
CVM-Net: Cross-View Matching Network for Image-Based Ground-to-Aerial

Geo-Localization

Sixing Hu Mengdan Feng Rang M. H. Nguyen Gim Hee Lee

National University of Singapore

{hu.sixing,fengmengdan}@u.nus.edu {nguyenho,gimhee.lee}@comp.nus.edu.sg

Abstract

The problem of localization on a geo-referenced

aerial/satellite map given a query ground view image re-

mains challenging due to the drastic change in viewpoint

that causes traditional image descriptors based matching

to fail. We leverage on the recent success of deep learn-

ing to propose the CVM-Net for the cross-view image-based

ground-to-aerial geo-localization task. Specifically, our

network is based on the Siamese architecture to do metric

learning for the matching task. We first use the fully con-

volutional layers to extract local image features, which are

then encoded into global image descriptors using the pow-

erful NetVLAD. As part of the training procedure, we also

introduce a simple yet effective weighted soft margin rank-

ing loss function that not only speeds up the training con-

vergence but also improves the final matching accuracy. Ex-

perimental results show that our proposed network signifi-

cantly outperforms the state-of-the-art approaches on two

existing benchmarking datasets. Our code and models are

publicly available on the project website1.

1. Introduction

Image-based geo-localization has drawn a lot of atten-

tion over the past years in the computer vision community

due to its potential applications in autonomous driving [26]

and augmented reality [27]. Traditional image-based geo-

localization is normally done in the context where both the

query and geo-tagged reference images in the database are

taken from the ground view [16, 52, 33, 45]. One of the

major drawbacks of such approaches is that the database im-

ages, which are commonly obtained from crowd-sourcing,

e.g. geo-tagged photos from Flickr etc, usually do not

have a comprehensive coverage of the area. This is be-

cause the photo collections are most likely to be biased

towards famous touristy areas. Consequently, ground-to-

1https://github.com/david-husx/crossview_

localisation.git
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Figure 1. An illustration of the image based ground-to-aerial geo-

localization problem, and our proposed framework.

ground geo-localization approaches tend to fail in loca-

tions where reference images are not available. In contrast,

aerial imagery taken from devices with bird’s eye view, e.g.

satellites and drones, densely covers the Earth. As a re-

sult, matching ground view photos to aerial imagery grad-

ually becomes an increasingly popular geo-localization ap-

proach [5, 22, 37, 23, 49, 50, 46, 41, 53, 43]. However,

cross-view matching still remains challenging because of

the drastic change in viewpoint between ground and aerial

images. This causes cross-view matching with traditional

handcrafted features like SIFT [25] and SURF [7] to fail.

With the recent success of deep learning in many com-

puter vision tasks, most of the existing works on cross-view

image matching [49, 50, 46, 53] adopt the convolutional

neural network (CNN) to learn representations for match-

ing between ground and aerial images. To compensate for
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the large viewpoint difference, Vo and Hays [46] use an ad-

ditional network branch to estimate the orientation and uti-

lize multiple possible orientations of the aerial images to

find the best angle for matching across the two views. This

approach causes significant overhead in both training and

testing. In contrast, our work avoids the overhead by mak-

ing use of the global VLAD descriptor that was shown to

be invariant against large viewpoint and scene changes in

the place recognition task [18]. Specifically, we embed the

NetVLAD layer [3] on top of a CNN to extract descriptors

that are invariant against large viewpoint changes. Figure 1

shows an illustration of our approach. The key idea is that

NetVLAD aggregates the local features obtained from the

CNN to form global representations that are independent of

the locations of the local features.

Contributions In this paper, we propose a powerful net-

work architecture: the CVM-Net for cross-view image-

based ground-to-aerial geo-localization. Specifically, we

combine NetVLAD layers with a Siamese network to

jointly learn robust representations for cross-view image

matching. Our CVM-Net learns local features and forms

global descriptors that are invariant to large viewpoint

change for ground-to-aerial geo-localization. As part of the

training procedure, we also introduce a new weighted soft

margin ranking loss that not only speeds up the training con-

vergence but also improves the final retrieval accuracy. In

addition, this new weighted soft margin can be embedded

in both the triplet and quadruplet losses. Our extensive ex-

periment results show that the proposed framework signif-

icantly outperform all state-of-the-art methods, especially

on the panoramic CVUSA dataset [53].

2. Related Work

Most of the existing works on estimating the geographi-

cal location of a query ground image used image matching

or image retrieval techniques. These works can be catego-

rized based on the type of features.

Hand-crafted features In the early stage, traditional fea-

tures that were commonly used in the computer vision com-

munity were utilized to do the cross-view image match-

ing [30, 6, 35, 36, 22, 44]. However, due to the huge

difference in viewpoint, the aerial image and ground view

image of the same location appeared to be very differ-

ent. This caused direct matching with traditional local fea-

tures to fail. Therefore, a number of approaches warped

the ground image to the top-down view to improve feature

matching [30, 35, 44]. In cases where the aerial image was

oblique where building facades are visible, geo-localization

could be achieved with facade patch-matching [6].

Learnable features As the deep learning approaches

were proven to be extremely successful in image/video clas-

sification and recognition tasks, some efforts were taken

to introduce deep learning into the domain of cross-view

image matching and retrieval. Workman and Jacobs [49]

conducted experiments on the AlexNet [21] model trained

on ImageNet [13] and Places [54]. They showed that deep

features for common image classification significantly out-

performed hand-crafted features. Later on, Workman et

al. [50] further improved the matching accuracy by train-

ing the convolutional neural network on aerial branch. Vo

and Hays [46] conducted thorough experiments on existing

classification and retrieval networks, including binary clas-

sification network, Siamese network and Triplet network.

With the novel soft-margin triplet loss and exhausting mini-

batch training strategy, they achieved a significant improve-

ment on the retrieval accuracy. On the other hand, Zhai et

al. [53] proposed a weakly supervised training network to

obtain the semantic layout of satellite images. These lay-

outs were used as image descriptors to do retrieval from

database.

The most important part of image retrieval is to find a

good descriptor of an image which is discriminative and fast

for comparison. Sivic and Zisserman [39, 40] proposed the

Bag-of-Visual-Word descriptors to aggregate a set of local

features into a histogram of visual words, i.e. the global

descriptor. They showed that the descriptor was partially

viewpoint and occlusion invariant, and outperformed local

feature matching. Nister and Stewenius [29] created a tree

structure vocabulary to support more visual words. Jegou et

al. [18] proposed VLAD descriptor. Instead of histogram,

they aggregated the residuals of the local features to clus-

ter centroids. Based on that work, Arandjelovic et al. [3]

proposed a learnable layer of VLAD, i.e. NetVLAD, that

could be embedded into the deep network for end-to-end

training. In their extended paper [4], they illustrated that

NetVLAD was better than multiple fully connected layers,

max pooling and VLAD. Due to the superior performance

of NetVLAD, we adopt the NetVLAD layer in our proposed

network.

Image retrieval loss Our work is also related to metric

learning via deep networks. The most widely used loss

function in image retrieval task is the max-margin triplet

loss [9, 3, 8, 11, 24, 42, 47, 14, 32, 19] that enforces the

distances of positive pairs to be less than the distances of

negative pairs. The work in [17] concluded that this mar-

gin value required to be carefully selected. To overcome

this issue, Vo and Hays [46] proposed a soft-margin triplet

loss which was proven to be effective [17]. Since the triplet

loss has no constraint on irrelevant pairs, it will cause the

inter-class variation to be small when decreasing the intra-

class variation during training. To alleviate this problem,

the quadruplet [10] and angular [48] losses were proposed

to further improve the training of triplet network and the

performance of image retrieval.

7259



CVM-Net-I CVM-Net-II

L
o
ssshare weights

L
s

L
g

1
T
s

1
T
g

2
T

2
T

G

G

Local feature extraction Global descriptor generation

NetVLAD

NetVLAD

S
at

e
ll

it
e

G
ro

u
n
d

Local feature extraction Global descriptor 

generation

L
o
ss

L
s

L
g

G
s

G
g

NetVLAD

NetVLAD

S
at

e
ll

it
e

G
ro

u
n
d

Figure 2. Overview of our proposed CVM-Nets. CVM-Net-I: The deep network with two aligned (no weight-shared) NetVLADs which

are used to pool the local features from different views into a common space. CVM-Net-II: The deep network with two weight-shared

NetVLADs that transform the local features into a common space before aggregating to obtain the global descriptors.

3. Our Approach

Similar to the existing works on image-based ground-

to-aerial geo-localization [50, 46, 53], our goal is to find

the closest match of a query ground image from a given

database of geo-tagged satellite images (see Figure 1), i.e.

cross-view image retrieval. To this end, we propose the

CVM-Net.

3.1. System Overview

To learn the joint relationship between satellite and

ground images, we adopt the Siamese-like architecture that

has been shown to be very successful in image matching and

retrieval tasks. In particular, our framework contains two

network branches of the same architecture. Each branch

consists of two parts: local feature extraction and global

descriptor generation. In the first part, CNNs are used to

extract the local features. See Section 3.2 for the details. In

the second part, we encode the local features into a global

descriptor that is invariant across large viewpoint changes.

Towards this goal, we adopt the VLAD descriptor by em-

bedding NetVLAD layers on top of each CNN branch. See

Section 3.3 for the details.

3.2. Local Feature Extraction

We use a fully convolutional network (FCN) fL to ex-

tract local feature vectors of an image. For a satellite image

Is, the set of local features is given by Us = fL(Is; Θ
L
s ),

where ΘL
s is the parameters of the FCN of the satellite

branch. For a ground image Ig , the set of local features

Ug = fL(Ig; Θ
L
g ), where ΘL

g is the parameters of the

FCN of the ground view branch. In this work, we com-

pare the results of our network using the convolutional part

of AlexNet [21] and VGG16 [38] as fL. Details of the im-

plementation and comparison are shown in Section 5.

3.3. Global Descriptor Generation

We feed the set of local feature vectors obtained from

the FCN into a NetVLAD layer to get the global descrip-

tor. NetVLAD [3] is a trainable deep network version of

VLAD [18], which aggregates the residuals of the local fea-

ture vectors to their respective cluster centroid to generate

a global descriptor. The centroids and distance metrics are

trainable parameters in NetVLAD. In this paper, we try two

strategies, i.e. CVM-Net-I and CVM-Net-II, to aggregate

local feature vectors from the satellite and ground images

into their respective global descriptors that are in a common

space for similarity comparison.

CVM-Net-I: Two independent NetVLADs As shown in

Figure 2, we use a separate NetVLAD layer for each branch

to generate the respective global descriptors of a satellite

and ground image. The global descriptor of an image can

be formulated as vi = fG(Ui; Θ
G
i ), where i ∈ {s, g}

represents the satellite or ground branch. There are two

groups of parameters in ΘG
i - (1) K cluster centroids Ci =

{ci,1, ..., ci,K}, and (2) a distance metric Wi,k for each clus-

ter. The number of clusters in both NetVLADs are set to be

same. Each NetVLAD layer produces a VLAD vector, i.e.

global descriptor, for the respective views vs and vg that are

in the same space, which can then be used for direct simi-

larity comparison. More details are given in the next para-

graph. To keep computational complexity low, we reduce

the dimension of the VLAD vectors before feeding them

into the loss function for end-to-end training, or using them

for similarity comparison.

In addition to the discriminative power, the two

NetVLAD layers with the same number of clusters that

are trained together in a Siamese-like architecture, are able

to output two VLAD vectors that are in a common space.

Given a set of local feature vectors U = {u1, ..., uN} (we

drop the index i in Ui for brevity), the kth element of the
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Figure 3. An illustration of how NetVLAD achieves cross-view

matching. (Top): satellite view, (Bottom): ground view. In each

view, there are a set of local features (colorful squares) and their

associated centroids (hexagons and circles). After training, each

centroid of satellite view is associated with the unique centroid of

ground view (dotted lines). The residuals (red lines) are indepen-

dent to their own views and comparable to the other view because

they are only relative to the centroids. Thus, the global descriptors,

i.e. aggregated residuals, of two views are in the common space.

VLAD vector V is given by

V (k) =

N∑

j=1

āk(uj)(uj − ck), (1)

where āk(uj) is the soft-assignment weight determined by

the distance metric parameters and input local feature vec-

tors. Refer to [3] for more details of āk(uj). As shown

in Equation 1, the descriptor vector of each centroid is the

summation of residuals to the centroid. The residuals to the

centroids of two views are in a new common space, inde-

pendent to the domain of two centroids. Therefore, they

can be regarded as in a common “residual” space with re-

spect to the pair of centroids in two views. The comparison

of satellite and ground view descriptors is the centroid-wise

comparison. It makes the VLAD descriptors of two views

comparable. Figure 3 shows an illustration of this concept.

The complete model of our CVM-Net-I is shown in Fig-

ure 2. The global descriptor of the satellite image is given

by vs = fG(fL(Is; Θ
L
s ); Θ

G
s ) and ground image is given

by vg = fG(fL(Ig; Θ
L
g ); Θ

G
g ). The two branches have

identical structures with different parameters. Finally, the

dimensions of the global descriptors from the two views are

reduced by a fully connected layer.

CVM-Net-II: NetVLADs with shared weights Instead

of having two independent networks of similar structure in

CVM-Net-I, we propose a second network - CVM-Net-II

with some shared weights across the Siamese architecture.

Figure 2 shows the architecture of our CVM-Net-II. Specif-

ically, the CNN layers for extracting local features Us and

Ug remain the same. These local features are then passed

through two fully connected layers - the first layer with in-

dependent weights ΘT1

s and ΘT1

g , and the second layer with

shared weights ΘT2 . The features U ′

s and U ′

g after the two

fully connected layers are given by

u′

s,j = fT (us,j ; Θ
T1

s ,ΘT2), (2a)

u′

g,j = fT (ug,j ; Θ
T1

g ,ΘT2). (2b)

where us,j ∈ Us, ug,j ∈ Ug and u′

s,j ∈ U ′

s, u′

g,j ∈ U ′

g .

Finally, the transformed local features are fed into the

NetVLAD layers with shared weights ΘG. The global de-

scriptors of the satellite and ground images are given by

vs = fG(U ′

s; Θ
G), (3a)

vg = fG(U ′

g; Θ
G). (3b)

The complete model of our CVM-Net-II is illustrated in

Figure 2. We adopted weight sharing in our CVM-Net-II

network because weight sharing has been proven to improve

metric learning in many of the Siamese network architec-

tures [12, 34, 15, 51, 31].

4. Weighted Soft-Margin Ranking Loss

The triplet loss is often used as the objective function to

train deep networks for image matching and retrieval tasks.

The goal of the triplet loss is to learn a network that brings

positive examples closer to a chosen anchor point than the

negative examples. The simplest triplet loss is the max-

margin triplet loss: Lmax = max(0,m + dpos − dneg),
where dpos and dneg are the distances of all the positive

and negative examples to the chosen anchor. m is the mar-

gin and it has been shown in [17] that m has to be care-

fully selected for best results. A soft-margin triplet loss

was proposed in [46, 17] to avoid the need to determine

the margin in the triplet loss: Lsoft = ln(1 + ed), where

d = dpos−dneg . We use the soft-margin triplet loss to train

our CVM-Nets, but noted that this loss resulted in slow con-

vergence. To improve the convergence rate, we propose a

weighted soft-margin ranking loss which scales d in Lsoft

by a coefficient α:

Lweighted = ln(1 + eαd). (4)

Our weighted soft-margin ranking loss becomes the soft-

margin triplet loss when α = 1. We made the observation

through experiments that the rate of convergence and re-

sults improve as we increase α. The gradient of the loss in-

creases with α, which might cause the network to improve

the weights faster so as to reduce the larger errors.

Our proposed loss can also be embedded into other loss

functions with the triplet loss component. The quadruplet

loss [10] is the improved version of the triplet loss which

also tries to force the irrelevant negative pairs further away

from the positive pairs. The quadruplet loss is given by

Lquad =max(0,m1 + dpos − dneg)+

max(0,m2 + dpos − d∗neg),
(5)
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Figure 4. Sample images from the Vo and Hays [46], and

CVUSA [53].

where m1 and m2 are the margins and d∗neg is distance of

another example that is outside of the chosen set of posi-

tive, negative and anchor examples. We note that the mar-

gins are no longer needed with our weighted soft-margin

component. Our weighted quadruplet loss is given by

Lquad,weighted =ln(1 + eα(dpos−dneg))+

ln(1 + eα(dpos−d∗

neg
)).

(6)

5. Experiments and Discussions

5.1. Dataset

We evaluate our proposed deep networks on two existing

datasets - CVUSA [53] and Vo and Hays [46]. The CVUSA

dataset contains 35,532 image pairs for training and 8,884

image pairs for testing. All ground images are panoramas.

Vo and Hays’ dataset consists of around one million image

pairs from 9 different cities. All ground images are cropped

from panoramic images to a fixed size. We use all image

pairs from 8 of the 9 cities to train the networks and use the

image pairs from the 9th city, i.e. Denver city, for evaluation.

Figure 4 shows some examples of the two datasets.

5.2. Implementation and Training

We use the VGG16 [38] architecture with 13 convo-

lutional layers to extract local features, and a NetVLAD

with 64 clusters to generate the global descriptors. We set

α = 10 for both the weighted triplet and weighted quadru-

plet losses. We use the squared Euclidean distance in our

loss functions. The parameters in VGG16 are initialized

with a pre-trained model on ImageNet [13]. All the param-

eters in NetVLAD and fully connected layers are randomly

Recall @top 1%

Cropped [46] Panorama [53]

Siamese (AlexNet) 1.1% 4.7%

Siamese (VGG) 1.3% 9.9%

Workman et al. [50] 15.4% 34.3%

Vo and Hays [46] 59.9% 63.7%

Zhai et al. [53] — 43.2%

CVM-Net-I 67.9% 91.4%

CVM-Net-II 66.6% 87.2%

Table 1. Comparison of top 1% recall on our CVM-Nets with other

existing approaches [53, 46, 50] and two baselines, i.e. Siamese

network with AlexNet and VGG.

initialized.

We implement our CVM-Nets using Tensorflow [2] and

train using the Adam optimizer [20] with the learning rate

of 10−5 and dropout (= 0.9) for all fully connected layers.

The training is divided into two stages. In the first stage, we

adopt the exhaustive mini-batch strategy [46] to maximize

the number of triplets within a batch. We feed pairs of corre-

sponding satellite and ground images into our Siamese-like

architecture. We have a total of M × 2(M − 1) triplets for

M positive pairs of ground-to-satellite images. This is be-

cause for each ground or satellite image in M positive pairs,

there are M − 1 corresponding negative pairs from all the

other images, i.e. 2(M − 1) for both the ground and satel-

lite images in a positive pair. Once the loss stops decreasing,

we start the second stage with in-batch hard negative min-

ing. For each positive pair, we choose the negative pair with

smallest distance in current batch.

5.3. Comparison and Results

Evaluation metrics We follow Vo and Hays [46], and

Workman et al. [50] in using the recall accuracy at top 1% as

the evaluation metric for our networks. For a query ground

view image, we retrieve the top 1% closest satellite images

with respect to the global descriptor distance. It is regarded

as correct if the corresponding satellite image is inside the

retrieved set.

Comparison to existing approaches We compare our

proposed CVM-Nets to three existing works [46, 50, 53]

on the two datasets [46, 53]. We used the implementations

provided in the authors’ webpages. Furthermore, we take

the Siamese network with both AlexNet [21] and VGG [38]

as the baseline in our comparisons, since these networks are

widely used in image retrieval tasks. We use our weighted

soft-margin ranking loss in our CVM-Nets. The soft-margin

triplet loss is used on the network from Vo and Hays [46],

as suggested by the authors in the paper. We also apply

the soft-margin triplet loss on the two baseline Siamese net-

works - AlexNet and VGG since the soft-margin triplet loss
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Figure 5. Comparison of our CVM-Nets and other existing ap-

proaches [53, 46, 50]: All models are trained on CVUSA [53].

produces the state-of-the-art results in [46]. The Euclidean

loss is used on the network proposed by Workman et al. [50]

since their network is trained on only positive pairs.

Table 1 shows the top 1% recall accuracy results of our

CVM-Nets compared to all the other approaches on the two

datasets - which we called “Cropped” [46] and “Panorama”

[53] in the table for brevity. It can be seen that both our

proposed networks - CVM-Net-I and CVM-Net-II signifi-

cantly outperform all the other approaches. This suggests

that NetVLAD used in both our CVM-Nets is capable of

learning much more discriminative features compared to

the CNN and/or fully connected layers architectures utilized

by the other approaches. Furthermore, it can be seen that

CVM-Net-I outperforms CVM-Net-II in both datasets. This

result suggests that weight sharing, a technique commonly

used in Siamese network based architectures, is not neces-

sary for our network for cross-view image retrieval. It is not

surprising that all networks perform better on the panorama

images since these images contain more information from

the wide field-of-views. The low accuracies of the Siamese

networks indicate that they are not suitable for cross-view

image retrieval, although they performed well in traditional

image retrieval tasks, e.g. face identification.

We show the recall accuracy from top 1 to top 80

(top 0.9%) of our CVM-Nets with all the other approaches

on CVUSA dataset [53] in Figure 5. It illustrates that our

proposed networks outperform all the other approaches. In

Figure 9, we show some retrieval examples on two bench-

mark datasets [46, 53].

Adding distractor images We add 15,643 distractor

satellite images in Singapore to our original test database

which has 8,884 satellite images in USA. Figure 6 shows the

top-K recall accuracy curve. The result is from the model

0 20 40 60 80
top-K

0.30

0.65

1.00

ac
cu

ra
cy

without distractors
with distractors

Figure 6. Top-K recall accuracy on the evaluation dataset with and

without distractor images.The model is trained on CVM-Net-I on

CVUSA dataset [53].

Triplet Quadruplet

CVM-Net-I (AlexNet) 65.4% 73.7%

CVM-Net-I (VGG16) 91.4% 89.9%

CVM-Net-II (AlexNet) 63.0% 83.9%

CVM-Net-II (VGG16) 87.2% 88.7%

Table 2. Performance of different architectures and losses on the

CVUSA dataset [53]: AlexNet [21] and VGG16 [38] are used as

the local feature extraction network.

trained on CVM-Net-I on the CVUSA [53] dataset. There

is only a marginal difference between the results with and

without distractor images. This proves the robustness of our

proposed network.

5.4. Discussions

Local feature extraction In Table 2, we compare several

variations on our proposed architecture. We conduct exper-

iments to investigate AlexNet and VGG16 for local feature

vectors extraction. It can be seen from the table that VGG16

performs better than AlexNet in both our CVM-Nets. This

result is not surprising because VGG16 is a deeper network

compared to Alexnet, hence is able to extract richer local

features.

Cross-view matching It can be seen from Table 2 that

CVM-Net-I outperforms CVM-Net-II for both the VGG16

and AlexNet implementations for local features extraction.

This further reinforces our analysis in the previous para-

graph that shared weights implemented on CVM-Net-II is

not necessary for our cross-view image based retrieval task.

It is also interesting to note from the results in Table 2

that our CVM-Nets implemented with both VGG16 and

AlexNet outperform all other approaches in Table 1.

Ranking loss The triplet loss has been widely used in im-

age retrieval for a long time, while the quadruplet loss [10]

was introduced recently to further improve the triplet loss.

We train our CVM-Nets implemented with AlexNet and

VGG16 for local feature extraction on both the triplet and
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Figure 7. Performance of our weighted soft-margin triplet loss

with different parameters. lr is short for learning rate. It takes

about 1 hour to train each epoch.

quadruplet losses for comparison. As can be seen from the

results in Table 2, quadruplet loss outperforms triplet loss

significantly on both our CVM-Nets with AlexNet. How-

ever, only minor differences in performances of the triplet

and quadruplet losses can be observed for our CVM-Nets

with VGG16. These results suggest that quadruplet loss has

a much larger impact on shallower networks, i.e. AlexNet

for feature extraction.

Contrastive loss was widely used in the past as well.

To test contrastive loss, we train our CVM-Net-I and II on

CVUSA dataset [53]. The top 1% recall accuracy is 87.8%

and 79.8% respectively. It is not as good as the triplet loss

or the quadruplet loss whose results are shown in Table 2.

Weighted soft-margin We also compare the performance

of our CVM-Nets on different α values in our weighted soft-

margin triplet loss Lweighted (see Equation 4). Specifically,

we conducted experiments on α = 10 with learning rate

10−5, α = 1 (soft-margin triplet loss) with learning rate

10−5. In addition, we also tested on α = 1 with learn-

ing rate 10−4 to compare the convergence speed with our

weighted loss. The accuracies from the respective parame-

ters with respect to the number of epochs are illustrated in

Figure 7. As can be seen, our loss function makes the net-

work converge to higher accuracies in a shorter amount of

time. We choose α = 10 in our experiments since the larger

value of α does not make much different.

5.5. Crossview Localization

We perform image-based geo-localization with respect

to a geo-referenced satellite map with our cross-view image

retrieval CVM-Nets. Our geo-referenced satellite map cov-

ers a region of 10 × 5 km of the South-East Asian country

- Singapore. We collect the ground panoramic images of

Singapore from Google Street-view [1]. We choose to test

our CVM-Nets on Singapore because it is easy to get the

datasets online for the highly developed country. Further-

more, we want to show that our CVM-Nets trained on the

North American based CVUSA datasets generalize well on

a drastically different area. We tessellate the satellite map

into grids at 5 m intervals. Each image patch is 512 × 512
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Figure 8. The retrieval accuracy on distance error threshold.

pixels and the latitude and longitude coordinates of the pixel

center give the location of the image patch. We use our

CVM-Net-I trained on the CVUSA dataset to extract global

descriptors from our Singapore dataset. We visualize the

heatmap of the similarity scores on the reference satellite

map of two examples in Figure 10. We apply the expo-

nential function to improve the contrast of the similarity

scores. We can see that our CVM-Net-I is able to recover

the ground truth locations for both examples in Figure 10.

It is interesting to see that our street-view based query im-

age generally return higher similarity scores on areas that

correspond to the roads on the satellite map.

We conduct a metric evaluation on geo-localization. A

query is regarded as correctly localized if the distance to

the ground truth location is less than the threshold. We show

the recall accuracy with respect to the distance threshold in

Figure 8. The accuracy on 100 m threshold is 67.1%. The

average localization error is 676.7 m. As can be seen from

the metric evaluation result, there is large room for ground-

to-aerial geo-localization study despite state-of-art retrieval

performance.

6. Conclusion

In this paper, we propose two cross-view matching net-

works - CVM-Net-I and CVM-Net-II, which are able to

match ground view images with satellite images in order

to achieve cross-view image localization. We introduce the

weighted soft-margin ranking loss, and show that it notably

accelerates training speed and improves the performance of

our networks. We demonstrate that our approach signifi-

cantly outperforms state-of-the-art approaches with experi-

ments on large datasets.

Possible extensions Our proposed CVM-Nets can also

be trained to work in other cross-domain image retrieval

tasks, e.g. matching hand sketches to natural photos, day

and night images, paintings with different styles etc. Fur-

thermore, our networks can be extended to general cross-

domain information retrieval tasks. An example is the

word-to-image retrieval where we can replace the local im-

age feature extraction component with e.g. the Word2Vec

model [28] branch, while keeping VGG16 in the other

branch.

7264



V
o
 a

n
d
 H

ay
s

Ground query Top matches (top 1 – top 8 from left to right)

Ground query Top matches (top 1 – top 5 from left to right)

C
V

U
S

A

Figure 9. Image retrieval examples on Vo and Hays dataset [46] and CVUSA dataset [53]. The satellite image bordered by red square is

the groundtruth.

Ground query

Ground query

Groundtruth

Localization heatmap

Localization heatmapSatellite map

Satellite map

Groundtruth

1 km1 km

1 km1 km
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