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Abstract

It is often laborious and costly to manually annotate

videos for training high-quality video recognition models,

so there has been some work and interest in exploring al-

ternative, cheap, and yet often noisy and indirect train-

ing signals for learning the video representations. How-

ever, these signals are still coarse, supplying supervision

at the whole video frame level, and subtle, sometimes en-

forcing the learning agent to solve problems that are even

hard for humans. In this paper, we instead explore ge-

ometry, a grand new type of auxiliary supervision for the

self-supervised learning of video representations. In par-

ticular, we extract pixel-wise geometry information as flow

fields and disparity maps from synthetic imagery and real

3D movies, respectively. Although the geometry and high-

level semantics are seemingly distant topics, surprisingly,

we find that the convolutional neural networks pre-trained

by the geometry cues can be effectively adapted to seman-

tic video understanding tasks. In addition, we also find that

a progressive training strategy can foster a better neural

network for the video recognition task than blindly pooling

the distinct sources of geometry cues together. Extensive re-

sults on video dynamic scene recognition and action recog-

nition tasks show that our geometry guided networks signif-

icantly outperform the competing methods that are trained

with other types of labeling-free supervision signals.

1. Introduction

Video understanding is among one of the most funda-

mental research problems in computer vision and machine

learning. The ubiquity of video acquisition devices (e.g.,

smart phones, surveillance cameras, etc.) has created videos

far surpassing what we can watch. It has therefore been a

pressing need to develop automatic video analysis and un-

derstanding algorithms for various applications.

To recognize actions and events happening in videos,

recent approaches that employ deep convolutional neu-

ral networks (CNNs) [12, 17, 31, 34, 35], recurrent net-

works [15, 33, 4], and attention networks [23, 22] have

achieved state-of-the-art results. They fall into the paradigm

of supervised learning and rely on the existence of large-

scale well-labeled training data.

However, it is extremely laborious and costly to manu-

ally annotate videos. The actions of interest, for instance

“cutting in kitchen”, may last for only several seconds in

an hour-long video. In order to obtain a training exam-

ple of this action, the annotator needs to watch through the

lengthy video, manually localize those positive frames, and

then trim the video. Even with sophisticated GUIs, the la-

bor cost for obtaining one training video sequence is still

much higher than that of labeling many images. This prob-

lem becomes more severe as the number of action classes

grows.

To alleviate the demand for costly human annotations,

there has been some work and interest in exploring alterna-

tive, cheap, and yet often noisy and indirect training signals.

By pre-training a neural network with large-scale data with

such supervision signals, a strongly discriminative network

can then be obtained afterwards through fine-tuning on a

small-scale human annotated dataset. Various signals have

been explored in the past [37, 26, 7, 1, 16, 24, 27]. How-

ever, these signals are still coarse or vague. The auxiliary

signal is often at the whole video frame level rather than

pixel level. In addition, some of such supervisions are sub-

tle; for example, the temporal ordering used in [24] is even

hard for humans to determine.

In this paper, we explore a new type of auxiliary super-

vision signal — geometry cues. In particular, we extract

pixel-wise geometry information such as flow fields and dis-

parity maps from synthetic images and real 3D movies, re-

spectively. Although the geometry and semantics seem to

be two distant topics historically, surprisingly, we find that

the network pre-trained by the geometry cues can be well

adapted to semantic understanding tasks. Empirical results

show that our geometry guided networks significantly out-

perform the baseline methods pre-trained by other auxiliary

signals in the previous work. Intuitively, the signal that can

be used to assist semantic understanding has to be strongly

correlated with semantics. Our experimental results there-

fore also indicate the intrinsic correlation between the ge-
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ometry and semantics.

Two basic observations have motivated our interest in ex-

ploring the geometry signal to assist video understanding.

First, more and more temporal visual data with geometry in-

formation is emerging recently. The increasingly available

3D movies are a primary source. In addition, synthetic im-

agery from 3D data is now quite close to realistic photos [9].

Not only such synthetic data is large in scale, but also the

geometry information is accurate thanks to the known 3D

models. An important upcoming source of 3D data is the 3D

video streams captured by commodity 3D sensors thanks

to their popularization. Second, the geometry information,

such as the flow field and disparity value used in this paper,

embodies very rich information because depth is a continu-

ous variable and much semantic information can be inferred

from it. In addition, it is densely defined at every pixel since

every object in the video must have its geometry. Such rich-

ness and omnipresence of geometry signal make it possibly

superior to previously explored auxiliary signals, e.g., track-

ing based signals [37] are only available for moving objects

but not static objects in a scene.

More fundamentally, our interest is inspired by the per-

ceptual ability of biological agents for sensing the environ-

ment. The 3D geometry is almost always available like free

food for their binocular visual systems. Is it possible that

these agents can use such free data as a source of supervi-

sion for learning useful perceptual representations? In ad-

dition, prior to gaining the ability to infer semantics which

can be as sophisticated as recognizing thousands of object

categories or the intention behind actions, their visual sys-

tems have to enable inferring the geometry which is vital for

them to navigate in space and act upon objects, even with

an impaired eye.

Exploiting the geometry information from synthetic im-

ages and 3D videos for network pre-training, however, is

technically non-trivial. Due to the idiosyncrasies of differ-

ent data sources, there exist domain gaps of various degrees

between the training data and the testing videos of interest.

In the context of this paper, on the one hand, the synthetic

imagery is very discrepant from the real videos and is yet

with pixel-wise accurate geometry cues. The 3D movies,

on the other hand, are visually more similar to our test-

ing videos but we can only infer noisy disparity maps from

them. The gain of pre-training via blindly pooling them

together is only marginal. To tackle this problem, we in-

stead use a progressive training strategy leveraging a learn-

ing without forgetting cost function [21]. The idea embod-

ies curriculum learning [3], namely, we carefully organize

the training data, teach the network with accurate geometry

cues in the synthetic imagery first, and then feed the net-

work real-world appearance information conveyed by the

3D movies. In summary, our work makes the following

contributions:

• To the best of our knowledge, we are the first to utilize

the geometry cues for the self-supervised learning of

video feature representations.

• We propose an end-to-end trainable geometry guided

CNN framework, which can leverage different types

of labeling-free geometry data: synthetic images and

real 3D movies.

• Our geometry guided CNN significantly outperforms

other self-supervised approaches and is also comple-

mentary to the ImageNet pre-trained models on two

publicly available action recognition datasets.

The rest of this paper is organized as follows. In Sec-

tion 2, we review related work in video recognition and

self-supervised learning. Section 3 presents the framework

of geometry guide CNN framework. We show how it uti-

lizes the synthesized image data and real 3D movies to learn

the generic video feature representations. Experimental set-

tings and evaluation results are presented in Section 4. Sec-

tion 5 concludes the paper.

2. Related work

Our work touches two threads: video recognition and

self-supervised feature learning, which will be discussed re-

spectively.

2.1. Video Recognition

Impressive progress has been achieved in video recogni-

tion with the use of deep learning. Karpathy et al. [17] first

compare several architectures for action recognition. Tran

et al. [34] propose to learn generic spatial-temporal features

with 3D convolutional filters. Simonyan et al. [31] propose

a two-stream architecture to capture both spatial and mo-

tion information with a pixel stream and an optical flow

stream respectively. Wang et al. [36] further improve the

results by using temporal segments and deeper neural net-

works. Gan et al. [12] proposed to learn temporal dynamics

using a cross-frame max-pooling layer. However, all these

approaches require high-quality labeled training data to ini-

tial the network. More recently, Recurrent Neural Networks

(RNNs) are shown effective to model temporal information

in videos. Donahue et al. [8] train a two-layer LSTM net-

work for action classification. Srivastava et al. [33] propose

an LSTM encoder-decoder framework to learn video repre-

sentations in an unsupervised manner [33]. However, this

approach requires a pre-train on ImageNet to extract frame-

level features and thus is not a unsupervised feature learning

approach.

2.2. Self­supervised Feature Learning

A recently emerging research line is training a network

on an auxiliary task where ground-truth is obtained auto-

matically, called as self-supervised learning[37, 26, 7, 26].
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Figure 1. The first two columns show the examples of the FlyingChair dataset [9]. From top to bottom are the first frame, the second

frame, and the ground truth optical flow between them, respectively. The last two columns show the examples of 3D movie frames and the

estimated disparity map. From top to bottom are the left view image, the right view, and the estimated disparity map.

The merit of this line work does not require manually an-

notations but still utilized supervised learning by inferring

supervisory signals from data structure. For example, Wang

et.al. [37] proposed to generate pairs-of-patch by tracking

objects in videos and then use a Siamese triplet network

to learn feature representations that the similarity between

two matching patches should be larger than the similarity

between two random pairs. Doech et.al. [7] explored the

spatial consistency of image as context prediction task to

learn feature representation. Owens et.al. [26] used audio

signals from videos to learn visual representations. Other

approaches such as [1, 16] have tried to use videos and

ego-motion to learn the underlying network. More recently,

[24, 11, 20] presented CNN-based unsupervised video rep-

resentation learning method. In order to capture the tem-

poral information, they design a learning task to verify the

sequence of frames is presented in the correct order or not.

Despite these approach having to determining the correct

temporal order, but do not learn dense pixel-level move-

ment. Different from existing approaches, we use the ge-

ometry task to learn the dense pixel-level geometry cues,

which can serves as more strong supervised signals to learn

robust video feature representation for the semantic recog-

nition task.

Previous work that are most similar in spirit to ours are

[1, 27, 2, 38]. They also leveraged the geometry information

to learn features for image. Different from them, our work

uses pure pixel-level geometry signals to learn features for

video semantic understanding.

3. Our Approach

In this section, we describe our geometry guided CNNs

for the self-supervised learning of video feature represen-

tations. We jointly explore two types of geometry cues in

synthetic images and 3D movies, respectively. These cues

effectively drive the CNNs to extract generic knowledge

from the conventional videos that is useful for the high-level

video recognition task.

Next, we describe the details of the two types of geom-

etry cues, followed by the approach to learning deep CNNs

from them. Figure 2 illustrates the whole framework of the

geometry guided CNN for video feature learning.

3.1. Geometry from synthetic 3D image pairs

The first geometry cue we use is from the renderings of

3D objects. Synthetic images can be generated by rendering

virtual 3D objects. Since the 3D models are already given,

exact geometry information at pixel-level in rendering can

be extracted.

In this paper, we conduct a first study leveraging the

geometry information extracted from a very simple syn-

thetic image dataset – the FlyingChairs dataset [9]. Each 3D

model is projected twice with a random rigid transformation

between the two and superimposed to the same background.

Since the relationship in the image pair is known, the pixel-

wise correspondence across the two images can be exactly
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Figure 2. The framework of our proposed geometry guided CNN. We firstly use the synthetic images to train a CNN, and then use the 3D

movies to further update the network.

extracted, represented as a flow map. This dataset contains

22,872 image pairs in total. We show some example images

in Figure 1.

Although the flows are represented in the same form as

classical optical flows [27], we would like to emphasize

their geometric essence. Indeed, they only reflect the lo-

cation and pose change of the foreground objects. In sharp

contrast, the conventional optical flows blend information

from a mixture of sources including object motion, cam-

era motion, background, and even lighting conditions. We

conjecture that the high precision and purity of this sig-

nal makes the learning relatively easier than from the 3D

movies to be exploited afterwards.

It is also worth noting that using the simple FlyingChair

dataset is just an easy starting point; more sophisticated syn-

thetic imagery may be explored in the future. Recent years

have witnessed emerging large-scale 3D synthetic datasets,

e.g., ShapeNet [5] which contains millions of 3D models

from thousands of categories. The intriguing observation

is that, even on this surprisingly simple 3D dataset of Fly-

ingChair, very positive results have been obtained. We

therefore envision there will be greater gains from larger

scale 3D datasets.

3.2. Geometry from real­world 3D movies

Even though the FlyingChairs has accurate flow fields,

the variability of this dataset is limited. Besides, the ar-

tifacts due to the syntheses may cause a dramatic domain

discrepancy between this dataset and real images or videos.

It has been reported that the models trained with synthesis

data perform relatively poor on the real image and video

data [29]. In order to close the domain gap, we propose

to leverage another type of geometry cue embedded in 3D

movies. In 3D movies, there are generally two views at each

time stamp that enhance the illusion of depth perceptions.

Such video frames are usually stored in a stereoscopic for-

mat. For each frame, the format includes two projections of

the same scene, one of which is exposed to the viewer’s left

eye and the other to the viewer’s right eye.

We observe that the 3D movies contain rich geometry

information that can be well utilized for learning generic

video features. Particularly, we design a task of predict-

ing the disparity map between the left and right views of

the same frame. The disparity map mainly captures the

depth of the scene. The challenge of this task is the lack

of the groundtruth disparity maps. We propose to use the

computational EpicFlow approach [28] to obtain the pseudo

groundtruth disparity maps. We keep only horizontal dis-

parities since in 3D movie the changes between the left and

right views are horizontal. In our experiments, we crawl

about 80 3D movies from the Web and sample about 40K

video frames. Figure 1 shows some example video frames

and the correspondingly estimated disparity maps.

However, it remains challenging to choose a correct ge-

ometry task and CNN architecture for using the geometry

information contained in the 3D movies. We have explored

several possible tasks and network architectures. For ex-

ample, we first experimented to directly regress the depth
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value from a single view video frame using CNNs. How-

ever, the CNNs fail to learn effective video features that are

transferrable to semantic understanding tasks. Finally, we

explore a task of estimating the disparity maps by taking

both views as input and find it work well.

3.3. Learning CNNs guided by the geometry cues

We are now ready to describe our approach to training

deep CNNs from scratch using the geometry cues. After

that, we fine-tune the network on massively benchmarked

video recognition datasets to solve the high-level human ac-

tivity recognition problem.

Network architecture. To train a deep CNN model, we

design it in the following way. The network takes as input

an image pair and is desired to predict the flow fields or dis-

parity map between the two images. For the FlyingChairs

dataset, the network predicts both horizontal and vertical

flows, and for 3D movies only horizontal flows are consid-

ered. In this paper, we use the FlowNet Simple architec-

ture [9] as our base CNN network. We stack the input each

pair of images and then feed them together through the net-

work to regress the flows or disparities.

Progressive training. One of the distinctive properties of

our self-supervised learning is that we employ a progres-

sive training strategy, as opposed to blindly pooling the data

into one training set. We first input the synthetic images to

the network to train a network that has the basic knowledge

about the flow fields. After that, we use the 3D movies to

further train the network in order to distill video represen-

tations that are closer to the real videos’. The challenge

here is how to incorporate the video domain knowledge

but not forget the original geometry knowledge about the

FlyingChairs. To solve this problem, we borrow the cost

function of the knowledge distillation network [14] and the

learning without forgetting network [21]:

arg min
θs,θo,θn

Lnew(Yn, Ŷn) + Lold(Yo, Ŷo), (1)

where the parameters θ = {θs, θo, θn} are the weights

of the CNN (coded by different colors in Figure 2). The

weights θs are shared (i.e., convolutional layers) by differ-

ent sequential tasks. θo are the old task specific parameters

(i.e., learned for predicting the flow fields of FlyingChairs),

and θn are the new task specific parameters (i.e., learning

for predicting the disparity maps for 3D movie). Before

fine-tuning, we first feed the frames of 3D movies into the

network and record the response Ŷo by the old task specific

weights. The loss Lold(Yo, Ŷo) is a cross-entropy, which en-

forces the output Yo for each pair of 3D movie frames to be

close to the recorded output Ŷo from the old network. The

other loss Lnew(Yn, Ŷn) is to control the quality of the dis-

parity map estimation. The key merit of this cost function

is that it defines a regularization using the old task; it con-

strains the output for the old task by the updated network

to be close to the original network’s output. Therefore, the

network can effectively carry along the knowledge learned

from the FlyingChairs dataset to the related and yet differ-

ent 3D movies.

4. Experiments

In this section, we evaluate the quality of our geometry

guided self-supervised learning approach on two fundamen-

tal video understanding tasks: dynamic scene recognition

and action recognition. We first apply the learned CNN as

an off-the-shelf feature extractor and report the results on

the video dynamic scene recognition task. Better results in-

dicate better qualities of the learned video representations.

Secondly, we devise a benchmark task that reflects real-

world constraints to yield useful conclusions. Prior work on

self-supervised learning uses the learned neural networks as

the initialization for a fine-tuning stage for a particular task,

such as object detection [7, 37], scene classification [26],

and video recognition [24, 37]. The intuition is that good

representations should be able to serve as a warm starting

point for the task-specific fine-tuning. In this work, we

mainly investigate the fine-tuning of the learned feature rep-

resentations for the video action recognition task and leave

other specific tasks for future work. Arguably, the action

recognition is a hallmark problem in video understanding,

so it can serve as a general task as object recognition in im-

age understanding.

4.1. Geometry guided pre­training of CNNs

To use the geometry cues, we proposed to pre-train the

CNN of the FlowNet [9] architecture, a variant of Caf-

feNet [18], by changing the number of channels of the first

convolutional layer from 3 to 6 and replacing the classifi-

cation layer by refining layers. The refining layers consist

of four up-convolutional layers and an endpoint error loss

layer. The endpoint error loss layer computes the squared

Euclidean distances between the predicted flow values and

the groundtruth averaged over all pixels.

When using the FlyingChairs dataset for optical flow es-

timation, we augment the training data using multi-scale

cropping, horizontal flipping, translation, and rotation fol-

lowing [9]. We implement these using the Caffe toolbox.

We set the learning rate as 10−4, reduced to 10−5 after 120

epochs, and reduced to 10−6 after 160 epochs. The train-

ing converges after 200 epochs. After that, we feed the 3D

movies data into the network and further fine-tune the net-

work. For the training with the 3D movie data, we set the

learning rate as 5 × 10−4, and reduce it to 5 × 10−5 after

60K iteration. The training converges after 80K iterations.
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Table 1. Comparisons with other shallow video feature representations and state-of-the-art self supervised approaches for dynamic scene

recognition on YUPENN and Maryland.

Method YUPENN Acc (%) Maryland Acc (%)

Spacetime [10] 67.7 86.0

Orientation [6] 43.1 80.7

Object Patch [37] 48.46 70.47

Seq Ver. [24] 51.53 76.67

Geometry (Ours) 69.23 86.90

4.2. Dynamic Scene Recognition

For the dynamic scene recognition, we evaluate our

learned video representations on two benchmarks: YU-

PENN [6] and Maryland [30], which contain 420 videos of

14 scene categories and 130 videos of 13 scene categories,

respectively. We follow the standard leave-one-out evalua-

tion protocol for comparisons.

We compare against both the shallow feature representa-

tions [10, 6] and CNN based self-supervised feature leaning

approaches [37, 24]. For the results of shallow representa-

tions, we directly quote the numbers reported by the original

paper for fair comparisons. As for the self-supervised fea-

ture representation learning approaches, we first extract all

the video frame and then perform a feed-forward pass into

the CNNs to extract the last convolutional layer as feature

representation. And then we use an average pooling fol-

lowed by L2 normalization to arrive at the video-level fea-

ture representations. Finally we use linear SVM to conduct

the same leave-one-out evaluation protocol as described by

the authors of these datasets.

The comparison results are shown in Table 1. We can ob-

serve that our geometry guided CNNs consistently outper-

form both shallow feature representations and state-of-the-

art self-supervised approaches. Particulary, our approach

achieves 17.7% better on the YUPENN dataset and 10.2%

better on the Maryland dataset than the second best self-

supervised representation learning approaches [24]. These

results verify our claim that the pure pixel-level geome-

try signals can serve as a strong supervision for learning

generic video feature representation for semantic tasks.

4.3. Action Recognition

In this section, we examine the generalization abilities of

the learned network for action recognition task by domain-

specific fine-tuning.

4.3.1 Datasets

We conduct the video recognition experiments on two

publicly available action recognition datasets, namely

UCF101 [32] and HMDB51 [19]. UCF101 is a large video

dataset for action recognition collected from YouTube. It

consists of 101 action classes, 13K clips, and 27 hours of

video data in total. The task is generally considered chal-

lenging since many videos are captured under poor lighting,

with cluttered background, or severe camera motion. The

HMDB51 dataset is a large collection of realistic videos

captured from various sources, such as movies and Web

videos. This dataset contains 6,766 video clips from 51 ac-

tion classes. We use the averaged classification accuracy as

the evaluation metric. To be noted, all the results reported in

this paper are on UCF101 and HMDB51 training/test splits.

4.3.2 Fine-tuning for action recognition

Once we finish the pre-training of the geometry guided

CNN, we keep its convolutional layers and weights fixed

and replace the refining layers with classification layers

(i.e., a fully-connected layer coupled with a cross-entropy

loss). After that, we fine-tune this model and test it for ac-

tion recognition.

We uniformly sample 25 frames per video in the

UCF101 and HMDB51 dataset as suggested in [24]. We

then feed them into the pre-trained CNN model. All frames

are randomly shuffled and organized as mini-batches with

the size of 200. For the experiments on UCF101 dataet,

the learning rate starts from 10−2 and decreases to 10−3

after 6K iterations, and then further to 10−4 after 12K iter-

ations. We terminate the training after 15K iterations. For

the experiments on HMDB51, the learning rate starts from

10−2 and decreases to 10−3 after 3.5K iterations, and then

to 10−4 after 4K iterations. The training is stopped after

5K iterations. To prevent over-fitting to the training sets,

we also use dropout with the rate of 0.1 after the fully con-

nected layer. During the final inference stage, we take two

consecutive video frames as input and output one softmax

confidence score. The video-level score is obtained by av-

erage fusion over the 25 frames sampled from the video to

be classified.

4.4. Discussions

Does CNN learn useful knowledge for video recogni-

tion from geometry? In this section, we first examine

whether the geometry guided CNN learns useful knowledge

for the seemingly distant task — semantic video recogni-

tion. Specifically, we evaluate our approach by transferring

the feature representations learned in the self-supervised
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Table 2. Comparisons with other state-of-the-art self supervised approaches for action recognition on UCF101 and HMDB51.

Method UCF101 Acc (%) HMDB51 Acc (%)

DrLim [13] 38.4 13.4

TempCoh [25] 45.4 15.9

Object Patch [37] 42.7 15.6

Seq Ver. [24] 50.9 19.8

OPN [20] 56.3 22.1

Geometry (Ours) 54.1 22.6

Bidireational Geometry (Ours) 55.1 23.3

Table 3. Comparisons with different initialization approach for ac-

tion recognition on UCF101 and HMDB51.

Initializations UCF101 Acc (%) HMDB Acc (%)

Random 38.4 13.4

FlyingChairs 50.2 19.1

3D Movies 50.1 18.9

Geometry (Ours) 54.1 22.6

manner to the video recognition tasks with labeled data. We

compare, in Table 3, the recognition results on UCF101 and

HMDB51 obtained by fine-tuning the same CNN architec-

ture but with different initialization of the weights.

From this table, we have two interesting observations:

1) the feature representations learned from solving the ge-

ometry tasks are significantly better than those of training

from scratch. Even using only 20K synthesis FlyingChairs

images, we can also achieve 11.8% performance gain over

the randomly initialized network on UCF101 dataset. 2) By

adding real 3D movie data, we further obtain an additional

3.9% performance gain. These results imply our models

can take advantage of the pixel-level geometry information

(e.g. optical flow and disparity map) for action recogni-

tion, which is hard to solve if we only use the given training

data in UCF101 or HMDB51. In short, the geometry cues

help solve the semantic video recognition problem. We also

visualize the class-specific discriminative regions [39] for

action recognition in Figure 3.

Is the progressive training necessary? We investigate the

efficacy of the progressive training strategy by comparing it

to a few alternatives:

• Early fusion: we mix the FlyingChairs and 3D movie

data together and then train a single network.

• Late fusion: we train two models respectively using

FlyingChairs and 3D movies. At the test stage, we av-

erage the classification scores of the two networks to

generate the action labels.

• Fine-tuning: we directly use the 3D movies to fine-

tune the network without the knowledge distillation

term in learning without forgetting.

• Reverse: We reverse the training order, namely, we

first use 3D movies to pre-train the network, fol-

lowed by using Flyingchairs to progressively update

Table 4. Comparisons with other alternative combination ap-

proaches on UCF101.

Method UCF101 Acc (%) )

Early ensemble 52.4

Late ensemble 52.6

Fine-tuning 50.0

Reverse 52.9

Geometry (Ours) 54.1

Table 5. Fusion results with ImageNet pre-trained CNN model on

UCF101 and HMDB51.
Method UCF101 HMDB

geometry (Ours) 54.1 22.6

ImageNet 63.3 28.5

ImageNet + geometry (Ours) 66.1 30.7

the model.

The results are reported in Table 4. It is clear that, from

the table, when our geometry guided CNN is trained with

the progressive strategy, it outperforms all the other alterna-

tive training schemes. Besides, we also draw two key obser-

vations. First, the progressive training, which is equipped

with the learning without forgetting regularization, is very

effective in capturing the two distinct geometry cues, com-

pared with the naive early fusion and late fusion. Sec-

ond, it is vital to order the synthesized FlyingChairs dataset,

which is with accurate geometry groundtruth, before the 3D

movies whose geometry information is relatively coarser.

We expect these findings will benefit future research on the

related subjects.

Comparison with state-of-the-art self-supervised ap-

proaches. In this section, we compare our results with

other state-of-the-art self-supervised methods. Particularly,

we compare with DrLim [13], TempoCoh [25], Object

patch [37], Seq. Ver [24] and using the RGB images. We

quote the numbers directly from the published papers. As

shown in Table 2, our geometry guided CNN can achieve

significantly better results than the other self-supervised ap-

proaches. We improve the results by almost 3.2% abso-

lutely on UCF 101 and 2.8% on HMDB51, compared to

the results [24]. Our results also comparable to the re-

cently published approach [20], which improves the results
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Figure 3. Visualization of class knowledge inside Geometry guided CNN model by using discriminative localization [39]. We select cutting

in kitchen, blow dry hair and taichi (from top to bottom) for the visualization.

reported in [24] by sorting a tuple of frames from videos.

These results indicate the dense pixel-level geometry in-

formation is very useful for semantic video recognition.

We also observe that an ensemble of networks, which are

trained by changing the temporal distance between the pair

of frames, can bring additional 1% performance gain. To be

noted, we achieve this result by using 10 times less training

data during the pre-training task. We believe better results

can be achieved when we render more synthesis pairs of

images, e.g., using the large-scale 3D ShapeNet models or

collecting more 3D videos.

Does geometry cues complement the visual knowledge

base ImageNet? We have seen that the unsupervised pre-

training using geometry data gives significant boost over

training from scratch or using other labeling-free signals,

but it still has gap compared with the CNN model pre-

trained on ImageNet. It remains unclear whether it can im-

prove existing ImageNet supervised feature representations.

To answer this question, we conduct late fusion of the clas-

sification scores of the two types of networks. From Table 5,

we can see that the late fusion leads to 2.8% performance

gain on UCF101 dataset and 2.2% gain on HMDB51 dataset

over the single ImageNet pre-trained model. This implies

that the features learned with geometry are complementary

with the features learned on the massively supervised Im-

ageNet. By analyzing the action classes, we find that 48

classes out of the 101 classes of UCF101 and 26 out of the

51 classes of HMDB51 benefit from the fusion. Particu-

larly, we find that the action classes like hug, push up, jump

Rope, cricket shot, long jump have been improved signifi-

cantly more than the other classes.

5. Conclusion

In this paper, we present a simple but effective geom-

etry guided Convolutional Neural Network for the self-

supervised video representation learning. To achieve this

goal, we leverage two type of free geometry data: opti-

cal flow from synthesis image and disparity map from real

3D movies. These cues effectively drive the CNNs to ex-

tract generic knowledge from the conventional videos that

is useful for the high-level semantic video understanding

task. Learned features can directly used for video dynamic

scene recognition, as well as action recognition after fur-

ther domain-specific fine-tuned. Experimental results on

four public available video semantic understanding datasets

confirm that the effectiveness of our framework. We hope

this paper will open up avenues for exploitation of geometry

data in various computer vision tasks.
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