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Abstract

Automatically describing a video with natural language

is regarded as a fundamental challenge in computer vision.

The problem nevertheless is not trivial especially when a

video contains multiple events to be worthy of mention,

which often happens in real videos. A valid question is

how to temporally localize and then describe events, which

is known as “dense video captioning.” In this paper, we

present a novel framework for dense video captioning that

unifies the localization of temporal event proposals and sen-

tence generation of each proposal, by jointly training them

in an end-to-end manner. To combine these two worlds, we

integrate a new design, namely descriptiveness regression,

into a single shot detection structure to infer the descriptive

complexity of each detected proposal via sentence genera-

tion. This in turn adjusts the temporal locations of each

event proposal. Our model differs from existing dense video

captioning methods since we propose a joint and global op-

timization of detection and captioning, and the framework

uniquely capitalizes on an attribute-augmented video cap-

tioning architecture. Extensive experiments are conducted

on ActivityNet Captions dataset and our framework shows

clear improvements when compared to the state-of-the-art

techniques. More remarkably, we obtain a new record: ME-

TEOR of 12.96% on ActivityNet Captions official test set.

1. Introduction

The recent advances in 2D and 3D Convolutional Neural

Networks (CNNs) have successfully pushed the limits and

improved the state-of-the-art of video understanding. For

instance, the first rank performance achieves 8.8% in terms

of top-1 error in untrimmed video classification task of Ac-

tivityNet Challenge 2017 [9]. As such, it has become pos-

sible to recognize a video with a pre-defined set of labels

∗This work was performed at Microsoft Research Asia.
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Figure 1. Examples of video captioning and dense video caption-

ing (upper row: input video; middle row: the sentence generated

by video captioning method; bottom row: temporally localized

sentences generated by dense video captioning approach.)

or categories. In a further step to describe a video with a

complete and nature sentence, video captioning [19, 32, 34]

has expanded the understanding from individual labels to a

sequence of words to express richer semantics and relation-

ships in the video. Nevertheless, considering that videos in

real life are usually long and contain multiple events, the

conventional video captioning methods generating only one

caption for a video in general will fail to recapitulate all the

events in the video. Take the video in Figure 1 as an exam-

ple, the output sentence generated by a popular video cap-

tioning method [32] is unable to describe the procedure of

“playing frisbee with a dog” in detail. As a result, the task

of dense video captioning is introduced recently in [16] and

the ultimate goal is to generate a sentence for each event

occurring in the video.

The difficulty of dense video captioning originates from

two aspects: 1) how to accurately localize each event in

time? 2) how to design a powerful sentence generation

model? In the literature, there have been several techniques,

including temporal action proposal [2, 3, 6, 17] and im-

age/video captioning [32, 34, 37], being proposed for each

individual aspect. However, simply solving the problem of

dense video captioning in a two-stage way, i.e., first tem-

poral event proposal and then sentence generation, may

destroy the interaction between localizing and describing

events, resulting in a sub-optimal solution.

This paper proposes a novel deep architecture to unify
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the accurate localization of temporal events with the de-

scriptive principle of sentence generation for dense video

captioning. Technically, we devise a new descriptiveness

regression component and integrate it into a single shot de-

tection framework as a bridge, on one hand to measure

the complexity of each event being described in sentence

generation, and on the other, to adjust the event propos-

al. More specifically, the descriptiveness regression guides

the learning of temporal event proposal together with even-

t/background classification and temporal coordinate regres-

sion. In between, event/background classification is to pre-

dict event proposals and temporal coordinate regression is

to refine the temporal boundaries of each proposal. Fur-

thermore, the inference of descriptiveness regression is em-

ployed as an “attention” to weight video clips in each pro-

posal locally. The proposal-level representation is then av-

eraged over all the clip-level representations in the propos-

al weighted by the holistic attention score of each clip and

finally fed into an attribute-augmented captioning architec-

ture for sentence generation. As such, the task of dense

video captioning could be jointly learnt and globally opti-

mized in an end-to-end manner.

The main contribution of this work is the proposal of a

new architecture to unify the temporal localization of event

proposals and sentence generation for dense video caption-

ing. The solution also leads to the elegant views of what

kind of interaction should be built across the two sub prob-

lems and how to model and integrate the interaction in a

deep learning framework, which are problems not yet fully

understood in the literature.

2. Related Work

Temporal Action Proposal. [5] is one of the early work-

s that detects temporal segments containing the action of

interest in a sliding windows fashion. Next, a few subse-

quent works [2, 3, 6, 8, 27] tackle temporal action propos-

al by leveraging action classifiers on a smaller number of

temporal windows. In particular, Sparse-prop [3] utilizes

dictionary learning to encode representations of trimmed

action instances and then retrieves the most representative

segments from testing videos, which are treated as the class-

independent proposals. S-CNN [27] trains a 3D CNNs to

classify a video segment as background or being-action and

employs varied length temporal windows for multi-scale ac-

tion proposal generation. Later in [6], DAPs utilizes Long

Short-Term Memory (LSTM) to encode video streams and

enables multi-scale proposal generation inside the stream-

s with a single pass through the video, obviating the need

for deploying sliding windows on multiple scales. Further-

more, Buch et al. develop SST based on DAPs by construct-

ing no overlapping sliding windows over the input video

and encoding each window sequentially with a Gated Re-

current Unit (GRU) in [2]. Most recently, Gao et al. [8]

design temporal coordinate regression for temporal action

proposal generation.

Video Captioning. The research in this direction has

proceeded along two different dimensions: template-based

language methods [11, 15, 26] and sequence learning ap-

proaches (e.g., RNNs) [16, 19, 32, 33, 34, 38]. Template-

based language methods directly generate the sentence with

detected keywords in predefined language template. Se-

quence learning approaches utilize CNN plus RNN archi-

tecture to generate novel sentences with more flexible syn-

tactical structures. In [33], Venugopalan et al. present a

LSTM-based model to generate video descriptions with the

mean pooling representation over all frames. The frame-

work is then extended by inputting both frames and optical

flow images into an encoder-decoder LSTM in [32]. Com-

pared to mean pooling, Yao et al. propose to utilize the

temporal attention mechanism to exploit temporal structure

for video captioning [34]. Later in [38], a hierarchical RNN

is devised to further capture the inter-sentence dependen-

cy, targeting for describing a long video with a paragraph

consisting of multiple sentences. Different from the video

paragraph captioning with non-overlapping and annotated

temporal intervals, a more challenge task, named as dense

video captioning, is recently introduced in [16] which in-

volves both detecting and describing multiple events in a

video. A two-stage dense-captioning system is thus de-

signed by leveraging DAPs [6] to localize temporal event

proposals and a LSTM-based sequence learning module to

describe each event proposal. Most recently, [35] addition-

ally incorporates KNN-based retrieval module into LSTM-

based sequence learning module to boost video captioning.

Summary. Our work aims to detect and describe events

in video, i.e., dense video captioning. Different from the

aforementioned method [16], our approach contributes by

studying not only detecting the events with the simple ob-

jective of binary classification (i.e., event or background)

and modeling sentence generation with LSTM, but also en-

hancing the temporal event proposal by utilizing both tem-

poral boundary regression to correct start and end time of

event and descriptiveness regression to infer whether the

event can be well described from language perspective.

Moreover, sentence generation module is further boosted

by leveraging semantic attributes and reinforcement learn-

ing to optimize LSTM with non-differentiable metrics.

3. Dense Video Captioning

The basic idea of this work is to automatic describe mul-

tiple events in videos by temporally localizing event propos-

als and generating language sentence for each event propos-

al. The temporal event proposal (TEP) is performed by en-

capsulating the event classification to recognize video seg-

ments of events from backgrounds, proposal generation to

temporally localize the event, and descriptiveness inference
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Figure 2. An overview of our Dense Video Captioning framework mainly including Temporal Event Proposal (TEP) and Sentence Gener-

ation (SG) (better viewed in color). The input video is first encoded into a series of clip-level features via a 3-D CNNs, which are fed into

TEP module to produce candidate proposals. The TEP module is employed by integrating the event/background classification to predict

event proposal, temporal coordinate regression to refine the temporal boundaries of each proposal, and descriptiveness regression to infer

the descriptive complexity of each event, into a single shot detection architecture. After ranking the candidate proposals with regard to

both eventness and descriptiveness scores, the top proposals are in turn injected into SG module for sentence generation. The SG module

leverages both attributes and reinforcement learning based optimization to enhance captioning. The whole system can be trained through

the joint and global optimization of detection and captioning in an end-to-end manner.

procedure to infer the descriptive complexity of this event,

in one single network. Such design enables straightforward

temporal event proposal in a single shot manner to ease

the training consumption. The sentence generation module

(SG) leverages an attribute-augmented LSTM-based model

for generating descriptions. Moreover, the policy-gradient

based reinforcement learning is adopted to optimize LSTM

with evaluation metric based reward, harmonizing the mod-

ule with respect to the testing inference. Please note that

the descriptiveness inference procedure in TEP module is

not only leveraged to additionally refine the localized event

proposal from language perspective through descriptiveness

regression, but also integrated into SG module to consider

the descriptiveness scores as one kind of temporal attention

over clips for weighted fusing them as the input proposal-

level representation of LSTM. As such, our system includ-

ing both TEP and SG modules can be jointly trained through

the global optimization of detection and captioning in an

end-to-end manner. An overview of our dense video cap-

tioning system is illustrated in Figure 2.

3.1. Problem Formulation

Suppose we have a video V = {vt}
Tv

t=1 with Tv

frames/clips and vt denotes the t-th frame/clip in tempo-

ral order. The ultimate target of our dense video captioning

system is to generate a set of temporal localized description-

s Φv = {φi = (tistart, t
i
end,Si)}

Mv

i=1
for the input video V ,

where Mv is the number of sentences, tistart and tiend repre-

sent the starting time and ending time for each sentence Si,

and Si = {w1, w2, ..., wNs
} consists of Ns words.

Hence the TEP module in our system is firstly utilized to

produce a set of candidate proposals for the input video V:

Φp = {φi
p = (tistart, t

i
end, p

i
event, p

i
des)}

Np

i=1
, (1)

where pievent is the probability of recognizing the candi-

date as an event (i.e., eventness score), pides denotes the de-

scriptiveness score measuring how well the candidate can

be described from language perspective and Np is the to-

tal number of candidate proposals. By consolidating the

idea of selecting proposals from both vision and language

perspectives, all the candidates are ranked according to the

fused score piconf = pievent + λ0p
i
des and only the candi-

dates with a piconf higher than a threshold are injected into

SG module for captioning, denoted as Φp̂.

Inspired by the successes of sequence learning model-

s in machine translation [28] and attributes utilized in im-

age/video captioning [7, 20, 36], we formulate our SG mod-

ule as an attribute-argument LSTM-based model which en-

codes the input event proposal representation (F) and its

detected attributes/categories (A) into a fixed dimensional

vector and then decodes it to the output target sentence. As
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such, the sentence generation problem we exploit here can

be formulated by minimizing the negative log probability

of the correct textual sentence (− log Pr (S|F,A)). The

negative log probability is typically measured with cross

entropy loss, resulting in the discrepancy of evaluation be-

tween training and inference. Hence, to further boost our

SG module by amending such discrepancy, we take the in-

spiration from the reinforcement learning [23] leveraged in

sequence learning and directly optimize LSTM by minimiz-

ing the following expected sentence-level reward loss as

LSG = −ES∼pθ [r(S)], (2)

where θ denotes the parameters of LSTM that schedule a

policy pθ for generating sentence. r(S) is the reward mea-

sured by comparing the generated sentence S to ground-

truth sentences over non-differentiable evaluation metric.

3.2. Temporal Event Proposal

Existing solutions for temporal action/event proposal

mainly focus on detecting events with binary classifier (i.e.,

event or background) in a sliding windows fashion. Howev-

er, the temporal sliding windows are typically too dense and

even designed with multiple scales, resulting in the heavy

computation cost. Inspired from spatial boundary regres-

sion in object localization [24] which simultaneously pre-

dicts objectness score and object bound, we integrate the

event classification with temporal coordinate regression for

correcting event’s temporal bound, pursuing both low-cost

and high-quality event proposals. Moreover, for the dense

video captioning task, the event identification undoubtedly

plays the major role in temporal event proposal, while the

proposals containing rich describable objects or scenes are

also preferred by human beings in description generation.

As such, a novel descriptiveness regression is especially de-

vised to infer the descriptive complexity of each proposal,

and further refine the event proposal from language perspec-

tive. Similar to single shot object detection in [18], all the

three components (i.e, event classification, temporal coordi-

nate regression and descriptiveness regression) are elegantly

integrated into one feed-forward CNNs, aiming to simulta-

neously produce a fixed-size set of proposals, scores for the

presence of event in the proposals (i.e., eventness scores),

and descriptiveness scores of proposals.

Input. Technically, given input video V = {vt}
Tv

t=1, a 3-

D CNN is utilized to encode the frame sequence into a series

of clip-level features {ft = F (vt : vt+δ)}
Tf

t=1 where δ is the

temporal resolution of each feature ft. In our experiments,

C3D [30] is adopted as 3-D CNNs encoder F with δ = 16
frames and the temporal interval for encoding is set as 8
frames, resulting in the initial output feature map with the

size of Tf ×D0. Note that D0 is the dimension of clip-level

feature and Tf = Tv/8 discretizes the video frames.

Network Architecture. The initial feature map of size

Tf × D0 is fed into 1-D CNNs architecture in TEP mod-

ule, which consists of convolutional layers in three groups:

base layers, anchor layers, and prediction layers, as shown

in Figure 2. In particular, two base layers (conv1 and conv2)

are firstly devised to reduce the temporal dimension of fea-

ture map and increase the size of temporal receptive field-

s, producing the output feature map of size Tf/2 × 1024.

Then, we stack nine anchor layers (conv3 to conv11) on the

top of base layer conv2, each of which is designed with the

same configuration (kernel size: 3, stride size: 2, and filter

number: 512). These anchor layers decrease in temporal

dimension of feature map progressively, enabling the tem-

poral event proposals at multiple temporal scales.

For each anchor layer, its output feature map is injected

into prediction layer to produce a fixed set of prediction-

s in one shot manner. Concretely, given an output feature

map fj with the size of Tfj × Dj , the basic element (an-

chor) for predicting parameters of a candidate proposal is a

1×Dj feature map cell that produces a prediction score vec-

tor ppred = (pcls,∆c,∆w, pdes) via fully connected layers.

pcls = [pevent, pbk] denotes the two dimensional classifica-

tion scores for event/background and pdes is the descriptive-

ness score to infer the confidence of this proposal to be well

described. ∆c and ∆w are two temporal offsets relative to

the default center location µc and width µw of this anchor,

which are leveraged to adjust its temporal coordinates as

ϕc = µc + α1µw∆c, ϕw = µw exp(α2∆w),
tstart = ϕc −

1

2
ϕw, tend = ϕc +

1

2
ϕw,

(3)

where ϕc and ϕw are refined center location and width of

the anchor. α1 and α2 are utilized to control the impact

of temporal offsets, both of which are set as 0.1. tstart
and tend represent the adjusted starting and ending time of

the anchor. In addition, derived from the anchor boxes in

[18, 24], we associate a set of default temporal boundaries

with each feature map cell. The different temporal scale

ratios for these default temporal boundaries are denoted as

Rs = {rd}
Ds

d=1
= {1, 1.25, 1.5}. For each temporal scale

ratio rd, we can thus achieve one default center location

(µcd = t+0.5
Tfj

) and width (µwd
= rd

Tfj

) of t-th feature map

cell, resulting in a total of TfjDs anchors. Accordingly, for

the feature map fj , the set of all the produced proposals

is defined as Φfj = {φfj = (tustart, t
u
end, p

u
cls, p

u
des)}

NU

u=1,

where NU = TfjDs. By accumulating all the produced

proposals of the output feature maps of nine anchor layers,

the final predicted proposal set is Φp = {Φfj} = {φi
p}

Np

i=1
.

Training. During training, a positive/negative label

should be firstly assigned to each predicted proposal condi-

tioned on the ground truth proposal set Φv . Specifically, for

each φi
p ∈ Φp, we measure its temporal Intersection over

Union (tIoU) with each ground truth proposal and obtain

the highest tIoU. If the highest tIoU is larger than 0.7, φi
p is

treated as positive sample with regard to the corresponding

ground truth proposal φg , otherwise φi
p is a negative sample.
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The training objective in our TEP module is formulated as

a multi-task loss by integrating the event/background clas-

sification loss (Levent) for distinguishing events from back-

grounds, temporal coordinate regression loss (Ltcr) for ad-

justing temporal coordinate of event proposal, and descrip-

tiveness regression loss (Ldes) for inferring the descriptive

complexity of each proposal, which is defined as

LTEP = Levent + αLtcr + βLdes, (4)

where α and β are tradeoff parameters. The even-

t/background classification loss Levent is measured as the

standard softmax loss over the whole predicted proposal set

Φp. The temporal coordinate regression loss Ltcr is devised

as Smooth L1 loss [10] (SL1) between the positive predict-

ed proposals and the corresponding ground truth proposals.

Similar to [24], both of the temporal offsets for center lo-

cation (ϕc) of the predicted proposal and for its width (ϕw)

are regressed as

Ltcr =
1

Npos

Np
∑

i=1

Ii(SL1(ϕ
i
c − g

i
c) + SL1(ϕ

i
w − g

i
w)), (5)

where Ii denotes the assigned label for predicted proposal

φi
p (1 for positive sample and 0 for negative sample), Npos

is the number of positive samples, gic and giw represent the

center location and width of ground truth proposal.

The descriptiveness regression loss Ldes is calculated as

the Euclidean distance between the inferred descriptiveness

score pides of the predicted proposal and its sentence-level

reward r(Si) in SG with regard to ground truth sentence:

Ldes =
1

Np

Np
∑

i=1

∥

∥

∥
p
i
des − r(Si)

∥

∥

∥

2

2

. (6)

In particular, for each positive predicted proposal φi
p, we

achieve its sentence-level reward r(Si) by directly feeding

this proposal into SG module and comparing the generated

sentence Si with the corresponding ground-truth sentence

over evaluation metric (e.g., METEOR). For each nega-

tive sample, its sentence-level reward is naturally fixed as

0. Accordingly, by minimizing the descriptiveness regres-

sion loss, our prediction layer is additionally endowed with

the ability to directly infer the approximate descriptiveness

score (i.e., the sentence-level reward for captioning) of an

event proposal without referring ground-truth sentences.

3.3. Sentence Generation

Given the set of selected predicted event proposals Φp̂ ⊂
Φp from TEP module, each proposal φp̂ ∈ Φp̂ is injected

into attribute-augmented LSTM-based model in SG module

for description generation. Specifically, the attributes repre-

sentation A of predicted proposal φp̂ is firstly transformed

into LSTM to inform the whole LSTM about the high-level

attributes, followed by the proposal representation F which

is encoded into LSTM at the second time step. Then, LST-

M decodes each output word based on previous word and

previous step’s LSTM hidden state.

Descriptiveness-driven Temporal Attention. One nat-

ural way to achieve the proposal representation F is per-

forming “mean pooling” process over all the clips within

this proposal. However, in many cases, the generated de-

scription only relates to some key clips with low descriptive

complexity. As a result, to pinpoint the local clips contain-

ing rich describable objects or scenes and further incorpo-

rate the contributions of different clips into producing pro-

posal representation, a descriptiveness-driven temporal at-

tention mechanism is employed on the predicted event pro-

posal. Given the input proposal φp̂ containing Np̂i
clips

{vi}
Np̂i

i=1
, the clip-level descriptiveness score pvi

des
of each

clip vi is firstly achieved by holistically taking the average

of all the descriptiveness scores of predicted proposals con-

taining this clip vi. Here we treat the clip-level descriptive-

ness score of each clip as one kind of temporal attention

over all the clips within this proposals. Based on the at-

tention distribution, we calculate the weighted sum of the

clip features and obtain the aggregated proposal feature F

weighted by holistic attention score of each clip:

αvi = p
vi
des

/Np̂i
∑

j=1

p
vj
des, F =

Np̂i
∑

i=1

αvi · fvi , (7)

where αvi
is the normalized attention score and f

vi
is the

clip representation of vi. The aggregated proposal feature

could be regarded as a more informative proposal feature

since the most descriptive clips for sentence generation have

been distilled with higher attention weights.

Training. The training objective in our SG module is

formulated as the expected sentence-level reward loss in E-

q.(2). Inspired from Self-critical Sequence Training (SCST)

[25], the gradient of this objective is given by

∇θLSG ≈ −(r(Ss)− r(Ŝ))∇θ log pθ(S
s), (8)

where Ss is a sampled sentence and r(Ŝ) denotes the re-

ward of baseline achieved by greedily decoding inference.

3.4. Joint Detection and Captioning

The overall objective of our dense video captioning is

comprised of the training objective of TEP module in Eq.(4)

and the reward loss of SG module in Eq.(2)

L = λ1LTEP + λ2LSG, (9)

where λ1 and λ2 are tradeoff parameters for TEP and SG,

respectively. Note that descriptiveness inference could be

regarded as a bridge which is not only leveraged in TEP for

adjusting the event proposal from language perspective, but

also integrated into SG for measuring the descriptiveness-

driven temporal attention to boost sentence generation, en-

abling the interaction between TEP and SG. As a result,

the overall objective function of our system can be solved

through the joint and global optimization of detection and

captioning in an end-to-end manner.
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4. Experiments

We conduct our experiments on the ActivityNet Captions

dataset [16] and evaluate our proposed system on both dense

video captioning and temporal event proposal tasks.

4.1. Dataset

The dataset, ActivityNet Captions, is a recently collected

large-scale dense video captioning benchmark, which con-

tains 20,000 videos covering a wide range of complex hu-

man activities. Each video is aligned with a series of tempo-

rally annotated sentences. On average, there are 3.65 tem-

porally localized sentences for each video, resulting in a to-

tal of 100,000 sentences. In our experiments, we follow the

settings in [16], and take 10,024 videos for training, 4,926

for validation and 5,044 for testing.

4.2. Dense Video Captioning Task

We firstly investigate our system on dense video caption-

ing task. The task is to detect individual events and then

describe each event with natural language.

Compared Approaches. To empirically verify the mer-

it of our proposed dense video captioning system, we com-

pare the following video captioning baselines:

(1) Long Short-Term Memory (LSTM) [33]: LSTM uti-

lizes a CNN plus RNN framework to directly translate from

video pixels to natural language descriptions. The frame

features are mean pooled to generate the video features.

(2) Sequence to Sequence - Video to Text (S2VT) [32]:

S2VT incorporates both RGB and optical flow inputs, and

the encoding and decoding of the inputs and word represen-

tations are learnt jointly in a parallel manner.

(3) Temporal Attention (TA) [34]: TA combines the

frame representation from GoogleNet [29] and video clip

representation from 3D CNN trained on hand-crafted de-

scriptors. Furthermore, a soft attention mechanism is em-

ployed to dynamically attend to specific temporal regions

of the video while generating sentences.

(4) Hierarchical Recurrent Neural Networks (H-RNN)

[38]: H-RNN generates paragraphs by using one RNN to

generate individual sentence and the second to capture the

inter-sentence dependencies. Moreover, both spatial and

temporal attention mechanisms are leveraged in H-RNN.

(5) Dense-Captioning Events (DCE) [16]: DCE lever-

ages a multi-scale variant of DAPs [6] to localize temporal

event proposals and S2VT [32] as base captioning module

to describe each event. An attention module is further incor-

porated to exploit temporal context for dense captioning.

(6) Dense Video Captioning (DVC) is our complete sys-

tem in this paper. Two slightly different settings of D-

VC are named as DVC-D and DVC-D-A. The former only

incorporates the descriptiveness-driven temporal attention

mechanism into LSTM in SG module and is trained with-

out attributes and reinforcement learning based optimiza-

tion, while the latter is more similar to DVC that only re-

places the expected sentence-level reward loss in DVC with

the traditional cross entropy loss.

Note that DCE is the only existing work on dense video

captioning task and most previous video captioning works

(e.g., LSTM, S2VT, TA, and H-RNN) focus on describing

entire videos without detecting a series of events. Hence we

compare the five video captioning baselines on dense video

captioning task by feeding them with the fixed ground truth

proposals or the learnt ones from our TEP module.

Settings. For video clip representation, we utilize the

publicly available 500-way C3D in [16], whose dimension

is reduced by PCA from the original 4,096-way output of

fc7 of C3D pre-trained on Sports-1M video dataset [13].

For representation of attributes/categories, we treat all the

200 categories on Activitynet dataset [4] as the high-level

semantic attributes and train the attribute detectors with

cross entropy loss, resulting in the final 200-way vector of

probabilities. Each word in the sentence is represented as

“one-hot” vector (binary index vector in a vocabulary). The

dimension of the input and hidden layers in LSTM are both

set to 1,024. The tradeoff parameter λ0 leveraging the event

probability and descriptiveness score for proposal selection

is empirically set to 0.2. The tradeoff parameters α and β
in Eq.(4) are set as 0.5 and 10. For the tradeoff parameters

λ1 and λ2 in Eq.(9), we set them as 1 and 20, respectively.

We mainly implement our DVC based on Caffe [12],

which is one of widely adopted deep learning frameworks.

The whole system is trained by Adam [14] optimizer. The

initial learning rate is set as 0.00001 and the mini-batch size

is set as 1. Note that SG module in our DVC is pre-trained

with ground-truth proposal-sentence pairs. The sentence-

level reward in SG is measured with METEOR.

Evaluation Metrics. For the evaluation of our proposed

models, we follow the metrics in [16] to measure the ability

to jointly localize and describe dense events. This metric

computes the mean average precision (mAP) across tIoU

thresholds of 0.3, 0.5, 0.7, and 0.9 when captioning the top

1,000 proposals. The precision of captions is measured by

three evaluation metrics: BLEU@N [21], METEOR [1],

and CIDEr-D [31]. All the metrics are computed by using

the codes1 released by ActivityNet Evaluation Server.

Performance Comparison. Table 1 shows the perfor-

mances of different models on ActivityNet Captions vali-

dation set. Overall, the results across six evaluation metrics

with ground truth proposals and learnt proposals consistent-

ly indicate that our proposed DVC achieves superior perfor-

mances against other state-of-the-art video captioning tech-

niques including non-attention models (LSTM, S2VT) and

attention-based approaches (TA, H-RNN, DCE). In partic-

ular, the METEOR score of our DVC can achieve 10.33%

1https://github.com/ranjaykrishna/densevid_eval
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Table 1. BLEU@N (B@N ), METEOR (M) and CIDEr-D (C) scores of our DVC and other state-of-the-art video captioning method-

s for dense video captioning task on ActivityNet Captions validation set (left: performances with ground truth (GT) proposals; right:

performances with the learnt proposals from our TEP module). All values are reported as percentage (%).
with GT proposals with learnt proposals

B@1 B@2 B@3 B@4 M C B@1 B@2 B@3 B@4 M C

LSTM [33] 18.40 8.76 3.99 1.53 8.66 24.07 11.19 4.73 1.75 0.60 5.53 12.06

S2VT [32] 18.25 8.68 4.02 1.57 8.74 24.05 11.10 4.68 1.83 0.65 5.56 12.16

TA [34] 18.19 8.62 3.98 1.56 8.75 24.14 11.06 4.66 1.78 0.65 5.62 12.19

H-RNN [38] 18.41 8.80 4.08 1.59 8.81 24.17 11.21 4.79 1.90 0.70 5.68 12.35

DCE [16] 18.13 8.43 4.09 1.60 8.88 25.12 10.81 4.57 1.90 0.71 5.69 12.43

DVC-D 18.25 8.56 4.15 1.63 8.94 25.46 10.83 4.61 1.91 0.73 5.79 12.86

DVC-D-A 19.34 9.55 4.51 1.71 9.31 26.26 11.78 5.24 2.05 0.74 6.14 13.21

DVC 19.57 9.90 4.55 1.62 10.33 25.24 12.22 5.72 2.27 0.73 6.93 12.61

DVCLSTMGround Truth

...
...

...
...

A man is on a counter and 

begins to make a sandwich.

A man is seen sitting behind 

a table and speaking to the 

camera.

He puts the sandwich into a 

plastic bag.

A man is standing in a 

kitchen and a sandwich is 

the counter.

A man is seen speaking to 

the camera while holding a 

piece of paper.

A man is standing in a 

kitchen making a sandwich.

The man is then shown in 

the kitchen and begins to 

pull the sandwich in the 

back.

The man is standing in the 

table.

He picks up the food and 

walks out a door.

The man then puts a 

sandwich on a plate.

A man is seen speaking to 

the camera while holding a 

piece of paper.

He puts the sandwich into a 

plastic Tupperware box.

...
...

...

DVCLSTMGround Truth

A woman is seen sitting on a 

couch with a cat and leads 

into her cutting a cat's claws.

A woman is sitting on a 

couch with a cat.

A woman is seen holding on 

a cat on a coach and 

holding up a pair of nail 

clippers.

The woman then begins to 

clip the cat's claws.

The woman then begins 

cutting the nails of the cat.

She begins cutting the cat's 

claws while the cat squirms 

around a bit.

The woman is now cutting 

the cat's claws and is talking 

to the camera.

The woman is then shown 

brushing the dog's hair while 

the camera captures him.

She continues cutting the 

claws while speaking to the 

camera.

Figure 3. Dense video captioning results on ActivityNet Captions

validation set. The output temporally localized sentences are gen-

erated by 1) Ground Truth, 2) LSTM, and 3) our DVC. We show

the results with the highest overlap with ground truth captions.

with ground truth proposals, making the relative improve-

ment over the best competitor DCE by 16.33%, which is

considered as a significant progress on this benchmark. As

expected, the METEOR score is dropped down to 6.93%

when provided the predicted proposals from our TEP mod-

ule instead of ground truth proposals. Moreover, DVC-D

by additionally leveraging descriptiveness-driven temporal

attention for dense video captioning, leads to a performance

boost against LSTM. The result basically indicates the ad-

vantage of weighting each local clips with holistic atten-

tion score in producing proposal representation for sentence

generation, instead of representing each proposal by direct-

ly performing “mean pooling” over its clips in LSTM. In ad-

dition, DVC-D-A by additionally augmenting LSTM with

high-level semantic attributes, consistently improves DVC-

D over all the metrics, but the METEOR scores are still low-

er than DVC. This confirms the effectiveness of utilizing re-

inforcement learning techniques for directly optimizing L-

STM with METEOR-based reward loss, which harmonizes

SG module with respect to its testing inference.

Figure 3 showcases a few dense video captioning re-

sults generated by different methods and human-annotated

ground truth sentences. From these exemplar results, it is

Table 2. User study on two criteria: M1 - percentage of sets of

captions generated by different methods that are evaluated as bet-

ter/equal to human captions; M2 - percentage of sets of captions

that pass Turing Test.
Human DVC H-RNN [38] TA [34] S2VT [32] LSTM [33]

M1 - 35.1 32.9 30.8 30.2 28.7

M2 97.6 38.7 36.3 34.6 34.1 31.9

easy to see that all of these automatic methods can generate

somewhat relevant sentences, while our proposed DVC can

generate more relevant and descriptive sentences by jointly

exploiting descriptiveness-driven temporal attention mech-

anism and high-level attributes for boosting dense video

captioning. For example, compared to phrase “brushing the

dog’s hair” in the sentence generated by LSTM, “cutting

the cat’s claws” in our DVC is more precise to describe the

event proposal in the last proposal of the first video.

Human Evaluation. To better understand how satisfac-

tory are the localized temporal event proposals and the cor-

responding generated sentences of different methods, we al-

so conducted a human study to compare our DVC against

four baselines, i.e., H-RNN, TA, S2VT, and LSTM. A to-

tal number of 12 evaluators from different education back-

grounds are invited and a subset of 1K videos is randomly

selected from validation set for the subjective evaluation.

The evaluation process is as follows. All the evaluators

are organized into two groups. We show the first group all

the five sets of temporally localized sentences generated by

each approach plus a series of temporally human-annotated

sentences and ask them the question: Do the systems pro-

duce the set of temporally localized sentences resembling

human-generated sentences? In contrast, we show the sec-

ond group once only one set of temporally localized sen-

tences generated by different approach or human annota-

tions and they are asked: Can you determine whether the

given set of sentences has been generated by a system or by

a human being? From evaluators’ responses, we calculate

two metrics: 1) M1: percentage of sets of captions that are

evaluated as better or equal to human captions; 2) M2: per-

centage of sets of captions that pass the Turing Test. Table 2

lists the result of the user study. Overall, our DVC is clearly

the winner for all two criteria. In particular, the percent-

age achieves 35.1% and 38.7% in terms of M1 and M2, re-

spectively, making the absolute improvement over the best

competitor H-RNN by 2.2% and 2.4%.
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Table 3. Leaderboard of the published state-of-the-art dense video

captioning models on the online ActivityNet evaluation server.
DVC (P3D) DVC (C3D) TAC [9] DCE [16]

METEOR 12.96 10.36 9.61 4.82

Performance on ActivityNet Evaluation Server. We

also submitted our best run in terms of METEOR score,

i.e., DVC, to online ActivityNet evaluation server and eval-

uated the performance on official testing set. Table 3 shows

the performance Leaderboard on official testing set. Please

note that here we design two submission runs for our DVC,

i.e., DVC (C3D) and DVC (P3D). The input clip features

of the two runs are 500-way C3D features and 2048-way

output of pool5 layer from P3D ResNet [22], respectively.

Compared to the top performing methods, our proposed D-

VC (C3D) achieves the best METEOR score. In addition,

when leveraging the clip feature from P3D ResNet, our ME-

TEOR score on testing set is further boosted up to 12.96%,

ranking the first on the Leaderboard.

4.3. Temporal Event Proposal Task

The second experiment is conducted on temporal event

proposal task, which evaluates our TEP module’s capability

to adequately localize all events for a given video.

Compared Approaches. We compare our DVC with

three state-of-the-art temporal action proposal methods:

(1) Temporal Actionness Grouping (TAG) [39]. TAG uti-

lizes actionness classifier to generate actionness curve, fol-

lowed by the watershed algorithm to produce basins. The

proposals are finally generated by grouping the basins.

(2) Dense-Captioning Events (DCE) [16]. DCE lever-

ages a multi-scale variant of LSTM-based action proposal

model in [6] to localize temporal event proposals.

(3) Temporal Unit Regression Network (TURN) [8].

TURN jointly predicts action proposals and refines the tem-

poral boundaries by temporal coordinate regression.

Evaluation Metrics. For temporal action proposal task,

we adopt the Area-Under-the-Curve (AUC) score for Av-

erage Recall vs. Average Number of Proposals per Video

(AR-AN) curve in [9] as the evaluation metric. AR is de-

fined as the mean of all recall values using tIoU thresholds

between 0.5 and 0.95 (step size: 0.05), and AN denotes the

total number of proposals divided by the number of videos.

Performance Comparison. Figure 4 shows the AR-AN

curves of four runs on ActivityNet Captions validation set

for temporal event proposal task. Overall, the quantitative

results with regard to AUC score indicate that our DVC out-

performs other methods. In particular, by leveraging tempo-

ral coordinate regression for adjusting temporal boundary

of detected proposals, DCE and TURN lead a large perfor-

mance boost against TAG. Moreover, DVC by additionally

incorporating descriptiveness regression into TEP module

further improves DCE and TURN. The result indicates the

advantage of joint detection and captioning, which refines

the event proposal from language perspective.
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Figure 4. The AR-AN curves of different approaches on Activi-

tyNet Captions validation set for temporal event proposal task.

Table 4. Effects of utilizing multiple anchor layers.
conv3∼8 conv9 conv10 conv11 conv12 AUC Parameter Number

✔ 55.73 16.5M

✔ ✔ 57.38 18.9M

✔ ✔ ✔ 58.75 21.2M

✔ ✔ ✔ ✔ 59.91 23.6M

✔ ✔ ✔ ✔ ✔ 60.07 26.0M

Effects of Multiple Anchor Layers. In order to show

the relationship between performance and the number of

anchor layers with different temporal resolutions, we pro-

gressively stack anchor layers with decreasing temporal res-

olutions and compare the performances. The results shown

in Table 4 indicate increasing the number of anchor layer-

s with different temporal resolutions can generally lead to

performance improvements. Meanwhile, the number of pa-

rameters in all adopted anchor layers increases. Thus, we

finally adopt conv3∼11 as anchor layers as that has a better

tradeoff between performance and model complexity.

5. Conclusions

We have presented a novel deep architecture which uni-

fies the temporal localization of event proposals and sen-

tence generation for dense video captioning. Particularly,

we study the problems of how to build the interaction across

the two sub challenges (i.e., temporal event proposal and

sentence generation) and how to integrate such interaction

into a deep learning framework for enhancing dense video

captioning. To verify our claim, we have devised a descrip-

tiveness regression component and incorporated it into a

single shot detection structure, on one hand to adjust the

event proposal from language perspective in TEP module,

and on the other, to measure the descriptive complexity of

each event in SG module. Experiments conducted on Ac-

tivityNet Captions dataset validate our model and analysis.

More remarkably, we achieve superior results over state-

of-the-art methods when evaluating our framework on both

dense video captioning and temporal event proposal tasks.
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