
Dynamic Few-Shot Visual Learning without Forgetting

Spyros Gidaris

University Paris-Est, LIGM

Ecole des Ponts ParisTech

spyros.gidaris@enpc.fr

Nikos Komodakis

University Paris-Est, LIGM

Ecole des Ponts ParisTech

nikos.komodakis@enpc.fr

Abstract

The human visual system has the remarkably ability to

be able to effortlessly learn novel concepts from only a few

examples. Mimicking the same behavior on machine learn-

ing vision systems is an interesting and very challenging

research problem with many practical advantages on real

world vision applications. In this context, the goal of our

work is to devise a few-shot visual learning system that

during test time it will be able to efficiently learn novel cat-

egories from only a few training data while at the same

time it will not forget the initial categories on which it was

trained (here called base categories). To achieve that goal

we propose (a) to extend an object recognition system with

an attention based few-shot classification weight generator,

and (b) to redesign the classifier of a ConvNet model as the

cosine similarity function between feature representations

and classification weight vectors. The latter, apart from uni-

fying the recognition of both novel and base categories, it

also leads to feature representations that generalize better on

“unseen” categories. We extensively evaluate our approach on

Mini-ImageNet where we manage to improve the prior state-

of-the-art on few-shot recognition (i.e., we achieve 56.20%
and 73.00% on the 1-shot and 5-shot settings respectively)

while at the same time we do not sacrifice any accuracy

on the base categories, which is a characteristic that most

prior approaches lack. Finally, we apply our approach on

the recently introduced few-shot benchmark of Bharath and

Girshick [4] where we also achieve state-of-the-art results.

1. Introduction

Over the last few years, deep convolutional neural net-

works [9, 21, 23, 5] (ConvNets) have achieved impressive

results on image classification tasks, such as object recogni-

tion [18] or scene classification [27]. In order for a ConvNet

This work was supported by the ANR SEMAPOLIS project, an INTEL

gift, and hardware donation by NVIDIA.

to successfully learn to recognize a set of visual categories

(e.g., object categories or scene types), it requires to man-

ually collect and label thousands of training examples per

target category and to apply on them an iterative gradient

based optimization routine [10] that is extremely computa-

tionally expensive, e.g., it can consume hundreds or even

thousands of GPU hours. Moreover, the set of categories that

the ConvNet model can recognize remains fixed after train-

ing. In case we would like to expand the set of categories

that the ConvNet can recognize, then we need to collect train-

ing data for the novel categories (i.e., those that they were

not in the initial training set) and restart the aforementioned

computationally costly training procedure this time on the

enhanced training set such that we will avoid catastrophic

interference. Even more, it is of crucial importance to have

enough training data for the novel categories (e.g., thousands

of examples per category) otherwise we risk overfitting on

them.

In contrast, the human visual system exhibits the remark-

ably ability to be able to effortlessly learn novel concepts

from only one or a few examples and reliably recognize them

later on. It is assumed that the reason the human visual

system is so efficient when learning novel concepts is that it

exploits its past experiences about the (visual) world. For ex-

ample, a child, having accumulated enough knowledge about

mammal animals and in general the visual world, can easily

learn and generalize the visual concept of “rhinoceros” from

only a single image. Mimicking that behavior on artificial vi-

sion systems is an interesting and very challenging research

problem with many practical advantages, such as developing

real-time interactive vision applications for portable devices

(e.g., cell-phones).

Research on this subject is usually termed few-shot learn-

ing. However, most prior methods neglect to fulfill two very

important requirements for a good few-shot learning system:

(a) the learning of the novel categories needs to be fast, and

(b) to not sacrifice any recognition accuracy on the initial

categories that the ConvNet was trained on, i.e., to not “for-

get” (from now on we will refer to those initial categories by

calling them base categories). Motivated by this observation,

4367

in this work we propose to tackle the problem of few-shot

learning under a more realistic setting, where a large set

of training data is assumed to exist for a set of base cate-

gories and, using these data as the sole input, we want to

develop an object recognition learning system that, not only

is able to recognize these base categories, but also learns

to dynamically recognize novel categories from only a few

training examples (provided only at test time) while also not

forgetting the base ones or requiring to be re-trained on them

(dynamic few-shot learning without forgetting). Compared

to prior approaches, we believe that this setting more closely

resembles the human visual system behavior (w.r.t. how it

learns novel concepts). In order to achieve our goal, we

propose two technical novelties.

Few-shot classification-weight generator based on at-

tention. A typical ConvNet based recognition model, in

order to classify an image, first extracts a high level feature

representation from it and then computes per category clas-

sification scores by applying a set of classification weight

vectors (one per category) to the feature. Therefore, in order

to be able to recognize novel categories we must be able

to generate classification weight vectors for them. In this

context, the first technical novelty of our work is that we

enhance a typical object recognition system with an extra

component, called few-shot classification weight generator

that accepts as input a few training examples of a novel

category (e.g., no more than five examples) and, based on

them, generates a classification weight vector for that novel

category. Its key characteristic is that in order to compose

novel classification weight vectors, it explicitly exploits the

acquired past knowledge about the visual world by incorpo-

rating an attention mechanism over the classification weight

vectors of the base categories. This attention mechanism

offers a significant boost on the recognition performance

of novel categories, especially when there is only a single

training example available for learning them.

Cosine-similarity based ConvNet recognition model.

In order for the few-shot classification weight generator to

be successfully incorporated into the rest of the recognition

system, it is essential the ConvNet model to be able to simul-

taneously handle the classification weight vectors of both

base and novel categories. However, as we will explain in the

methodology, this is not feasible with the typical dot-product

based classifier (i.e., the last linear layer of a classification

neural network). Therefore, in order to overcome this seri-

ous issue, our second technical novelty is to implement the

classifier as a cosine similarity function between the feature

representations and the classification weight vectors. Apart

from unifying the recognition of both base and novel cat-

egories, features learned with the cosine-similarity based

classifier turn out to generalize significantly better on novel

categories than those learned with a dot-product based clas-

sifier. Moreover, we demonstrate in the experimental section

that, by simply training a cosine-similarity based ConvNet

recognition model, we are able to learn feature extractors

that when used for image matching they surpass prior state-

of-the-art approaches on the few-shot recognition task.

To sum up, our contributions are: (1) We propose a few-

shot object recognition system that is capable of dynamically

learning novel categories from only a few training data while

at the same time does not forget the base categories on which

it was trained. (2) In order to achieve that we introduced two

technical novelties, an attention based few-shot classification

weight generator, and to implement the classifier of a Con-

vNet model as a cosine similarity function between feature

representations and classification vectors. (3) We extensively

evaluate our object recognition system on Mini-ImageNet,

both w.r.t. its few-shot object recognition performance and

its ability to not forget the base categories, and we report

state-of-the-art results that surpass prior approaches by a

very significant margin. (4) Finally, we apply our approach

on the recently introduced fews-shot benchmark of Bharath

and Girshick [4] where we achieve state-of-the-art results.

In the following sections, we provide related work in §2,

we describe our few-shot object learning methodology in §3,

we provide experimental results in §4, and finally we con-

clude in §5.

2. Related work

Recently, there is resurgence of interest on the few-shot

learning problem. In the following we briefly discuss the

most relevant approaches to our work.

Meta-learning based approaches. Meta-learning ap-

proaches typical involve a meta-learner model that given a

few training examples of a new task it tries to quickly learn a

learner model that “solves” this new task [20, 24, 1, 13, 19].

Specifically, Ravi and Larochelle [16] propose a LSTM [6]

based meta-learner that is trained given as input a few train-

ing examples of a new classification task to sequentially

generate parameter updates that will optimize the classifi-

cation performance of a learner model on that task. Their

LSTM also learns the parameter initialization of the learner

model. Finn et al. [3] simplified the above meta-learner

model and only learn the initial learner parameters such that

only a few gradient descent steps w.r.t. those initial parame-

ters will achieve the maximal possible performance on the

new task. Mishra et al. [12] instead propose a generic tem-

poral convolutional network that given as input a sequence

of a few labeled training examples and then an unlabeled

test example, it predicts the label of that test example. Our

system also includes a meta-learner network component, the

few-shot classification weight generator.

Metric-learning based approaches. In general, metric

learning approaches attempt to learn feature representations

that preserve the class neighborhood structure (i.e., features

of the same object are closer than features of different ob-

4368

jects). Specifically, Koch et al. [8] formulated the one-shot

object recognition task as image matching and train Siamese

neural networks to compute the similarity between a training

example of a novel category and a test example. Vinyals et

al. [25] proposed Matching Networks that in order to classify

a test example it employs a differentiable nearest neighbor

classifier implemented with an attention mechanism over

the learned representations of the training examples. Pro-

totypical Networks [22] learn to classify test examples by

computing distances to prototype feature vectors of the novel

categories. They propose to learn the prototype feature vec-

tor of a novel category as the average of the feature vectors

extracted by the training examples of that category. A similar

approach was proposed before by Mensink et al. [11] and

Prototypical Networks can be viewed as an adaption of that

work for ConvNets. Despite their simplicity, Prototypical

Networks demonstrated state-of-the-art performance. Our

few-shot classification weight generator also includes a fea-

ture averaging mechanism. However, more than that, it also

explicitly exploits past knowledge about the visual world

with an attention based mechanism and the overall frame-

work allows to perform unified recognition of both base and

novel categories without altering the way base categories are

learnt and recognized.

In a different line of work, Bharath and Girshick [4] pro-

pose to use during training a l2 regularization loss on the

feature representations that forces them to better generalize

on “unseen” categories. In our case, the cosine-similarity

based classifier, apart from unifying the recognition of both

base and novel categories, it also leads to feature represen-

tations that are able to better generalize on “unseen” cate-

gories. Also, their framework is able to recognize both base

and novel categories as ours. However, to achieve that goal

they re-train the classifier on both the base categories (with

a large set of training data) and the novel categories (with

few training data), which is in general slow and requires

constantly maintaining in disc a large set of training data.

3. Methodology

As an input to our object recognition learning sys-

tem we assume that there exists a dataset Dtrain =⋃Kbase

b=1
{xb,i}

Nb

i=1
of Kbase base categories, where Nb is the

number of training examples of the b-th category and xb,i is

its i-th training example. Using this as the only input, the

goal of our work is to be able to both learn to accurately

recognize base categories and to learn to perform few-shot

learning of novel categories in a dynamic manner and with-

out forgetting the base ones. An overview of our framework

is provided in Figure 1. It consists of two main components,

a ConvNet-based recognition model that is able to recognize

both base and novel categories and a few-shot classification

weight generator that dynamically generates classification

weight vectors for the novel categories at test time:

Feature Extractor

Dynamic Few-Shot Learning without Forgetting

Classifier

Classification
weight vectors

Base Novel

Few-shot

classification weight

generator

Test image

Training data for

base categories

Few training data

of novel category

Probability
scores of
base & novel
categories

Training procedure

Figure 1: Overview of our system. It consists of: (a) a ConvNet

based recognition model (that includes a feature extractor and a

classifier) and (b) a few-shot classification weight generator. Both

are trained on a set of base categories for which we have available

a large set of training data. During test time, the weight generator

gets as input a few training data of a novel category and the classi-

fication weight vectors of base categories (green rectangle inside

the classifier box) and generates a classification weight vector for

this novel category (blue rectangle inside the classifier box). This

allows the ConvNet to recognize both base and novel categories.

ConvNet-based recognition model. It consists of (a) a

feature extractor F (.|θ) (with learnable parameters θ) that

extracts a d-dimensional feature vector z = F (x|θ) ∈ R
d

from an input image x, and (b) a classifier C(.|W ∗), where

W ∗ = {w∗
k ∈ R

d}K
∗

k=1
are a set of K∗ classification weight

vectors - one per object category, that takes as input the

feature representation z and returns a K∗-dimensional vector

with the probability classification scores p = C(z|W ∗) of

the K∗ categories. Note that in a typical convolutional neural

network the feature extractor is the part of the network that

starts from the first layer and ends at the last hidden layer

while the classifier is the last classification layer. During

the single training phase of our algorithm, we learn the

θ parameters and the classification weight vectors of the

base categories Wbase = {wk}
Kbase

k=1
such that by setting

W ∗ = Wbase the ConvNet model will be able to recognize

the base object categories.

Few-shot classification weight generator. This com-

prises a meta-learning mechanism that, during test time,

takes as input a set of Knovel novel categories with few train-

ing examples per category Dnovel =
⋃Knovel

n=1
{x′

n,i}
N ′

n

i=1
,

where N ′
n is the number of training examples of the n-th

novel category and x′
n,i is its i-th training example, and is

able to dynamically assimilate the novel categories on the

repertoire of the above ConvNet model. More specifically,

for each novel category n ∈ [1, Nnovel], the few-shot classi-

fication weight generator G(., .|φ) gets as input the feature

vectors Z ′
n = {z′n,i}

N ′

n

i=1
of its N ′

n training examples, where

z′n,i = F (x′
n,i|θ), and the classification weight vectors of the

base categories Wbase and generates a classification weight

vector w′
n = G(Z ′

n,Wbase|φ) for that novel category. Note

that φ are the learnable parameters of the few-shot weight

4369

generator, which are learned during the single training phase

of our framework. Therefore, if Wnovel = {w′
n}

Knovel

n=1

are the classification weight vectors of the novel categories

inferred by the few-shot weight generator, then by setting

W ∗ = Wbase ∪ Wnovel on the classifier C(.|W ∗) we en-

able the ConvNet model to recognize both base and novel

categories.

A key characteristic of our framework is that it is able to

effortlessly (i.e., quickly during test time) learn novel cate-

gories and at the same time recognize both base and novel

categories in a unified manner. In the following subsections,

we will describe in more detail the ConvNet-based recogni-

tion model in §3.1 and the few-shot weight generator in §3.2.

Finally, we will explain the training procedure in §3.3.

3.1. Cosine­similarity based recognition model

A crucial difference of our ConvNet based recognition

model compared to a standard one is that it should be able

to dynamically incorporate at test time a variable number of

novel categories (through the few-shot weight generator).

The standard setting for classification neural networks

is, after having extracted the feature vector z, to estimate

the classification probability vector p = C(z|W ∗) by first

computing the raw classification score sk of each category

k ∈ [1,K∗] using the dot-product operator sk = z⊺w∗
k,

where wk is the k-th classification weight vector in W ∗,

and then applying the softmax operator across all the K∗

classification scores, i.e., pk = softmax(sj), where pk
is the k-th classification probability of p. In our case the

classification weight vectors w∗
k could come both from the

base categories, i.e., w∗
k ∈ Wbase, and the novel categories,

i.e., w∗
k ∈ Wnovel. However, the mechanisms involved dur-

ing learning those classification weights are very different.

The base classification weights, starting from their initial

state, are slowly modified (i.e., slowly learned) with small

SGD steps and thus their magnitude changes slowly over

the course of their training. In contrast, the novel classifica-

tion weights are dynamically predicted (i.e., quickly learned)

by the weight generator based on the input training feature

vectors and thus their magnitude depends on those input

features. Due to those differences, the weight values in those

two cases (i.e., base and novel classification weights) can be

completely different, and so the same applies to the raw clas-

sification scores computed with the dot-product operation,

which can thus have totally different magnitudes depending

on whether they come from the base or the novel categories.

This can severely impede the training process and, in general,

does not allow to have a unified recognition of both type of

categories. In order to overcome this critical issue, we pro-

pose to modify the classifier C(.|W ∗) and compute the raw

classification scores using the cosine similarity operator:

sk = τ · cos(z, w∗
k) = τ · z⊺w∗

k , (1)

where z = z
‖z‖ and w∗

k =
w∗

k

‖w∗

k
‖ are the l2-normalized vec-

tors (from now on we will use the overline symbol z to

indicate that a vector z is l2-normalized), and τ is a learn-

able scalar value1. Since the cosine similarity can be im-

plemented by first l2-normalizing the feature vector z and

the classification weight vector w∗
k and then applying the

dot-product operator, the absolute magnitudes of the classifi-

cation weight vectors can no longer affect the value of the

raw classification score (as a result of the l2 normalization

that took place).

In addition to the above modification, we also choose to

remove the ReLU non-linearity [14] after the last hidden

layer of the feature extractor, which allows the feature vector

z to take both positive and negative values, similar to the

classification weight vectors. Note that the removal of the

ReLU non-linearity does not make the composition of the

last hidden layer with the classification layer a linear oper-

ation, since we l2-normalize the feature vectors, which is

a non-linear operation. In our initial experiments with the

cosine similarity based classifier we found that such a modifi-

cation can significantly improve the recognition performance

of novel categories.

We note that, although cosine similarity is already well

established as an effective similarity function for classifying

a test feature by comparing it with the available training

features vectors [25, 11, 17], in this work we use it for a

different purpose, i.e., to replace the dot-product operation

of the last linear layer of classification ConvNets used for

applying the learnable weights of that layer to the test feature

vectors. The proposed modification in the architecture of

a classification ConvNet allows to unify the recognition of

base and novel categories without significantly altering the

classification pipeline for the recognition of base categories

(in contrast to [11, 17]). To the best of our knowledge,

employing the cosine similarity operation in such a way

is novel in the context of few shot learning. Interestingly,

concurrently to us, Qi et al. [15] also propose to use the

cosine similarity function in a similar way for the few-shot

learning task. In a different line of work, very recently

Chunjie et al. [2] also explored cosine similarity for the

typical supervised classification task.

Advantages of cosine-similarity based classifier. Apart

from making possible the unified recognition of both base

and novel categories, the cosine-similarity based classifier

leads the feature extractor to learn features that generalize

significantly better on novel categories than features learned

with the dot-product based classifier. A possible explanation

for this is that, in order to minimize the classification loss of

a cosine-similarity based ConvNet model, the l2-normalized

feature vector of an image must be very closely matched with

1 The scalar parameter τ is introduced in order to control the peakiness

of the probability distribution generated by the softmax operator since the

range of the cosine similarity is fixed to [−1, 1]. In all of our experiments

τ is initialized to 10.

4370

the l2-normalized classification weight vector of its ground

truth category. As a consequence, the feature extractor is

forced to (a) learn to encode on its feature activations exactly

those discriminative visual cues that also the classification

weight vectors of the ground truth categories learn to look

for, and (b) learn to generate l2-normalized feature vectors

with low intraclass variance, since all the feature vectors that

belong to the same category must be very closely matched

with the single classification weight vector of that category

(see also §1 of supplementary material for t-SNE scatter

plots of the cosine similarity based and dot product based

features). Moreover, our cosine-similarity based classifi-

cation objective resembles the training objectives typically

used by metric learning approaches [7]. In fact, it turns out

that our feature extractor trained solely on cosine-similarity

based classification of base categories, when used for image

matching, it manages to surpass all prior state-of-the-art

approaches on the few-shot object recognition task.

3.2. Few­shot classification weight generator

The few-shot classification weight generator G(., .|φ)
gets as input the feature vectors Z ′ = {z′i}

N ′

i=1
of the N ′

training examples of a novel category (typically N ′ ≤ 5)

and (optionally) the classification weight vectors of the base

categories Wbase. Based on them, it infers a classification

weight vector w′ = G(Z ′,Wbase|φ) for that novel cate-

gory. Here we explain how the above few-shot classification

weight generator is constructed.

Feature averaging based weight inference. Since, as

we explained in section § 3.1, the cosine similarity based

classifier of the ConvNet model forces the feature extractor

to learn feature vectors that form compact category-wise

clusters and the classification weight vectors to learn to be

representative feature vectors of those clusters, an obvious

choice is to infer the classification weight vector w′ by aver-

aging the feature vectors of the training examples (after they

have been l2-normalized): w′
avg = 1

N ′

∑N ′

i=1
z′i. The final

classification weight vector in case we only use the feature

averaging mechanism is: w′ = φavg ⊙w′
avg , where ⊙ is the

Hadamard product, and φavg ∈ R
d is a learnable weight vec-

tor. Similar strategy has been previously proposed by Snell

et al. [22] and has demonstrated very good results. However,

it does not fully exploit the knowledge about the visual world

that the ConvNet model acquires during its training phase.

Furthermore, in case there is only a single training example

for the novel category, the averaging cannot infer an accurate

classification weight vector.

Attention-based weight inference. We enhance the

above feature averaging mechanism with an attention based

mechanism that composes novel classification weight vectors

by “looking” at a memory that contains the base classifica-

tion weight vectors Wbase = {wb}
Kbase

b=1
. More specifically,

an extra attention-based classification weight vector w′
att is

computed as:

w′
att =

1

N ′

N ′∑

i=1

Kbase∑

b=1

Att(φqz
′
i, kb) · wb, (2)

where φq ∈ R
d×d is a learnable weight matrix that trans-

forms the feature vector z′i to query vector used for querying

the memory, {kb ∈ R
d}Kbase

b is a set of Kbase learnable

keys (one per base category) used for indexing the memory,

and Att(., .) is an attention kernel implemented as a cosine

similarity function2 followed by a softmax operation over

the Kbase base categories. The final classification weight

vector is computed as a weighted sum of the average based

classification vector w′
avg and the attention based classifica-

tion vector w′
att, w

′ = φavg ⊙w′
avg +φatt ⊙w′

att, where ⊙

is the Hadamard product, and φavg , φatt ∈ R
d are learnable

weight vectors.

Why using an attention-based weight composition?

Thanks to the cosine-similarity based classifier, the base

classification weight vectors learn to be representative fea-

ture vectors of their categories. Thus, the base classification

weight vectors also encode visual similarity, e.g., the classi-

fication vector of a mammal animal should be closer to the

classification vector of another mammal animal rather than

the classification vector of a vehicle. Therefore, the classifi-

cation weight vector of a novel category can be composed

as a linear combination of those base classification weight

vectors that are most similar to the few training examples

of that category. This allows our few-shot weight generator

to explicitly exploit the acquired knowledge about the vi-

sual word (here represented by the base classification weight

vectors) in order to improve the few-shot recognition per-

formance. This improvement is very significant especially

in the one-shot recognition setting where averaging cannot

provide an accurate classification weight vector.

3.3. Training procedure

In order to learn the ConvNet-based recognition model

(i.e. the feature extractor F (.|θ) as well as the classi-

fier C(.|W ∗)) and the few-shot classification weight gen-

erator G(., .|φ), we use as the sole input a training set

Dtrain =
⋃Kbase

b=1
{xb,i}

Nb

i=1
of Kbase base categories. We

split the training procedure into 2 stages and at each stage

we minimize a different cross-entropy loss of the following

form:

1

Kbase

Kbase∑

b=1

1

Nb

Nb∑

i=1

loss(xb,i, b), (3)

where loss(x, y) is the negative log-probability −log(py)
of the y-th category in the probability vector p =
C(F (x|θ)|W ∗). The meaning of W ∗ is different on each of

the training stages, as we explain below.

2The cosine similarity scores are also scaled by a learnable scalar pa-

rameter γ in order to increase the peakiness of the softmax distribution.

4371

1st training stage: During this stage we only learn the

ConvNet recognition model without the few-shot classifica-

tion weight generator. Specifically, at this stage we learn the

parameters θ of the feature extractor F (.|θ) and the base clas-

sification weight vectors Wbase = {wb}
Kbase

b=1
. This is done

in exactly the same way as for any other standard recognition

model. In this case W ∗ is equal to the base classification

weight vectors Wbase.

2nd training stage: During this stage we train the learn-

able parameters φ of the few-shot classification weight gener-

ator while we continue training the base classification weight

vectors Wbase (in our experiments during that training stage

we freezed the feature extractor). In order to train the few-

show classification weight generator, in each batch we ran-

domly pick Knovel “fake” novel categories from the base cat-

egories and we treat them in the same way as we will treat the

actual novel categories after training. Specifically, instead

of using the classification weight vectors in Wbase for those

“fake” novel categories, we sample N ′ training examples

(typically N ′ ≤ 5) for each of them, compute their feature

vectors Z ′ = {z′i}
N ′

i=1
, and give those feature vectors to the

few-shot classification weight generator G(., .|φ) in order to

compute novel classification weight generators. The inferred

classification weight vectors are used for recognizing the

“fake” novel categories. Everything is trained end-to-end.

Note that we take care to exclude from the base classifica-

tion weight vectors that are given as a second argument to

the few-shot weight generator G(., .|φ) those classification

vectors that correspond to the “fake” novel categories. In

this case W ∗ is the union of the “fake” novel classification

weight vectors generated by G(., .|φ) and the classification

weight vectors of the remaining base categories. More im-

plementation details of this training stage are provided in §2

of supplementary material.

4. Experimental results

We extensively evaluate the proposed few-shot recogni-

tion system w.r.t. both its few-shot recognition performance

of novel categories and its ability to not “forget” the base

categories on which it was trained.

4.1. Mini­ImageNet experiments

Evaluation setting for recognition of novel categories.

We evaluate our few-shot object recognition system on the

Mini-ImageNet dataset [25] that includes 100 different cate-

gories with 600 images per category, each of size 84×84. For

our experiments we used the splits by Ravi and Laroche [16]

that include 64 categories for training, 16 categories for vali-

dation, and 20 categories for testing. The typical evaluation

setting on this dataset is first to train a few-shot model on the

training categories and then during test time to use the vali-

dation (or the test) categories in order to form few-shot tasks

on which the trained model is evaluated. Those few-shot

tasks are formed by first sampling Knovel categories and

one or five training example per category (1-shot and 5-shot

settings respectively), which the trained model uses for meta-

learning those categories, and then evaluating it on some test

examples that come from the same novel categories but do

not overlap with the training examples.

Evaluation setting for the recognition of the base cat-

egories. When we evaluate our model w.r.t. few-shot recog-

nition task on the validation / test categories, we consider

as base categories the 64 training categories on which we

trained the model. Since the proposed few-shot object recog-

nition system has the ability to not forget the base categories,

we would like to also evaluate the recognition performance

of our model on those base categories. Therefore, we sam-

pled 300 extra images for each training category that we

use as validation image set for the evaluation of the recog-

nition performance of the base categories and also another

300 extra images that are used for the same reason as test

image set. Therefore, when we evaluate our model w.r.t.

the few-shot learning task on the validation / test categories

we also evaluate w.r.t. recognition performance of the base

categories on the validation / test image set of the training

categories.

4.1.1 Ablation study

In Table 1 we provide an ablation study of the proposed

object recognition framework on the validation set of mini-

ImageNet. We also compare with two prior state-of-the-

art approaches, Prototypical Networks [22] and Matching

Nets [25], that we re-implemented ourselves in order to

ensure a fair comparison. The feature extractor used in all

cases is a ConvNet model that has 4 convolutional modules,

with 3 × 3 convolutions, followed by batch normalization,

ReLU nonlinearity3, and 2× 2 max-pooling. Given as input

images of size 84 × 84 it yields feature maps with spatial

size 5× 5. The first two convolutional layers have 64 feature

channels and the latter two have 128 feature channels.

Cosine-similarity based ConvNet model. First we ex-

amine the performance of the cosine-similarity based Con-

vNet recognition model (entry Cosine Classifier) without

training the few-shot classification weight generator (i.e.,

we only perform the 1st training stage as was described in

section 3.3). In order to test its performance on the novel

categories, during test time we estimate classification weight

vectors using feature averaging. We want to stress out that

in this case there are no learnable parameters involved in

the generation of the novel classification weight vectors and

also the ConvNet model it was never trained on the few-

shot recognition task. Despite that, the features learned by

3Unless otherwise stated, our cosine-similarity based models as well as

the re-implementation of Matching-Nets do not have a ReLU nonlinearity

after the last convolutional layer, since in both cases this modification

improved the recognition performance on the few-shot recognition task

4372

the cosine-similarity based ConvNet model matches or even

surpasses the performance of the Matching-Nets and Proto-

typical Networks, which are explicitly trained on the few-shot

object recognition task. By comparing the cosine-similarity

based ConvNet models (Cosine Classifier entries) with the

dot-product based models (Dot Product entries) we observe

that the former drastically improve the few-shot object recog-

nition performance, which means that the feature extractor

that is learned with the cosine-similarity classifier gener-

alizes significantly better on “unseen” categories than the

feature extractor learned with the dot-product classifier. No-

tably, the cosine-similarity classifier significantly improves

also the recognition performance on the base categories.

Removing the last ReLU unit. In our work we propose

to remove the last ReLU non-linearity from the feature ex-

tractor when using a cosine classifier. Instead, keeping the

ReLU units (Cosine w/ ReLU entries) decreases the accuracy

on novel categories while increasing it on base categories.

Few-shot classification weight generator. Here we ex-

amine the performance of our system when we also incorpo-

rate on it the proposed few-shot classification weight gener-

ator. In Table 1 we provide two solutions for the few-shot

weight generator: the entry Cosine Classifier & Avg. Weight

Gen that uses only the feature averaging mechanism de-

scribed in section 3.2 and the entry Cosine Classifier & Att.

Weight Gen that uses both the feature averaging and the

attention based mechanism. Both types of few-shot weight

generators are trained during the 2nd training stage that is

described in section 3.3. We observe that both of them offer

a very significant boost on the few-shot recognition perfor-

mance of the cosine similarity based model (entry Cosine

Classifier). Among the two, the attention based solution

exhibits better few-shot recognition behavior, especially in

the 1-shot setting where it has more than 3 percentage points

higher performance. Also, it is easy to see that the few-shot

classification weight generator does not affect the recogni-

tion performance of the base categories, which is around

70.50% in all the cosine-similarity based models. Moreover,

by introducing the few-shot weight generator, the recogni-

tion performance in both type of categories (columns Both)

increases significantly, which means that the ConvNet model

achieves better behavior w.r.t. our goal of unified recognition

of both base and novel categories. The few-shot recogni-

tion performance of our full system, which is the one that

includes the attention based few-shot weight generator (entry

Cosine classifier & Att. Weight Gen), offers a very signifi-

cant improvement w.r.t. the prior state-of-the-art approaches

on the few-shot object recognition task, i.e., from 72.67% to

74.92% in the 5-shot setting and from 55.53% to 58.55% in

the 1-shot setting. Also, our system achieves significantly

higher performance on the recognition of base categories

compared to Prototypical Networks4.

4In order to recognize base categories with Prototypical Networks, the

Models
5-Shot learning – Knovel=5 1-Shot learning – Knovel=5

Novel Base Both Novel Base Both

Matching-Nets [25] 68.87 ± 0.38% - - 55.53 ± 0.48% - -

Prototypical-Nets [22] 72.67 ± 0.37% 62.10% 32.70% 54.44 ± 0.48% 52.35% 26.68%

Ours

Cosine Classifier 72.83 ± 0.35% 70.68% 51.89% 54.55 ± 0.44% 70.68% 39.17%

Cosine Classifier & Avg. Weight Gen 74.66 ± 0.35% 70.92% 60.26% 55.33 ± 0.46% 70.45% 48.56%

Cosine Classifier & Att. Weight Gen 74.92 ± 0.36% 70.88% 60.50% 58.55 ± 0.50% 70.73% 50.50%

Ablations

Dot Product 64.58 ± 0.38% 63.59% 31.80% 46.09 ± 0.40% 63.59% 24.76%

Dot Product & Avg. Weight Gen 60.30 ± 0.39% 62.15% 46.41% 44.31 ± 0.40% 61.99% 39.05%

Dot Product & Att. Weight Gen 67.81 ± 0.37% 62.11% 48.70% 53.88 ± 0.48% 62.28% 42.41%

Ablations

Cosine w/ ReLU. 71.04 ± 0.36% 72.51% 58.16% 52.91 ± 0.45% 72.51% 43.17%

Cosine w/ ReLU. & Avg. Weight Gen 71.30 ± 0.38% 72.47% 59.33% 53.19 ± 0.45% 71.70% 49.53%

Cosine w/ ReLU. & Att. Weight Gen 73.03 ± 0.38% 72.26% 61.05% 56.09 ± 0.54% 72.34% 51.25%

Table 1: Average classification accuracies on the validation set

of Mini-ImageNet. The Novel columns report the average 5-way

and 1-shot or 5-shot classification accuracies of novel categories

(with 95% confidence intervals), the Base and Both columns report

the classification accuracies of base categories and of both type of

categories respectively. In order to report those results we sampled

2000 tasks each with 15× 5 test examples of novel categories and

15× 5 test examples of base categories.

Models
Feature

Extractor

5-Shot learning – Knovel=5 1-Shot learning – Knovel=5

Novel Base Both Novel Base Both

Matching-Nets [25] C64F 55.30% - - 43.60% - -

Ravi and Laroche [16] C32F 60.20 ± 0.71% - - 43.40 ± 0.77% - -

Finn et al. [3] C64F 63.10 ± 0.92% - - 48.70 ± 1.84% - -

Prototypical-Nets [22] C64F 68.20 ± 0.66% - - 49.42 ± 0.78% - -

Mishra et al. [12] RESNET 68.88 ± 0.92% - - 55.71 ± 0.99% - -

Ours C32F 70.27 ± 0.64% 61.08% 52.45% 54.33 ± 0.81% 61.09% 43.05%

Ours C64F 72.81 ± 0.62% 68.13% 57.72% 56.20 ± 0.86% 68.08% 48.09%

Ours C128F 73.00 ± 0.64% 70.90% 59.35% 55.95 ± 0.84% 70.72% 49.08%

Ours RESNET 70.13 ± 0.68% 80.16% 56.04% 55.45 ± 0.89% 80.24% 51.23%

Table 2: Average classification accuracies on the test set of Mini-

ImageNet. In order to report those results we sampled 600 tasks in

a similar fashion as for the validation set of Mini-ImageNet.

4.1.2 Comparison with state-of-the-art

Here we compare the proposed few-shot object recognition

system with other state-of-the-art approaches on the Mini-

ImageNet test set.

Explored feature extractor architectures. Because

prior approaches use several different network architectures

for implementing the feature extractor of the ConvNet model,

we evaluate our model with each of those architectures.

Specifically the architectures that we evaluated are: C32F

is a 4 module ConvNet network (which was described in

§ 4.1.1) with 32 feature channels on each convolutional layer,

C64F has 64 feature channels on each layer, and in C128F

the first two layers have 64 channels and the latter two have

128 channels (exactly the same as the model that was used

in § 4.1.1). With RESNET we refer to the ResNet [5] like

network that was used from Mishra et al. [12] (for more

details we refer to [12]).

In Table 2 we provide the experimental results. In all

cases, our models (that include the cosine-similarity based

ConvNet model and the attention-based few-shot weight

prototypes for the base categories are computed by averaging all the avail-

able training features vectors

4373

Novel All All with prior

Approach N ′=1 2 5 10 20 N ′=1 2 5 10 20 N ′=1 2 5 10 20

Prior work

Prototypical-Nets [22] (from [26]) 39.3 54.4 66.3 71.2 73.9 49.5 61.0 69.7 72.9 74.6 53.6 61.4 68.8 72.0 73.8

Matching Networks [25] (from [26]) 43.6 54.0 66.0 72.5 76.9 54.4 61.0 69.0 73.7 76.5 54.5 60.7 68.2 72.6 75.6

Logistic regression (from [26]) 38.4 51.1 64.8 71.6 76.6 40.8 49.9 64.2 71.9 76.9 52.9 60.4 68.6 72.9 76.3

Logistic regression w/ H [4] (from [26]) 40.7 50.8 62.0 69.3 76.5 52.2 59.4 67.6 72.8 76.9 53.2 59.1 66.8 71.7 76.3

SGM w/ H [4] - - - - - 54.3 62.1 71.3 75.8 78.1 - - - - -

Batch SGM [4] - - - - - 49.3 60.5 71.4 75.8 78.5 - - - - -

Concurrent work

Prototype Matching Nets w/ H [26] 45.8 57.8 69.0 74.3 77.4 57.6 64.7 71.9 75.2 77.5 56.4 63.3 70.6 74.0 76.2

Prototype Matching Nets [26] 43.3 55.7 68.4 74.0 77.0 55.8 63.1 71.1 75.0 77.1 54.7 62.0 70.2 73.9 75.9

Ours

Cosine Classifier & Avg. Weight Gen 45.23 56.90 68.68 74.36 77.69 57.65 64.69 72.35 76.18 78.46 56.43 63.41 70.95 74.75 77.00

± .25 ± .16 ± .09 ± .06 ± .06 ± .15 ± .10 ± .06 ± .04 ± .04 ± .15 ± .10 ± .06 ± .04 ± .03

Cosine Classifier & Att. Weight Gen 46.02 57.51 69.16 74.83 78.11 58.16 65.21 72.72 76.50 78.74 56.76 63.80 72.72 75.02 77.25

± .25 ± .15 ± .09 ± .06 ± .05 ± .15 ± .09 ± .06 ± .04 ± .03 ± .15 ± .10 ± .06 ± .04 ± .04

Table 3: Top-5 accuracy on the novel categories and on all categories (with and without priors) fot the ImageNet based few-shot benchmark

proposed in [4] (for more details about the evaluation metrics we refer to [26]). For each novel category we use N
′
= 1, 2, 5, 10 or 20

training examples. Methods with “w/ H” use mechanisms that hallucinate extra training examples for the novel categories. The second rows

in our entries report the 95% confidence intervals.

generator) achieve better few-shot object recognition perfor-

mance than prior approaches. Moreover, it is very important

to note that our approach is capable to achieve such excel-

lent accuracy on the novel categories while at the same time

it does not sacrifice the recognition performance of the base

categories, which is an ability that prior methods lack.

4.2. Few­shot benchmark of Bharath & Girshick [4]

Here we evaluate our approach on the ImageNet based

few-shot benchmark proposed by Bharath and Girshick [4]

using the improved evaluation metrics proposed by Wang

et al. [26]. Briefly, this benchmark splits the ImageNet cat-

egories into 389 base categories and 611 novel categories;

193 of the base categories and 300 of the novel categories

are used for cross validation and the remaining 196 base

categories and 311 novel categories are used for the final

evaluation (for more details we refer to [4]). We use the

same categories split as they did. However, because it was

not possible to use the same training images that they did for

the novel categories5, we sample ourselves N ′ training im-

ages per novel category and, similar to them, evaluate using

the images in the validation set of ImageNet. We repeat the

above experiment 100 times (sampling each time a different

set of training images for the novel categories) and report in

Table 3 the mean accuracies and the 95% confidence inter-

vals for the recognition accuracy metrics proposed in [26].

Comparison to prior and concurrent work. We com-

pare our full system (Cosine Classifier & Att. Weight Gen

entry) against prior work, such as Prototypical-Nets [22],

Matching Networks [25], and the work of Bharath and Gir-

shick [4]. We also compare against the work of Wang et

5It was not possible to establish a correspondence between the index

files that they provide and the ImageNet images

al. [26], which is concurrent to ours. We observe that in

all cases our approach achieves superior performance than

prior approaches and even exceeds (in all but one cases)

the Prototype Matching Net [26] based approaches that are

concurrent to our work.

Feature extractor: The feature extractor of all ap-

proaches is implemented with a ResNet-10 [5] network

architecture6 that gets as input images of 224 × 224 size.

Also, when training the attention based few-shot classifica-

tion weight generator component of our model (2nd training

stage) we found helpful to apply dropout with 0.5 probability

on the feature vectors generated by the feature extractor.

5. Conclusions

In our work we propose a dynamic few-shot object recog-

nition system that is able to quickly learn novel categories

without forgetting the base categories on which it was trained,

a property that most prior approaches on the few-shot learn-

ing task neglect to fulfill. To achieve that goal we propose a

novel attention based few-shot classification weight genera-

tor as well as a cosine-similarity based ConvNet classifier.

This allows to recognize in a unified way both novel and

base categories and also leads to learn feature representa-

tions with better generalization capabilities. We evaluate our

framework on Mini-ImageNet and the recently introduced

fews-shot benchmark of Bharath and Girshick [4] where

we demonstrate that our approach is capable of both main-

taining high recognition accuracy on base categories and to

achieve excellent few-shot recognition accuracy on novel

categories that surpasses prior state-of-the-art approaches by

a significant margin.

6Similar to what it is already explained, our model does not include the

last ReLU non-linearity of the ResNet-10 feature extractor

4374

References

[1] M. Andrychowicz, M. Denil, S. Gomez, M. W. Hoffman,

D. Pfau, T. Schaul, and N. de Freitas. Learning to learn by

gradient descent by gradient descent. In Advances in Neural

Information Processing Systems, pages 3981–3989, 2016. 2

[2] L. Chunjie, Y. Qiang, et al. Cosine normalization: Using

cosine similarity instead of dot product in neural networks.

arXiv preprint arXiv:1702.05870, 2017. 4

[3] C. Finn, P. Abbeel, and S. Levine. Model-agnostic meta-

learning for fast adaptation of deep networks. arXiv preprint

arXiv:1703.03400, 2017. 2, 7

[4] B. Hariharan and R. Girshick. Low-shot visual recogni-

tion by shrinking and hallucinating features. arXiv preprint

arXiv:1606.02819, 2016. 1, 2, 3, 8

[5] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning

for image recognition. In Proceedings of the IEEE conference

on computer vision and pattern recognition, pages 770–778,

2016. 1, 7, 8

[6] S. Hochreiter and J. Schmidhuber. Long short-term memory.

Neural computation, 9(8):1735–1780, 1997. 2

[7] E. Hoffer and N. Ailon. Deep metric learning using triplet

network. In International Workshop on Similarity-Based

Pattern Recognition, pages 84–92. Springer, 2015. 5

[8] G. Koch, R. Zemel, and R. Salakhutdinov. Siamese neural

networks for one-shot image recognition. In ICML Deep

Learning Workshop, volume 2, 2015. 3

[9] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet

classification with deep convolutional neural networks. In

Advances in neural information processing systems, pages

1097–1105, 2012. 1

[10] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-

based learning applied to document recognition. Proceedings

of the IEEE, 86(11):2278–2324, 1998. 1

[11] T. Mensink, J. Verbeek, F. Perronnin, and G. Csurka. Metric

learning for large scale image classification: Generalizing to

new classes at near-zero cost. In Computer Vision–ECCV

2012, pages 488–501. Springer, 2012. 3, 4

[12] N. Mishra, M. Rohaninejad, X. Chen, and P. Abbeel.

Meta-learning with temporal convolutions. arXiv preprint

arXiv:1707.03141, 2017. 2, 7

[13] T. Munkhdalai and H. Yu. Meta networks. arXiv preprint

arXiv:1703.00837, 2017. 2

[14] V. Nair and G. E. Hinton. Rectified linear units improve

restricted boltzmann machines. In Proceedings of the 27th

international conference on machine learning (ICML-10),

pages 807–814, 2010. 4

[15] H. Qi, M. Brown, and D. G. Lowe. Learning with imprinted

weights. arXiv preprint arXiv:1712.07136, 2017. 4

[16] S. Ravi and H. Larochelle. Optimization as a model for few-

shot learning. 2016. 2, 6, 7

[17] S.-A. Rebuffi, A. Kolesnikov, G. Sperl, and C. H. Lampert.

icarl: Incremental classifier and representation learning. In

Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pages 2001–2010, 2017. 4

[18] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,

Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, et al. Ima-

genet large scale visual recognition challenge. International

Journal of Computer Vision, 115(3):211–252, 2015. 1

[19] A. Santoro, S. Bartunov, M. Botvinick, D. Wierstra, and T. Lil-

licrap. One-shot learning with memory-augmented neural

networks. arXiv preprint arXiv:1605.06065, 2016. 2

[20] J. Schmidhuber, J. Zhao, and M. Wiering. Shifting inductive

bias with success-story algorithm, adaptive levin search, and

incremental self-improvement. Machine Learning, 28(1):105–

130, 1997. 2

[21] K. Simonyan and A. Zisserman. Very deep convolutional

networks for large-scale image recognition. arXiv preprint

arXiv:1409.1556, 2014. 1

[22] J. Snell, K. Swersky, and R. S. Zemel. Prototypical networks

for few-shot learning. arXiv preprint arXiv:1703.05175, 2017.

3, 5, 6, 7, 8

[23] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov,

D. Erhan, V. Vanhoucke, and A. Rabinovich. Going deeper

with convolutions. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pages 1–9, 2015. 1

[24] S. Thrun. Lifelong learning algorithms. Learning to learn,

8:181–209, 1998. 2

[25] O. Vinyals, C. Blundell, T. Lillicrap, D. Wierstra, et al. Match-

ing networks for one shot learning. In Advances in Neural

Information Processing Systems, pages 3630–3638, 2016. 3,

4, 6, 7, 8

[26] Y.-X. Wang, R. Girshick, M. Hebert, and B. Hariharan.

Low-shot learning from imaginary data. arXiv preprint

arXiv:1801.05401, 2018. 8

[27] B. Zhou, A. Lapedriza, J. Xiao, A. Torralba, and A. Oliva.

Learning deep features for scene recognition using places

database. In Z. Ghahramani, M. Welling, C. Cortes, N. D.

Lawrence, and K. Q. Weinberger, editors, Advances in Neural

Information Processing Systems 27, pages 487–495. Curran

Associates, Inc., 2014. 1

4375

