score

DCGAN G:35.1M D: 4.3M 4.73

CRN G:21.4M D:22.3M 4.56

Improved ResNet G:33.0M D:31.2M 5.76

MRU (GAN loss only) G:28.1M D:29.9M 8.31

MRU G:28.1M D:29.9M 7.90

Table 2: Comparison of MRU, CRN, ResNet and DCGAN

under the same setting. DCGAN structure is included for

completeness. Under similar number of parameters, MRU

outperforms ResNet block significantly on our generative

task.

log-likelihood between predicted and ground-truth labels:

Lac(D) =E[log P (C = c|y)] (9)

and the generator maximizes the same log-likelihood

Lac(G) = Lac(D) with discriminator fixed.

Since we have paired image data, we are able to provide

direct supervision to the network with L1-distance between

generated images and ground truth images:

Lsup(G) = ‖G(x, z)− y‖1 (10)

However, directly minimizing L1 loss between gener-

ated image and ground truth image discourages diversity, so

we add a perceptual loss to encourage the network to gen-

erate diverse images [9, 28, 5]. We use four intermediate

layers from an Inception-V4 [50] to calculate the perceptual

loss. Let φi be the filter response of a layer in the Inception

model. We define perceptual loss on the generator as:

Lp(G) =
∑

i

λp‖φi(G(x, z))− φi(y)‖1 (11)

To further encourage diversity, we concatenate Gaussian

noise to feature maps at the bottleneck of the generator. Pre-

vious works reach the conclusion that conditional GANs

tend to ignore the noise completely [26] or produce worse

results because of noise [44]. A simple diversity loss

Ldiv(G) = −λdiv‖G(x, z1)−G(x, z2)‖1 (12)

will improve both quality and diversity of generated images.

The interpretation is straightforward: with a pair of different

noise vectors z1 and z2 conditioned on the same image, the

generator should output a pair of sightly different images.

Our complete discriminator and generator losses are thus

L(D) = LGAN (D,G) + Lac(D) (13)

L(G) = LGAN (G)− Lac(G)

+ Lsup(G) + Lp(G) + Ldiv(G) (14)

where the discriminator maximizes Equation 13 and the

generator minimizes Equation 14. In practice, we use DRA-

GAN loss [32] in order to stabilize training and use focal

loss [36] as classification loss.

5. Experiments

5.1. Experiment settings

Dataset splitting We use the sketch-image pairs in se-

lected 50 categories from training split of Sketchy as ba-

sic training data, and augment them with edge map-image

pairs. In the following sections, we call data from Sketchy

Database “Sketchy”, and Sketchy augmented with edge

maps “Augmented Sketchy”. Since we are only interested

in sketch to image synthesis, all models are tested on the

test split of Sketchy. All images are resized to 64×64 re-

gardless of the original aspect ratio. Both sketches and edge

maps are converted into distance fields.

Implementation Details In all experiments, we use

batch size of 8, except for Figure 9 which uses a batch size

of 32. We use random horizontal flipping during training.

We use the Adam optimizer [30], and set the initial learn-

ing rate of generator at 0.0001 and that of discriminator at

0.0002 [21].

Evaluation Metrics For our task of image synthesis, we

use Inception Scores [47] to measure the quality of synthe-

sized images. The intuition behind Inception Score is that

a good synthesized image should have easily recognizable

objects by an off-the-shelf recognition system. Beyond In-

ception Scores, we also perform a perceptual study evaluat-

ing how realistic the generated images are and how faithful

they are to the input sketches.

5.2. Comparison to Baselines

Our comparisons focus on the popular pix2pix and its

variations. All models are trained for 300k iterations except
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Model Input correctly identified?

Sketchy 1-NN retrieval 35.3%

pix2pix, Augmented+Label 65.9%

Ours 47.4%

Table 3: Faithfulness test on three models. Models for

which participants could pick the input sketch are consid-

ered more “faithful”.

Model Picked as more realistic?

pix2pix, Sketchy only 6.03%

pix2pix, Augmented 18.4%

pix2pix, Augmented+Label 21.8%

Ours 53.7%

Table 4: Realism test on four generative models. We report

how often results from each model were chosen by partici-

pants to be more “realistic” than a competing model.

for the first model. We include three baselines:

pix2pix on Sketchy This is the simplest model. We di-

rectly take the authors’ pix2pix code and train it on the 50

categories from Sketchy. Since we find the image quality

stops improving after 100k iterations, we stop early at 150k

iteration and report the results.

pix2pix on Augmented Sketchy In this model, we train

pix2pix on both the image-edge map and image-sketch

pairs, as we do in our method. The network structure and

loss functions remain unchanged.

Label-Supervised pix2pix on Augmented Sketchy In this

model, we modify pix2pix to pass class labels into the gen-

erator using conditional instance normalization, and also

add auxiliary classification loss to its discriminator. This is

a much stronger baseline, since the label information helps

the network decide the object type and in turn improves the

generated image quality [16, 43].

The comparison of Inception Scores can be found in Ta-

ble 1 and visual results can be found in Figure 7. Our obser-

vations are as follows: (i) pix2pix trained on Sketchy fails,

generating unidentifiable color patches. The model is un-

able to translate from sketches to images. Since pix2pix has

been successful with edge-to-image translations, this im-

plies that sketch-to-image synthesis is more difficult. (ii)

pix2pix trained on Augmented Sketchy performs slightly

better, starting to produce the general shape of the object.

This shows that edge maps help the training. (iii) The label-

supervised pix2pix on Augmented Sketchy is better than the

previous two baselines. It correctly colors the object more

often and starts to generate some meaningful backgrounds.

The results are still blurry, and many artifacts can be ob-

served. (iv) Comparing to baselines, our method generates

sharper images, gets the object color correct, puts more de-

tailed textures on the object, and outputs some meaningful

backgrounds. The whole images are also more realistic and

colorful.

Input Full -GAN -L-AC -P -DIV

None 7.90 1.49 6.64 6.70 7.29

Table 5: Table of Inception scores for models with particu-

lar components removed. “Full” is the full model described

in this work. “-GAN” means no GAN loss and no discrim-

inator. “-L-AC” means no labels-supervision on generator

and no auxiliary loss on discriminator. “-P” means no L1

and no perceptual loss, and “-DIV” means no diversity loss.

5.3. Component Analysis

Here we analyze which part of our model is more impor-

tant. We decouple our objective function and analyze the

influence of each part of it. All models are trained on Aug-

mented Sketchy with the same set of parameters. Detailed

comparison can be found in Table 5. We first remove the

GAN loss and the discriminator. The result is surprisingly

poor as the images are extremely vague. This observation

is consistent with that of Isola et al. [26]. Next we remove

the auxiliary loss and substitute conditional instance nor-

malization with batch normalization [25]. This leads to a

significant decrease in image quality as well as wrong col-

ors and misplaced textures. This indicates that class infor-

mation helps a lot, which makes sense because we are gen-

erating 50 categories from a single model. We then remove

the L1 loss and the perceptual loss. We find they also have

a large impact on image quality. From sample images we

can see the model uses incorrect colors and fails and object

boundaries are unrealistic or missing. Finally, we remove

the diversity loss, and doing so also decreases image qual-

ity slightly. This can be related to how we apply this di-

versity loss, which forces the generator to generate image

pairs that are realistic but different. This encourages gener-

alization because the generator needs to find a solution that

when given different noise vectors only makes changes in

unconstrained areas (e.g. the background).

Comparison between MRU and other structures To

demonstrate the effectiveness of our MRU blocks, we com-

pare the performance of MRU, ResNet, Cascaded Refine-
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Figure 9: Some of the best output images from our full

model. For each input sketch, we show a pair of output

images to demonstrate the diversity of our model.

ment Network (CRN) [5] and DCGAN structures in our im-

age synthesis task. We train several additional models: one

uses improved ResNet blocks [20], which is the best variant

published [19], in both generator and discriminator; one is

a weak baseline, using DCGAN structure; one uses CRN in

generator instead of MRU; and one MRU model using only

GAN loss and ACGAN loss. We keep the number of param-

eters of MRU model and that of ResNet model roughly the

same by reducing feature depth in MRU. Detailed parame-

ter counts can be found in Table 2. Judging from both visual

quality and the Inception Scores, the MRU model generates

better images than both ResNet and CRN models, and we

show that even using only standard GAN losses, MRU out-

performs other structures significantly. From Figure 8, we

notice that the MRU model tends to produce higher quality

foreground objects. This can be due to the internal masks of

MRU serving as an attention mechanism, causing the net-

work to selectively focus on the main object. In our task

this is helpful, since we are mainly interested in generating

a specific object from sketch.

5.4. Human Evaluation of Realism and Faithfulness

We do two human evaluations to measure how our model

compares against baselines in terms of realism and faithful-

ness to the input sketch. In the “faithfulness” test, a partic-

ipant sees the output of either pix2pix, SketchyGAN or 1-

nearest-neighbor retrieval using the representation learned

in the Sketchy Database [48]. With each image, the partici-

pant also sees 9 random sketches of the same category, one

of which is the actual input/query sketch. The participant

is asked to pick the sketch that prompted the output image.

We then count how often participants pick the correct input

sketch, so a higher correct selection rate indicates the model

produces a more “faithful” output. In the “realism” test, a

participant sees the output of pix2pix variants and Sketchy-

GAN compared in pairs, alongside the corresponding in-

put sketch. The participant is asked to pick the image that

they think is more realistic. For each model we calculate

how often participants think it is more realistic. The image

retrieval baseline is not evaluated for realism since it only

returns existing, realistic photographs. We conducted 696

trails for the “faithfulness” test and 348 trails for the “real-

ism” test. The results show that SketchyGAN is more faith-

ful than the retrieval model, but is less faithful than pix2pix

which often preserves the input edges precisely (Table 3).

Meanwhile, SketchyGAN is considered more realistic than

pix2pix variants (Table 4). The results are consistent with

our goal that our model should respect the intent of input

sketches, but at the same time deviate from the strokes if

necessary in order to produce realistic images.

6. Conclusion

In this work, we presented a novel approach to the

sketch-to-image synthesis problem. The problem is chal-

lenging given the nature of sketches, and this introduced a

deep generative model that is promising in sketch to im-

age synthesis. We introduced a data augmentation tech-

nique for sketch-image pairs to encourage research in this

direction. The demonstrated GAN framework can synthe-

size more realistic images than popular generative models,

and the generated images are diverse. Currently, the main

focus on GANs is to find better probability metrics as objec-

tive functions, but there has been very few works searching

for better network structures in GANs. We proposed a new

network structure for our generative task, and we showed

that it performs better than existing structures.

Limitations. Ideally, we want our results to be both real-

istic and faithful to the intent of the input sketch. For many

sketches, we fail to meet one or both of these goals. Results

generally aren’t photorealistic, nor are they high enough

resolution. Sometimes realism is lost by being overly faith-

ful to the sketch – e.g. Skinny horse legs that too closely fol-

low the badly drawn input boundaries (Figure 9). In other

cases, we do deviate from the user sketch to make the out-

put more realistic (motorcycle and plane in Figure 1, mush-

room, church, geyser, and castle in Figure 9) but still re-

spect the pose and position of the object in the input sketch.

This is more desirable. Human intent is hard to learn, and

SketchyGAN failures that treat the input sketch too literally

may be due to lack of sketch-photo training pairs. Despite

the fact that our results are not yet photorealistic, we think

they show a substantial improvement over previous meth-

ods.
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