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Abstract

Weakly supervised learning with only coarse labels can

obtain visual explanations of deep neural network such as

attention maps by back-propagating gradients. These at-

tention maps are then available as priors for tasks such

as object localization and semantic segmentation. In one

common framework we address three shortcomings of pre-

vious approaches in modeling such attention maps: We (1)

make attention maps an explicit and natural component of

the end-to-end training for the first time, (2) provide self-

guidance directly on these maps by exploring supervision

from the network itself to improve them, and (3) seamlessly

bridge the gap between using weak and extra supervision if

available. Despite its simplicity, experiments on the seman-

tic segmentation task demonstrate the effectiveness of our

methods. We clearly surpass the state-of-the-art on PAS-

CAL VOC 2012 test and val. sets. Besides, the proposed

framework provides a way not only explaining the focus of

the learner but also feeding back with direct guidance to-

wards specific tasks. Under mild assumptions our method

can also be understood as a plug-in to existing weakly su-

pervised learners to improve their generalization perfor-

mance.

1. Introduction

Weakly supervised learning [3, 26, 33, 36] has recently

gained much attention as a popular solution to address la-

beled data scarcity in computer vision. Using only image

level labels for example, one can obtain attention maps for a

given input with back-propagation on a Convolutional Neu-

ral Network (CNN). These maps relate to the network’s re-

sponse given specific patterns and tasks it was trained for.

The value of each pixel on an attention map reveals to what

extent the same pixel on the input image contributes to the

final output of the network. It has been shown that one

can extract localization and segmentation information from

such attention maps without extra labeling effort [39].
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Figure 1. The proposed Guided Attention Inference Network

(GAIN) makes the network’s attention on-line trainable and can

plug in different kinds of supervision directly on attention maps in

an end-to-end way. We explore the self-guided supervision from

the network itself and propose GAINext when extra supervision

are available. These guidance can optimize attention maps towards

the task of interest.

However, supervised by only classification loss, atten-

tion maps often only cover small and most discriminative

regions of object of interest [11, 28, 39]. While these at-

tention maps can still serve as reliable priors for tasks like

segmentation [12], having attention maps covering the tar-

get foreground objects as complete as possible can further

boost the performance. To this end, several recent works ei-

ther rely on combining multiple attention maps from a net-

work via iterative erasing steps [31] or consolidating atten-

tion maps from multiple networks [11]. Instead of passively

exploiting trained network attention, we envision an end-to-

end framework with which task-specific supervision can be

directly applied to attention maps during training stage.

On the other hand, as an effective way to explain the

network’s decision, attention maps can help to find restric-

tions of the training network. For instance in an object

categorization task with only image-level object class la-

bels, we may encounter a pathological bias in the training

data when the foreground object incidentally always cor-

relates with the same background object (also pointed out
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in [24]). Figure 1 shows the example class “boat” where

there may be bias towards water as a distractor with high

correlation. In this case the training has no incentive to

focus attention only on the foreground class and general-

ization performance may suffer when the testing data does

not have the same correlation (“boats out of water”). While

there have been attempts to remove this bias by re-balancing

the training data, we instead propose to model the attention

map explicitly as part of the training. As one benefit of this

we are able to control the attention explicitly and can put

manual effort in providing minimal supervision of attention

rather than re-balancing the data set. While it may not al-

ways be clear how to manually balance data sets to avoid

bias, it is usually straightforward to guide attention to the

regions of interest. We also observe that our explicit self-

guided attention model already improves the generalization

performance even without extra supervision.

Our contributions are: (a) A method of using supervision

directly on attention maps during training time while learn-

ing a weakly labeled task; (b) A scheme for self-guidance

during training that forces the network to focus attention on

the object holistically rather than only the most discrimi-

native parts; (c) Integration of direct supervision and self-

guidance to seamlessly scale from using only weak labels

to using full supervision in one common framework.

Experiments using semantic segmentation as task of in-

terest show that our approach achieves mIoU 55.3% and

56.8%, respectively on the PASCAL VOC 2012 segmen-

tation test and val sets. It also confidently surpasses the

comparable state-of-the-art when limited pixel-level super-

vision is used in training with an mIoU of 60.5% and 62.1%

respectively.

2. Related work

Since deep neural networks have achieved great success

in many areas [7, 34, 35, 37], various methods have been

proposed to explain this black box [3, 26, 33, 38]. Vi-

sual attention is one way that tries to explain which region

of the image is responsible for the network’s decision. In

[26, 29, 33], error back propagation based methods are ap-

plied to visualize regions that are helpful for predicting a

class. [3] proposes a feedback method to capture the top-

down neural attention, which can be used to show task-

related regions. CAM [39] shows that the average pooling

layer can help to generate attention maps representing task

relevant regions than fully-connected layers. Inspired by a

top-down visual attention model for human, [36] proposes a

new back propagation method, Excitation Backprop, to pass

along signals from top to down in the network hierarchy.

Recently, Grad-CAM [24] extends CAM [39] to many dif-

ferent available architectures for tasks like image captioning

and VQA, which helps to explain model decisions. Differ-

ent from all these methods that are trying to explain the net-

work, we first time build up an end-to-end model to provide

supervision directly on these explanations, specifically net-

work’s attention here. We validate that the supervision can

guide the network to focus on the regions we expect, which

will benefit the corresponding visual task.

Many methods heavily rely on the location information

provided by the network’s attention. Learning from only the

image-level labels, attention maps of a trained classification

network can be used for weakly-supervised object localiza-

tion [17, 39], scene segmentation [12] etc. However, only

trained with classification loss, the attention map only cov-

ers small and most discriminative regions of the object of

interest, which deviates from the requirement of these tasks

that needs to localize dense, interior and complete regions.

To mitigate this gap, [28] proposes to hide patches in a

training image randomly, forcing the network to seek other

relevant parts when the most discriminative part is hidden.

This approach can be considered as a way to augment the

training data, and it has strong assumption on the size of

foreground objects (i.e., the object size vs. the size of the

patches). [31] uses the attention map of a trained network

to erase the most discriminative regions of the original in-

put image. They repeat this erase and discover action to the

erased image for several steps and combine attention maps

of each step to get a more complete attention map. Simi-

larly, [11] uses a two-phase learning strategy and combines

attention maps of the two networks to get a more complete

region for the object of interest. In the first step, a conven-

tional fully convolutional network (FCN) [16] is trained to

find the most discriminative parts of an image. Then these

most salient parts are used to suppress the feature map of the

second network to force it to focus on the next most impor-

tant parts. However, these methods either rely on combina-

tions of attention maps of one trained network for different

erased steps or attentions of different networks. The single

network’s attention still only locates on the most discrimi-

native region. Our proposed GAIN model is fundamentally

different from the previous approaches. Since our models

can provide supervision directly on network’s attention in

an end-to-end way, which can not be done by all the other

methods [11, 24, 28, 31, 36, 39], we design different kinds

of loss functions to guide the network to focus on the whole

object of interest. Therefore, we do not need to do erasing

for several times or combine attention maps. The attention

of our single trained network is already more complete and

improved.

Identifying bias in datasets [30] is another important us-

age of the network attention. [24] analyzes the location of

attention maps of a trained model to find out the dataset

bias, which helps them to build a better unbiased dataset.

However, in practical applications, it is hard to remove all

the biases of the dataset and time-consuming to build a new

dataset. How to guarantee the generalization ability of the
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Figure 2. GAIN has two streams of networks, Scl and Sam, sharing parameters. Scl aims to find out regions that help to recognize the

object and Sam tries to make sure all these regions contributing to this recognition have been discovered. The attention map is on-line

generated and trainable by the two loss functions jointly.

learned network is still challenging. Different from the

existing methods, our model can fundamentally solve this

problem by providing supervision directly on network’s at-

tention and guiding the network to focus on the areas critical

to the task of interest. Therefore, our trained model is robust

to the dataset bias.

3. Proposed method — GAIN

Since attention maps reflect the areas on input image

which support the network’s prediction, we propose the

guided attention inference networks (GAIN), which aims at

supervising attention maps when we train the network for

the task of interest. In this way, the network’s prediction is

based on the areas which we expect the network to focus on.

We achieve this by making the network’s attention trainable

in an end-to-end fashion, which hasn’t been considered by

any other existing works [11, 24, 28, 31, 36, 39]. In this

section, we describe the design of GAIN and its extensions

tailored towards tasks of interest.

3.1. Selfguidance on the network attention

As mentioned in Section 1, attention maps of a trained

classification network can be used as priors for weakly-

supervised semantic segmentation methods. However,

purely supervised by the classification loss, attention maps

usually only cover small and most discriminative regions of

object of interest. These attention maps can serve as reliable

priors for segmentation but a more complete attention map

can certainly help improving the overall performance.

To solve this issue, our GAIN builds constrains directly

on the attention map in a regularized bootstrapping fash-

ion. As shown in Figure 2, GAIN has two streams of net-

works, classification stream Scl and attention mining Sam,

which share parameters with each other. The constrain from

stream Scl aims to find out regions that help to recognize

classes. The stream Sam is making sure that all regions

which contribute to the classification decision will be in-

cluded in the network’s attention. In this way, attention

maps become more complete, accurate and tailored for the

segmentation task. The key here is that we make the at-

tention map on-line generated and trainable by the two loss

functions jointly.

Based on the fundamental framework of Grad-CAM

[24], we streamlined the generation of attention map. An

attention map corresponding to the input sample can be ob-

tained within each inference so it becomes trainable in train-

ing stage. In stream Scl, for a given image I , let fl,k be the

activation of unit k in the l-th layer. For each class c from

the ground-truth label, we compute the gradient of score

sc corresponding to class c, with respect to activation maps

of fl,k. These gradients flowing back will pass through a

global average pooling layer [14] to obtain the neuron im-

portance weights wc
l,k as defined in Eq. 1.

wc
l,k = GAP

(

∂sc

∂fl,k

)

, (1)

where GAP(·) means global average pooling operation.

Here, we do not update parameters of the network after

obtaining the wc
l,k by back-propagation. Since wc

l,k repre-

sents the importance of activation map fl,k supporting the

prediction of class c, we then use weights matrix wc as the

kernel and apply 2D convolution over activation maps ma-

trix fl in order to integrate all activation maps, followed by

a ReLU operation to get the attention map Ac with Eq. 2.

The attention map is now on-line trainable and constrains

on Ac will influence the network’s learning:

Ac = ReLU (conv (fl, w
c)) , (2)

where l is the representation from the last convolutional

layer whose features have a good balance between detailed

spatial information and high-level semantics [26].

We then use the trainable attention map Ac to generate a

soft mask to be applied on the original input image, obtain-

ing I∗c using Eq. 3. I∗c represents the regions beyond the

network’s current attention for class c.

I∗c = I − (T (Ac)⊙ I) , (3)
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Figure 3. Framework of the GAINext. Pixel-level annotations are seamlessly integrated into the GAIN framework to provide direct

supervision on attention maps optimizing towards the task of semantic segmentation.

where ⊙ denotes element-wise multiplication. T (Ac) is

a masking function based on a thresholding operation. In

order to make it derivable, we use Sigmoid function as an

approximation defined in Eq. 4.

T (Ac) =
1

1 + exp (−ω (Ac − σ))
(4)

where σ is the threshold matrix whose elements all equal

to σ. ω is the scale parameter ensuring T (Ac) i,j approxi-

mately equals to 1 when Ac
i,j is larger than σ, or to 0 oth-

erwise.

I∗c is then used as input of stream Sam to obtain the class

prediction score. Since our goal is to guide the network to

focus on all parts of the class of interest, we are enforcing

I∗c to contain as little feature belonging to the target class

as possible, i.e. regions beyond the high-responding area on

attention map area should include ideally not a single pixel

that can trigger the network to recognize the object of class

c. From the loss function perspective it is trying to minimize

the prediction score of I∗c for class c. To achieve this, we

design the loss function called Attention Mining Loss as in

Eq. 5.

Lam =
1

n

∑

c

sc(I∗c), (5)

where sc(I∗c) denotes the prediction score of I∗c for class

c. n is the number of ground-truth class labels for this image

I .

As defined in Eq. 6, our final self-guidance loss Lself is

the summation of the classification loss Lcl and Lam.

Lself = Lcl + αLam, (6)

where Lcl is for multi-label and multi-class classification

and we use a multi-label soft margin loss here. Alternative

loss functions can be use for specific tasks. α is the weight-

ing parameter. We use α = 1 in all of our experiments.

With the guidance of Lself , the network learn to extend

the focus area on input image contributing to the recogni-

tion of target class as much as possible, such that attention

maps are tailored towards the task of interest, i.e. semantic

segmentation. The joint optimization also prevents to erase

all pixels. We verify the efficacy of GAIN with self guid-

ance in Sec. 4.

3.2. GAINext: integrating extra supervision

In addition to letting networks explore the guidance of

the attention map by itself, we can also tell networks which

part in the image they should focus on by using a small

amount of extra supervision to control the attention map

learning process. Based on this idea of imposing additional

supervision on attention maps, we introduce the extension

of GAIN: GAINext, which can seamlessly integrate extra

supervision in our weakly supervised learning framework.

We demonstrate using GAINext to improve the weakly-

supervised semantic segmentation task as shown in Sec. 4.

Furthermore, we can also apply GAINext to guide the net-

work to learn features robust to dataset bias and improve its

generalizability when the testing data and training data are

drawn from very different distributions.

Following Sec. 3.1, we still use the weakly supervised

semantic segmentation task as an example application to ex-

plain the GAINext. The way to generate trainable attention

maps in GAINext during training stage is the same as that

in the self-guided GAIN. In addition to Lcl and Lam, we

design another loss Le based on the given external supervi-

sion. We define Le as:

Le =
1

n

∑

c

(Ac
−Hc)

2
, (7)
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where Hc denotes the extra supervision, e.g. pixel-level

segmentation masks in our example case.

Since generating pixel-level segmentation maps is ex-

tremely time consuming, we are more interested in find-

ing out the benefits of using only a very small amount of

data with external supervision, which fits perfectly with the

GAINext framework shown in Figure 3, where we add an

external stream Se, and these three streams share all param-

eters. Input images of stream Se include both image-level

labels and pixel-level segmentation masks. One can use

only very small amount of pixel-level labels through stream

Se to already gain performance improvement with GAINext

(in our experiments with GAINext, only 1∼10% of the total

labels used in training are pixel-level labels). The input of

the stream Scl includes all images in the training set with

only image-level labels.

The final loss function, Lext, of GAINext is defined as

follows:

Lext = Lcl + αLam + ωLe, (8)

where Lcl and Lam are defined in Sec. 3.1, and ω is the

weighting parameter depending on how much emphasis we

want to place on the extra supervision (we use ω = 10 in

our experiments).

GAINext can also be easily modified to fit other tasks.

Once we get activation maps fl,k corresponding to the net-

work’s final output, we can use Le to guide the network to

focus on areas critical to the task of interest. In Sec. 5, we

show an example of such modification to guide the network

to learn features robust to dataset bias and improve its gen-

eralizability. In that case, extra supervision is in the form of

bounding boxes.

4. Semantic segmentation experiments

To verify the efficacy of GAIN, following Sec. 3.1 and

3.2, we use the weakly supervised semantic segmentation

task as the example application. The goal of this task

is to classify each pixel into different categories. In the

weakly supervised setting, most of recent methods [11, 12,

31] mainly rely on localization cues generated by models

trained with only image-level labels and consider other con-

straints such as object boundaries to train a segmentation

network. Therefore, the quality of localization cues is the

key of these methods’ performance.

Compared with attention maps generated by state-of-the-

art methods [16, 24, 39] which only locate the most dis-

criminative areas, GAIN guides the network to focus on en-

tire areas representing the class of interest, which can im-

prove the performance of weakly supervised segmentation.

To verify this, we adopt our attention maps to SEC [12],

which is one of the state-of-the-art weakly supervised se-

mantic segmentation methods. Following SEC [12], our lo-

calization cues are obtained by applying a thresholding op-

Methods Training Set val. test

(mIoU) (mIoU)

Supervision: Purely Image-level Labels

CCNN [19] 10K weak 35.3 35.6

MIL-sppxl [20] 700K weak 35.8 36.6

EM-Adapt [18] 10K weak 38.2 39.6

DCSM [25] 10K weak 44.1 45.1

BFBP [23] 10K weak 46.6 48.0

STC [32] 50K weak 49.8 51.2

AF-SS [21] 10K weak 52.6 52.7

CBTS-cues [22] 10K weak 52.8 53.7

TPL [11] 10K weak 53.1 53.8

AE-PSL [31] 10K weak 55.0 55.7

SEC [12] (baseline) 10K weak 50.7 51.7

GAIN (ours) 10K weak 55.3 56.8

Supervision: Image-level Labels

(* Implicitly use pixel-level supervision)

MIL-seg* [20] 700K weak + 1464 pixel 40.6 42.0

TransferNet* [9] 27K weak + 17K pixel 51.2 52.1

AF-MCG* [21] 10K weak + 1464 pixel 54.3 55.5

GAINext* (ours) 10K weak + 200 pixel 58.3 59.6

GAINext* (ours) 10K weak + 1464 pixel 60.5 62.1

Table 1. Comparison of weakly supervised semantic segmentation

methods on PASCAL VOC 2012 segmentation val. set and seg-

mentation test set. weak denotes image-level labels and pixel de-

notes pixel-level labels. Implicitly use pixel-level supervision is a

protocol we followed as defined in [31], that pixel-level labels are

only used in training priors, and only weak labels are used in the

training of segmentation framework, e.g. SEC [12] in our case.

eration to attention maps generated by GAIN: for each per-

class attention map, all pixels with a score larger than 20%

of the maximum score are selected. We apply [15] several

times to get background cues and then train the SEC model

to generate segmentation results using the same inference

procedure, as well as parameters of CRF [13].

4.1. Dataset and experimental settings

Datasets and evaluation metrics. We evaluate our re-

sults on PASCAL VOC 2012 image segmentation bench-

mark [6], which includes 20 foreground classes. The whole

dataset is split into three sets: training, validation, and test-

ing (denoted as train, val, and test) with 1464, 1449, and

1456 images, respectively. Following the common set-

ting [4, 12], we also use the augmented training set provided

by [8]. The resulting training set has 10582 weakly anno-

tated images which we use to train our models. We compare

our approach with other methods on both the val. and test

sets and use mIoU as the evaluation metric.

Implementation details. We use VGG [27] pretrained

from the ImageNet [5] as the basic network for GAIN to

generate attention maps. We use Pytorch [1] to imple-

ment our models. We set the batch size to 1 and learn-

ing rate to 10−5. We use the stochastic gradient de-
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scent (SGD) to train the networks and terminate after 35

epochs. For the concern about max-min optimization prob-

lem, we have not observed any issue with convergence in

our experiments with various datasets and projects. Our

total loss decreases around 90% and 98% after 1 and 15

epochs respectively. For the weakly-supervised segmenta-

tion framework, following the setting of SEC [12], we use

the DeepLab-CRFLargeFOV [4], which is a slightly mod-

ified version of the VGG network [27]. Implemented us-

ing Caffe [10], DeepLab-CRFLargeFOV [4] defines the in-

put size as 321×321 and produces segmentation masks with

size of 41×41. Our training procedure is the same as [12]

at this stage. We run the SGD for 8000 iterations with the

batch size of 15. The initial learning rate is 10−3 and it

decreases by a factor of 10 for every 2000 iterations.

4.2. Comparison with stateoftheart

We compare our methods with other state-of-the-art

weakly supervised semantic segmentation methods with

image-level labels. Following [31], we separate them into

two categories. For methods purely using image-level la-

bels, we compare our GAIN-based SEC (denoted as GAIN

in the table) with SEC [12], AE-PSL [31], TPL [11], STC

[32] and etc. For another group of methods, implicitly us-

ing pixel-level supervision means that though these meth-

ods train the segmentation networks only with image-level

labels, they use some extra technologies that are trained us-

ing pixel-level supervision. Our GAINext-based SEC (de-

noted as GAINext in the table) lies in this setting because

it uses a very small amount of pixel-level labels to further

improve the network’s attention maps and doesn’t rely on

any pixel-level labels when training the SEC segmentation

network. Other methods in this setting like AF-MCG [39],

TransferNet [9] and MIL-seg [20] are included for compari-

son. Table 1 shows results on PASCAL VOC 2012 segmen-

tation val. set and segmentation test. set.

Among the methods purely using image-level labels,

our GAIN-based SEC achieves the best performance with

55.3% and 56.8% in mIoU on these two sets, outperform-

ing the SEC [12] baseline by 4.6% and 5.1%. Furthermore,

GAIN outperforms AE-PSL [31] by 0.3% and 1.1%, and

outperforms TPL [11] by 2.2% and 3.0%. These two meth-

ods are also proposed to cover more areas of the class of

interest in attention maps. Compared with them, our GAIN

makes the attention map trainable without the need to do it-

erative erasing or combining attention maps from different

networks, as proposed in [11, 31].

By implicitly using pixel-level supervision, our

GAINext-based SEC achieves 58.3% and 59.6% in mIoU

when we use 200 randomly selected images with pixel-

level labels (2% data of the whole dataset) as the extra

supervision. It already performs 4% and 4.1% better than

AF-MCG [39], which relies on the MCG generator [2]

ext

Figure 4. Qualitative results on PASCAL VOC 2012 segmentation

val. set. They are generated by SEC (our baseline framework), our

GAIN-based SEC and GAINext-based SEC implicitly using 200

randomly selected (2%) extra supervision.

Training Set mIoU

10K weak + 200 pixel 58.3

10K weak + 400 pixel 59.4

10K weak + 900 pixel 60.2

10K weak + 1464 pixel 60.5

Table 2. Results on PASCAL VOC 2012 segmentation val. set

with our GAINext-based SEC implicitly using different amount

of pixel-level supervision for the attention map learning process.

trained in a fully-supervised way on the PASCAL VOC.

When the pixel-level supervision increases to 1464 images

for our GAINext, the performance jumps to 60.5% and

62.1%, which is a new state-of-the-art on this competitive

benchmark for a challenging task. Figure 4 shows some

qualitative results of semantic segmentation, indicating that

GAIN-based methods help to discover more complete and

accurate areas of classes of interest.

We also show qualitative results of attention maps gener-

ated by GAIN-base methods in Figure 5, where GAIN cov-

ers more areas belonging to the class of interest compared

with the Grad-CAM [24]. With only 2% of the pixel-level

labels, the GAINext covers more complete and accurate ar-

eas of the class of interest as well as less background areas

around the class of interest (for example, the sea around the

ships and the road under the car in the second row of Fig-

ure 5).

More discussion of the GAINext We are interested in
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ext ext

Figure 5. Qualitative results of attention maps generated by Grad-CAM [24], our GAIN and GAINext using 200 randomly selected (2%)

extra supervision.

Methods Training Set val. test

SEC [12] w/o. CRF 10K weak 44.8 45.4

GAIN w/o. CRF 10K weak 50.8 51.8

GAINext w/o. CRF 10K weak + 1464 pixel 54.8 55.7

Table 3. Semantic segmentation results without CRF on PASCAL

VOC 2012 segmentation val. and test sets. Numbers shown are

mIoU.

finding out the influence of different amount of pixel-level

labels on the performance. Following the same setting in

Sec. 4.1, we add more randomly selected pixel-level labels

to further improve attention maps and adopt them in the

SEC [12]. From the results in Table 2, we find that the per-

formance of the GAINext improves when more pixel-level

labels are provided to train the network generating attention

maps. Again, there are no pixel-level labels used to train the

SEC segmentation framework.

We also evaluate performance on VOC 2012 seg. val.

and seg. test datasets without CRF as shown in Table 3.

5. Guided learning with biased data

In this section, we design two experiments to verify that

our methods have potentials to make the classification net-

work robust to dataset bias and improve its generalization

ability by providing guidance on its attention.

Boat experiment. As shown in the Figure 1, the classifi-

cation network trained on PASCAL VOC dataset focuses on

sea and water regions instead of boats when predicting there

are boats in an image. Therefore, the model failed to learn

the right pattern or characteristics to recognize the boats,

suffering from the bias in the training set. To verify this,

we construct a test dataset, namely “Biased Boat” dataset,

containing two categories of images: boat images without

sea or water; and sea or water images without boats. We

collected 50 images from Internet for each scenario. Then

we test the model trained without attention guidance, GAIN

and GAINext described in Section 3.2 and 4.2 on this Bi-

ased Boat test dataset. Results are reported in Table 4. The

models are exactly those trained in Sec 4.2. Some qualita-

tive results are shown in Figure 6.

It can be seen that using GAIN with only image-level

supervision, the overall accuracy on our boat dataset has

been improved. This could be attributed to that GAIN is

able to teach the learner to capture all relevant parts of the

target object, in this case, both the boat itself and the wa-

ter surrounding it in the image. Hence when there is no

boat but water in the image, the network is more likely to

generate a negative prediction. However with the help of

self-guidance, GAIN is still unable to fully decouple boat

from water due to the biased training data.

On the other hand with GAINext training with small

amount of pixel-level labels, similar levels of improvements

are observed in both of the two scenarios. The reasons be-
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Figure 6. Qualitative results generated by Grad-CAM [24], our

GAIN and GAINext on the biased boat dataset. -# denotes the

number of pixel-level labels of boat used in the training which

were randomly chosen from VOC 2012. Attention map corre-

sponding to boat shown only when there are boats recognized.

Test set
Grad-

GAIN
GAINext (# of PL)

CAM 9 23 78

VOC val. 83% 90% 93% 93% 94%

Boat without water 42% 48% 64% 74% 84%

Water without boat 30% 62% 68% 76% 84%

Overall 36% 55% 66% 75% 84%

Table 4. Results comparison of Grad-CAM [24] with our GAIN

and GAINext tested on the biased boat dataset for classification

accuracy. PL labels denotes pixel-level labels of boat used in the

training which are randomly chosen.

hind these results could be that pixel-level labels are able

to precisely tell the learner what are the relevant features,

components or parts of the target objects hence the actual

boats in the image can be decoupled from the water. This

again supports that by directly providing extra guidance on

attention maps, the negative impact from the bias in training

data can be greatly alleviated.

Industrial camera experiment. This one is designed

for a challenging case to verify the model’s generalization

ability. We define two orientation categories for the indus-

trial camera which is highly symmetric in shape. As shown

in Figure 7, only features like gaps and small markers on

the surface of the camera can be used to effectively dis-

tinguish their orientations. We then construct one training

set and two test sets. Training Set and Testing Set 1 are

sampled from Dt without overlap. Testing Set 2 is acquired

with different camera viewpoints and backgrounds. There

are 350 images for each orientation category in the Train-

ing Set resulting in 700 images in total and 100 images each

in Testing Set 1 and Testing Set 2. We train VGG-based

Grad-CAM and our GAINext method on Training Set. In

training GAINext, manually drawn bounding boxes (20 for

each classes taking up only 5% of the whole training data)

Figure 7. Datasets and qualitative results of our toy experiments.

The critical areas are marked with red bounding boxes in each

image. GT means ground truth orientation class label.

on critical areas are used as external supervision.

At testing procedure, though the Grad-CAM can well

classify the images in the Testing Set 1, it only gets ran-

dom guess results on Testing Set 2 suffering from dataset

bias. Instead, using GAINext, the network is able to focus

its attention on the area specified by the bounding box la-

bels hence better generalization can be observed when test-

ing with Testing Set 2. The results again suggest that our

proposed GAINext has the potential of alleviating the im-

pact of biases in training data, and guiding the learner to

generalize better.

6. Conclusions

We propose a framework that provides direct guidance

on the attention map generated by a weakly supervised

learning deep neural network in order to teach the network

to generate more accurate and complete attention maps.

We achieve this by making the attention map not an af-

terthought, but a first-class citizen during training. Exten-

sive experiments demonstrate that the resulting system con-

fidently outperforms the state of the art without the need for

recursive processing during run time. The proposed frame-

work can be used to improve the robustness and generaliza-

tion performance of networks during training with biased

data, as well as the completeness of the attention map for

better object localization and segmentation priors. In the

future it may be illuminating to deploy our method on other

high-level tasks than categorization and to explore for in-

stance how a regression-type task may benefit from better

attention.
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