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Abstract

3D shape recognition has attracted much attention re-

cently. Its recent advances advocate the usage of deep fea-

tures and achieve the state-of-the-art performance. How-

ever, existing deep features for 3D shape recognition are re-

stricted to a view-to-shape setting, which learns the shape

descriptor from the view-level feature directly. Despite

the exciting progress on view-based 3D shape description,

the intrinsic hierarchical correlation and discriminability

among views have not been well exploited, which is im-

portant for 3D shape representation. To tackle this issue,

in this paper, we propose a group-view convolutional neu-

ral network (GVCNN) framework for hierarchical correla-

tion modeling towards discriminative 3D shape description.

The proposed GVCNN framework is composed of a hier-

archical view-group-shape architecture, i.e., from the view

level, the group level and the shape level, which are orga-

nized using a grouping strategy. Concretely, we first use an

expanded CNN to extract a view level descriptor. Then, a

grouping module is introduced to estimate the content dis-

crimination of each view, based on which all views can be

splitted into different groups according to their discrimina-

tive level. A group level description can be further gener-

ated by pooling from view descriptors. Finally, all group

level descriptors are combined into the shape level descrip-

tor according to their discriminative weights. Experimental

results and comparison with state-of-the-art methods show

that our proposed GVCNN method can achieve a significant

performance gain on both the 3D shape classification and

retrieval tasks.

1. Introduction

With the development of imaging and 3D reconstruc-

tion techniques, 3D shape recognition have become a fun-

∗Corresponding author.

This work was finished when Yifan Feng visited Tsinghua University.

damental task in computer vision with broad application

prospects. Within the proliferation of deep learning, various

deep networks have been investigated for 3D shape recog-

nition, such as 3D ShapeNets [26], PointNet [7], VoxNet

[14]. Among these methods, view-based method has per-

formed best so far. In view-based method, the input data

are the views taken from different angles, which can be eas-

ily captured comparing to other methods, like point cloud

structure and polygon mesh. Using deep learning schemes

for view representation typically refers to exploiting well-

established models, such as VGG [21], GoogLeNet [23] and

ResNet [9]. Besides, comparing with model-based meth-

ods, such as 3D ShapeNets [26], view-based methods can

obtain much more views by rendering the 3D model.

Designing discriminative descriptor is the fundamental

issue towards optimal 3D shape recognition. Although deep

learning methods on 2D images have been well investi-

gated in recent years, it is still at the beginning for de-

scribing multi-view based 3D shapes. In recent papers, the

multi-view based methods, such as Multi-View Convolu-

tional Neural Networks (MVCNN and MVCNN-MultiRes)

[22, 18] usually employ a view pooling operation to gen-

erate the shape level description from the view descrip-

tors. These methods have made the milestone for 3D shape

recognition and achieve the current state-of-the-art perfor-

mance. We note that all views are treated equally to gen-

erate the shape descriptor in exiting methods. However,

the content relationship and the discriminative information

of the views have left unexplored, which limits the perfor-

mance of shape descriptors a lot. On one hand, some views

are similar to each other, while the others are diverse. These

similar views should contribute similarly to the shape de-

scriptor. On the other hand, some views are more discrim-

inative for shape recognition. Under such circumstances, it

is important to further investigate the content relationship to

mine the discriminative information from these views.

To tackle this issue, in this paper, we propose a group-

view convolutional neural network (GVCNN) framework,

which contains hierarchical view-group-shape architecture

264



…

Raw View 

Descriptors

FCN

FCN

FCN

FCN

…

CNN

CNN

CNN

CNN

…… …

Grouping Module

Grouping 

Scheme

Grouping 

Weight

Group 

Fusion
FC Car

Bench

TV Stand

Cup

Door

Final View 

Descriptors

Group 

Descriptors

Shape 

Descriptor

View 

Pooling

View 

Pooling

View 

Pooling

…

…

…

Figure 1. The Group-View CNN framework for 3D shape recognition.

of content descriptions, i.e., from the view level, the group

level and the shape level. In the beginning, GVCNN groups

the views to generate the view level descriptors, and as-

signs individual groups with associated weights, leading to

the group level description. Then, the group level descrip-

tion can be further weighted combined to generate the shape

level description. In this way, the view content and the dis-

criminativity can be jointly considered for shape recogni-

tion. More specifically, we first use an expanded CNN to

extract a view level descriptor. Then, a grouping module

is proposed to estimate the content-based discrimination for

each view, based on which all views can be splitted into

different groups according to their discrimination level. An

intra-group view pooling scheme is further proposed to gen-

erate the group level description from view level descrip-

tions. Finally, all group level descriptors are weighted en-

sembled to generate the shape level descriptor. In this way,

we establish a three-layer description framework, i.e., view-

group-shape, which differs from the existing view-to-shape

pooling scheme. To evaluate the performance of the pro-

posed GVCNN framework, we have conducted experiments

on ModelNet40 dataset, with comparisons to the state-of-

the-art methods [22][18][26][11][4]. Experimental results

show that our proposed GVCNN method can achieve better

performance on both 3D shape classification and retrieval

tasks, which demonstrates the effectiveness of the proposed

framework.

The main contributions of this paper are two-fold;

• We design a three-level 3D shape description frame-

work, consisting of a view-based end-to-end network

for shape recognition. Different from the traditional

view-to-shape description, our framework is composed

of the view, the group and the shape levels. In par-

ticular, we take the view content relationship and the

view discrimination into consideration by introducing

the group level representation. Compared to the view-

to-shape strategy, our framework is much more effec-

tive on representing the discriminative information of

3D shapes.

• We propose a grouping module to group the views ac-

cording to their content and the discriminative infor-

mation. In this way, all views for each shape can be

grouped into different clusters with associated weights.

Quantitative results and comparisons have shown the

merits of the proposed grouping scheme.

The rest of this paper is organized as follows. We first

introduce the related work in Sec.2. We then present our

proposed group-view CNN architecture in Sec.3. Experi-

ments and discussions are provided in Sec.4. Finally, we

conclude this paper in Sec.5.

2. Related Work

3D shape retrieval and recognition have been investi-

gated in recent years. In this section, we briefly review some

typical handcraft and deep learning descriptors.

2.1. Handcraft Descriptors

There have been plenty of handcraft 3D descriptors,

which can be mainly divided into two categories, i.e.,

model-based methods [15, 5] and view-based methods [4].

One typical model-based method is the statistical models,

which can be used to describe the distributions of the at-

tributes. Osada et al. [15] employed the shape distribution

to calculate the similarity based on distance, angle, area,

and volume between random surface points. Akgul et al.

[1] proposed a probabilistic generative descriptor of local

shape properties for 3D shape retrieval. Different from the

distribution based methods, transform-based methods em-

ployed signal processing techniques to describe 3D shapes
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by Fourier transform, spherical projection, etc. Tatsuma

et al. [24] proposed the Multi-Fourier Spectra Descrip-

tor (MFSD) by augmenting the feature vector with spec-

tral clustering. MFSD was composed of four independent

Fourier spectras with periphery enhancement, which was

able to capture the inherent characteristics of an arbitrary

3D shape regardless of the dimension, orientation, and orig-

inal location of the object. The shape-based descriptor was

designed based on the native 3D representations of objects,

such as voxel grid [26], polygon mesh [2, 10], local shape

diameters measured at densely sampled surface points [3],

or extensions of the SIFT and SURF descriptors to 3D voxel

grids [13].

In recent years, view-based descriptor has attracted much

attention, which describes 3D shape using a group of views.

Compared with model-based methods that implicitly re-

quire the model information, view-base methods only need

a group of images. For instance, Lighting Field descrip-

tor [4] is the first typical view-based 3D descriptor, which

is composed of a group of ten views, captured from the

vertices of a dodecahedron over a hemisphere. In [6], the

similarity between two 3D objects is measured as the prob-

abilistic matching. In panoramic object representation for

accurate model attributing (PANORAMA) [16], a set of

panoramic views were generated from the 3D model to rep-

resent the model surface and the orientation. In [19], Shu et

al. proposed to employ principal thickness images for 3D

shape description and classification.

2.2. Deep Learning Based Descriptors

In recent years, deep learning methods have been

widely investigated in 3D shape description. Su et al.

[22] proposed a multi-view convolutional neural network

(MVCNN), which first generated the feature for each view

individually base on convolutional neural networks and then

fused multiple views by a pooling procedure. MVCNN fur-

ther employs a low-rank Mahalanobis metric [20] to im-

prove the retrieval performance. To jointly utilize the model

information and the view data, Qi et al. [18] combined

view-based descriptor and volumetric-based descriptor by

taking these two types of information into consideration in

the network. More specifically, multi-resolution views were

employed in [18]. In [8], Guo et al. proposed to a unified

multi-view 3D shape retrieval method with a deep embed-

ding network to handle the complex intra-class and inter-

class variations, in which the deep convolutional network

can be jointly supervised by classification loss and triplet

loss. Xie et al. [28, 27] proposed a deep auto-encoder for

3D shape feature extraction. In [29], a progressive shape-

distribution encoder was introduced to generate 3D shape

representation.

Deep learning based methods have shown superior per-

formance compared with the traditional handcraft descrip-

tors. It is noted that multiple views for each 3D shape could

have different importance on shape description. However,

existing deep learning methods mainly conducted informa-

tion pooling on all views equally, ignoring the discrimina-

tive information of different views, which limits the perfor-

mance of existing methods.

3. Group-View Convolutional Neural Network

In this section, we introduce the proposed GVCNN

framework in details. Compared with previous view-to-

shape architecture, as shown in Fig. 2 (a), considering the

relationship among the content of the views and the dis-

criminativity of different views, we introduce a hierarchi-

cal view-group-shape framework. In our proposed GVCNN

framework, a group level description is first generated from

all the view level descriptors. In this step, the correla-

tion among these views are taken into consideration by the

grouping procedure, and the weights for different groups

are also calculated to quantify the discriminativity of these

groups of views. Then, we finally generate the shape level

description by weighted combines these group level de-

scriptions.

(a) View-to-Shape Architecture

(b) View-Group-Shape Architecture

Figure 2. The comparison between the traditional view-to-shape

architecture and the proposed view-group-shape architecture for

shape description.

Fig.1 illustrates the detailed flowchart of our proposed

method. GVCNN employs the GoogLeNet as the base ar-

chitecture. The “FCN” part is the top five convolutional lay-

ers of GoogLeNet. The “FC” part has appeared twice: One

is the last layer of GVCNN to perform classifier, another

is in Group Module to extract discrimination scores from

mid-level representation (the output of “FC”). “CNN” is the

same as GoogLeNet. The output of Group Module will fuse

view descriptors to product the shape descriptor. Then the

shape descriptor will be sent into one “FC” layer to get the

final classification result. Given a 3D shape, we first take
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Figure 3. The group module use the same input views as the

GVCNN. We use a FC layer to obtain the discrimination scores

from raw view descriptors. Then, we group these views base on

the discrimination scores to get the grouping scheme and grouping

weights. The group scheme is used to supervise the intra-group

view pooling. After the intra-group view pooling, the grouping

weights are used for group combination to the shape descriptor.

a set of views captured from different angles. Each view is

passed through the first part of the network (FCN) to get the

raw descriptor in the view level. Then, the second part of

the network (CNN) and the group module, are used to ex-

tract the final view descriptors together with the discrimina-

tion scores, separately. The discrimination scores are used

to group these views and a intra-group view-pooling step is

conducted to extract a group level descriptor. Finally, all

group descriptors are combined into a shape level descrip-

tion according to their grouping weights produced by the

grouping module.

3.1. Raw View Descriptor Generation

Given a 3D shape, which is usually stored as polygon

meshes or point clouds, the first step is to generate a set of

virtual images from the virtual 3D model. To capture the

visual data of the 3D shape as completely as possible, we

designed two types of predefined camera arrays, and gen-

erate rendering views from the 3D shape. The first camera

array contains 8 cameras, which are set as a horizontal cir-

cle with 45 degrees interval. Therefore, there are 8 views

for this camera array. The second camera array contains 12

cameras, which are set as a horizontal circle with 30 degrees

interval. Therefore, there are 12 views for this camera ar-

ray. In our experiments, these two types of multi-view data

are employed. The two employed camera array settings are

shown in Fig. 4 We note that the proposed framework has

no constraint on the rendering method, and other multi-view

capturing approaches can be also used in our method.

Given such a set of views for each 3D shape, we design

a full convolutional network (FCN) to extract the raw view

descriptors, as shown in Fig. 1. Compared with deeper

CNN, shallow FCN could have more position information,

which is needed for the followed grouping module. And the

deeper CNN will have the content information which could

(a) 8 Views (b) 12 Views

Figure 4. The camera array settings for 8 views and 12 views.

represent the view feature better.

3.2. Grouping Module

The grouping module aims to learn the group informa-

tion to assist in mining the relationship among views. In or-

der to make the grouping module better integrated into the

convolutional neural network, we designed a unique group-

ing mechanism.

Formally speaking, there is an output unit connected to

the last layer of FCN by a FC layer. Given a set of views

S = {I1, I2, · · · , IN}, the output of this unit is denoted as

{OI1 , OI2 , · · · , OIN }. We use a function ξ(·) to quantify

the discrimination of a view, which is defined as

ξ(Ii) = sigmoid

(

log
(

abs
(

OIi

)

)

)

. (1)

We notice that the output of sigmoid function will approach

to 0 or 1 when the input of sigmoid function is larger than 5
or less than −5. Thus we add the abs and log function be-

fore the sigmoid function. After getting the discrimination

score of each view, we divide the range of discrimination

score (0, 1) into N sub-range with the same length. Views

with discrimination scores in the same sub-range belong to

the same group. Thus we divide the N views into M groups

{G1, G2, · · · , GM}. Note that 1 ≤ M ≤ N because there

may exist sub-ranges that have no views falling into it. The

merit of this grouping scheme is that we don’t have to fix

the number of input views N and the number of groups M ,

which is more flexible and practical.

As mentioned above, the group module not only decides

which group each view belongs to, but also determines the

weight of each group when conducting group fusion. The

more discriminative group should have higher weights and

vice versa. Thus we define the weight of group Gj as:

ξ(Gj) =
Ceil(ξ(Ik)× |Gj |)

|Gj |
Ik ∈ Gj (2)

In this way, we can have both the grouping scheme (with

group information) and the grouping weights, which can be

used for the following intra-group view pooling and group

fusion procedures.

3.3. Intra­Group View Pooling

Given the view descriptors and the generated grouping

information, the objective here is to conduct intra-group
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view pooling towards a group level description.

After the grouping procedure, the views in one group

share similar content and also are with close discrimina-

tions. Here, all the views in the same group pass through

a view pooling layer to get a group level description. Let

DIi be the view descriptor of Ii, and DGj
be the group de-

scriptor of Gj . The relationship between Gj and Ii can be

written as

D(Gj) =
ΣN

i=1
λiDIi

ΣN
i=1

λi

, (3)

λi =

{

1 Ii ∈ Gj ,
0 Ii /∈ Gj .

The intuition behind Eq.3 is that the views in the same

group have the similar discrimination, which are assigned

the same weight.

After this step, we can have several group level descrip-

tors and the corresponding weights.

3.4. Group Fusion

To generate the shape level description, all these group

level descriptors should be further combined. Therefore, we

conduct a weighted fusion process using all group descrip-

tors according to Eq.2 to get the final 3D shape descriptor

D(S)

D(S) =
ΣM

j=1
ξ(Gj)D(Gj)

ΣM
j=1

ξ(Gj)
. (4)

In this way, the groups containing more discriminative

views contribute more to the final 3D shape descriptor D(S)
than those containing less discriminative views. By us-

ing these hierarchical view-group-shape description frame-

work, the important and discriminative visual content can

be discovered in the group level, and thus emphasized in

the shape descriptor accordingly.

3.5. Classification and Retrieval

Classification. Given C classes in the classification task,

the output of the last layer in our network architecture is a

vector with C elements, i.e., V = {v1, v2, · · · , vC}. Each

element represents the probability that the subject belongs

to that category. And the category with the largest value is

the category it belongs to.

Retrieval. In GVCNN, the shape descriptor comes

from the output of group fusion module, which is more rep-

resentative than the view descriptor extracted from single

view. And we directly use it for 3D shape retrieval. For

two 3D shape X and Y , x and y is the shape descriptor

extracted from GVCNN. Concretely, we use Euclidean dis-

tance between two 3D shapes in retrieval. The distance met-

ric formula is defined as:

d(X,Y ) = ‖x− y‖2. (5)

We further adopt a low-rank Mahalanobis metric. We learn

a Mahalanobis metric W that directly projects GVCNN de-

scriptors to a new space, in which the intra-class distance is

smaller and inter-class distance is larger. We use the large-

margin metric learning algorithm and implementation from

[20].

4. Experiments

In this section, we first provide the experiments on 3D

shape classification and retrieval, and also discuss the re-

sults and comparison with the state-of-the-art methods. Fol-

lowing we provide the experiments on investigating the

grouping module of our proposed framework. In the last

part, we investigate the influence of the number of views on

the performance of 3D shape recognition.

4.1. 3D Shape Classification and Retrieval

To evaluate the performance of the proposed GVCNN

method, we have conducted 3D shape classification and re-

trieval experiments on the Princeton ModelNet dataset [25].

ModelNet is composed of 127,915 3D CAD models from

622 object categories. We further subsample ModelNet40

as a the subset of ModelNet, which contains 40 popular

object categories. We follow [26] to conduct the train-

ing/testing split.

In experiments, our GVCNN is compared with the

Multi-view CNN by Su et al. [22], MVCNN-MultiRes by

Qi et al. [18], which employs multi-resolution views, 3D

ShapeNets by Wu et al. [26], Spherical Harmonics descrip-

tor (SPH) by Kazhdan et al. [11], which is a typical model-

based method, Lighting Field descriptor (LFD) by Chen et

al. [4], which is a typical view-based method, PointNet by

Qi et al. [17], which is a typical point clouds method, and

KD-Network by Klokov et al. [12].

The experimental results and comparison among differ-

ent methods are demonstrated in Tab. 1. The proposed

GVCNN with 8 views achieves the best classification accu-

racy of 93.1%. It has gains of 3.44% and 1.86% compared

with MVCNN with 80 views and the MVCNN-MultiRes,

respectively. In the retrieval experiments, GVCNN with

8 views and 12 views achieves the best retrieval mAP of

79.7% and 81.3%, respectively, which largely boosts from

MVCNN with 80 views of 70.4%.

When the low-rank Mahalanobis metric learning is fur-

ther included, all compared methods can achieve better per-

formance on the retrieval task. In our method, the descrip-

tors extracted from the GVCNN is a 2,048-dimensional vec-

tor. We use the large-margin metric learning to learn a

projection matrix M , which projects the sparse matrix of

2,048 dimensions to another subspace of 128 dimensions.

Then, we use the projected shape descriptors to represent

3D shapes for retrieval. By using a learned metric, GVCNN

with 8 views achieves an mAP of 84.5% and GVCNN with
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Method
Training Config. Test Config. Classification Retrieval

Pre train Fine tune #Views (Accuracy) (mAP)

(1)SPH[11] - - - 68.2% 33.3%
(2)LFD[4] - - - 75.5% 40.9%
(3)3D ShapeNets[26] ModelNet40 ModelNet40 - 77.3% 49.2%
(4)MVCNN[22], 12× ImageNet1K ModelNet40 12 89.9% 70.1%
(5)MVCNN[22], metric,12× ImageNet1K ModelNet40 12 89.5% 80.2%
(6)MVCNN[22], 80× ImageNet1K ModelNet40 80 90.1% 70.4%
(7)MVCNN[22], metric, 80× ImageNet1K ModelNet40 80 90.1% 79.5%
(8)MVCNN-MultiRes[18] - ModelNet40 - 91.4% -

(9)PointNet[17] - ModelNet40 - 89.2% -

(10)KD-Network[12] - ModelNet40 - 91.8% -

(11)MVCNN(GoogLeNet), 8× ImageNet1K ModelNet40 8 92.0% 74.62%
(12)MVCNN(GoogLeNet), metric, 8× ImageNet1K ModelNet40 8 92.0% 83.3%
(13)MVCNN(GoogLeNet), 12× ImageNet1K ModelNet40 12 92.2% 74.1%
(14)MVCNN(GoogLeNet), metric, 12× ImageNet1K ModelNet40 12 92.2% 83.0%
(15)GVCNN, 8× ImageNet1K ModelNet40 8 93.1% 79.7%
(16)GVCNN, metric, 8× ImageNet1K ModelNet40 8 93.1% 84.5%
(17)GVCNN, 12× ImageNet1K ModelNet40 12 92.6% 81.3%
(18)GVCNN, metric, 12× ImageNet1K ModelNet40 12 92.6% 85.7%

* metric=low-rank Mahalanobis metric learning

Table 1. Classification and retrieval results on the ModelNet40 dataset. On the top are results using state-of-the-art 3D shape descriptors.

MVCNN(GoogLeNet) means we use the GoogLeNet as the base architecture and add view pooling layer like MVCNN. And the position

of its view pooling layer is the same as the fusion module of GVCNN. The GVCNN architecture outperforms the view-based methods,

especially for retrieval.

Figure 5. Precision-recall curves for compared methods on the task

of 3D shape retrieval on the ModelNet40 dataset. In these experi-

ments, 12 views are used in both MVCNN and GVCNN methods.

Our method (GVCNN+metric) significantly outperforms the state-

of-the-art on this task and achieves 85.7% mAP.

12 views achieves an mAP of 85.7%, which are the best

compared to all methods. Both results demonstrate the ef-

fectiveness of the proposed GVCNN.

Note that GVCNN employs the GoogLeNet as the base

architecture, which differs from MVCNN that uses Ima-

geNet pre-trained VGG-m as the base architecture. To eval-

uate the contribution of the base architectures, we further

conduct experiments of MVCNN with GoogLeNet, whose

results are shown in Tab.1. It is clear that the use of

GoogLeNet can improve the performance of MVCNN. For

example, MVCNN(GoogLeNet) with 12 views achieves

gains of 2.7% and 2.8% with metric learning compared with

MVCNN [22]. Using the same base architecture, GVCNN

with 12 views using metric learning achieves 0.4% and

2.7% gains compared with MVCNN(GoogLeNet) in the

recognition and retrieval tasks, respectively.

Fig.5 quantizes the precision-recall curves of all com-

pared methods. For MVCNN and GVCNN, 12 views are

used. As shown, GVCNN and GVCNN+metric signifi-

cantly outperform MVCNN and MVCNN+metric, respec-

tively.

Our performance is dedicated to the following reasons.

GVCNN contains a grouping module, which can identify

view groups and also assign weights for each group. In

this way, similar views can be grouped together and the fea-

tures can be pooling in each group, rather than pooling on

all views. Compared to MVCNN, our grouping can be re-
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Figure 6. In the figure, each line is the output of group module in a query. The first three lines are the query with 8 views. And the last

three lines are the query with 12 views. The weight of each group is shown in the upper left corner of each group box.

garded as a mid-level pooling, which is better than treating

all views equally. Besides, the group weights can be used

to better ensemble such groups. It is noted that some views

could be very discriminative for shape recognition, while

some others may be not. As an accommodation, the pro-

posed method can generate a weight for each view group

to identify whether it is good for recognition. Therefore,

the weighted fusion leads to better performance compared

to direct pooling on all views.

4.2. On the Grouping Module

In our pipeline, the grouping module plays an important

role. We further investigate this grouping module, whose

objective is to identify the content that whether they are dis-

criminative to the corresponding labels. It is expected that

the views in the same group could share similar content with

closer discriminativity. We have demonstrated some group-

ing examples in Fig. 6.

As shown in this figure, similar content of the same

shape can be grouped together. For example, in the first ex-

ample, all 8 car views are divided into two groups. The first

group is mainly the front and back views of the car, while

the second is the side views. In the fourth example, all 8

chair views are divided into three groups. The first group is

from the back direction, the second group is from the front

direction, and the third is from side directions. Similar ob-

servations can be obtained from other examples. These re-

sults can demonstrate that the proposed grouping module is

effective on clustering visual content.

Another important property of the grouping module is

the weight estimation of different groups. Some views

could be highly discriminative for the 3D shape, while the

others may be not. Therefore, we further investigate the

learned weights for different groups of views. Here we take

the first shape in Fig. 6 as an example. The two groups are

with weights of 0.875 and 1, respectively. Comparing to the

back and front views of the car shape, the side views are

much more discriminative, and thus Group 2 are assigned

with a higher weights compared with Group 1. In the ex-

ample of chair, the first group is in the back view, which

is quite similar to a monitor and thus not very useful for

identifying its true category. The second group is the front

view, which is slightly better than the first group, as it has

a clearer chair shape. Compared with these two groups, the

third group is the side view, which has clear chair shape, and

is quite useful for recognition. In this example, the weights

for these three groups are 0.25, 0.50, and 1, corresponding

to the discriminative power of these views.

4.3. On the Number of Views

Another important issue is the number of views for each

shape. We have also quantitatively evaluate its influence
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Training Config. Test Config. Classification

#Views #Views (accuracy)

8 1 70.0%
8 2 71.2%
8 4 91.1%
8 8 93.1%
8 12 91.5%
8 8∗ 84.3%

12 1 75.0%
12 2 76.8%
12 4 90.3%
12 8 92.1%
12 12 92.6%
12 12∗ 85.3%

Table 2. The comparison of different number of input views. The

first five lines are the network trained on 8 views. The last five lines

are the network trained on 12 views. Both have bad performance

with the number of input views less than four.

on the classification performance. More specifically, we fix

the number of input views for training, and generate two

networks, one from the training data with 8 views and the

other from the training data with 12 views. Note that it may

be not feasible to have exactly the same number of views

or have exactly the same view direction as the training data.

In practice, it is possible to have just several randomly cap-

tured views or just a few number of views. In the testing

stage, we have varied the number of views from 1 to 12 for

both networks. The experimental results on the classifica-

tion task are provided in Tab. 2.

Clearly, when the number of views is quite small, such

as 1 or 2, the classification performance is very poor. This is

reasonable that too few views lost much information of the

3D shape. With more views, such as 4, 8 or more, the per-

formance increases very fast and becomes much stable. For

instance, given 4 views, the network trained with 12 views

can achieve a classification accuracy of 90.3%, while given

8 views, the accuracy can be further improved to 92.1%.

We also have investigated the influence of view gener-

ation. We first generate a pool of views for each shape.

More specifically, we extract 80 viewpoints from 80-face

semiregular polyhedron which is generated from the icosa-

hedron using butterfly subdivision with 42 vertices. Then,

we randomly select 8 and 12 views from these 80 views

and conduct shape recognition. We repeat 10 times and

the average performance and the standard deviation are re-

ported in Tab. 2, denoted as 8∗ and 12∗, respectively. When

the views are randomly selected, the performance becomes

worse. Actually, if all the views are captured from the iden-

tical or close direction, it turns to the case of using just 1

or a few views, which will significantly degrade the perfor-

mance. However, if we just randomly capture views from

One circle Half circle

Test Train Accu- Test Train Accu-

#views #views racy #views #views racy

8 12 91.6% 8 12 88.8%
12 12 91.8% 12 12 90.3%
8 8 90.2% 8 8 87.9%

12 8 91.3% 12 8 87.6%

Table 3. The comparison of different generating-view conditions.

In the left subtable, the views are randomly selected from 80 hori-

zon views. In the right subtable, the views are randomly selected

from half of the circle directions.

different directions, the performance could be very steady.

We also provide the experiments on 8/12 random views

from the same horizon circle setting. We have generated 80

views from the horizon circle direction, and 8/12 random

views were selected from the whole circle or just half of

it for testing. The classification results are in Tab. 3. In

the same training and testing configure, the classification

of input with views from a circle outperforms input with

views from the half circle. And in the same input condition

(randomly select views from a circle or half of a circle),

the accuracy of testing with 12 views is higher than that

of 8 views. Training with 12 views in general outperforms

training with 8 views.

5. Conclusions

In this paper, we proposed a GVCNN framework for

3D shape recognition. In this method, a hierarchical shape

description framework is introduced, including the view,

the group, and the shape level descriptor. The correlation

among the views for each shape is taken into considera-

tion, and the grouping information is utilized for shape rep-

resentation. Compared with traditional methods, the pro-

posed method not only considers the view level pooling,

but also takes the group information in the pooling proce-

dure. Experimental results and comparisons with the state-

of-the-art methods have demonstrated the effectiveness of

the proposed method. We have also investigated the influ-

ence of different numbers of views for 3D shape representa-

tion. The results indicate that more and relatively complete

views can be better for 3D shape recognition.
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