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Abstract

We present a novel approach for unsupervised learning

of depth and ego-motion from monocular video. Unsuper-

vised learning removes the need for separate supervisory

signals (depth or ego-motion ground truth, or multi-view

video). Prior work in unsupervised depth learning uses

pixel-wise or gradient-based losses, which only consider

pixels in small local neighborhoods. Our main contribu-

tion is to explicitly consider the inferred 3D geometry of

the whole scene, and enforce consistency of the estimated

3D point clouds and ego-motion across consecutive frames.

This is a challenging task and is solved by a novel (approx-

imate) backpropagation algorithm for aligning 3D struc-

tures.

We combine this novel 3D-based loss with 2D losses

based on photometric quality of frame reconstructions us-

ing estimated depth and ego-motion from adjacent frames.

We also incorporate validity masks to avoid penalizing ar-

eas in which no useful information exists.

We test our algorithm on the KITTI dataset and on a

video dataset captured on an uncalibrated mobile phone

camera. Our proposed approach consistently improves

depth estimates on both datasets, and outperforms the state-

of-the-art for both depth and ego-motion. Because we only

require a simple video, learning depth and ego-motion on

large and varied datasets becomes possible. We demon-

strate this by training on the low quality uncalibrated video

dataset and evaluating on KITTI, ranking among top per-

forming prior methods which are trained on KITTI itself. 1

1. Introduction

Inferring the depth of a scene and one’s ego-motion is

one of the key challenges in fields such as robotics and au-

tonomous driving. Being able to estimate the exact position

of objects in 3D and the scene geometry is essential for mo-

tion planning and decision making.

1Code and data are available at http://sites.google.com/view/vid2depth
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Figure 1. Overview of our method. In addition to 2D photomet-

ric losses, novel 3D geometric losses are used as supervision to

adjust unsupervised depth and ego-motion estimates by the neu-

ral network. Orange arrows represent model’s predictions. Gray

arrows represent mechanical transformations. Green arrows repre-

sent losses. The depth images shown are sample outputs from our

trained model.

Most supervised methods for learning depth and ego-

motion require carefully calibrated setups. This severely

limits the amount and variety of training data they can

use, which is why supervised techniques are often applied

only to a number of well-known datasets like KITTI [9]

and Cityscapes [5]. Even when ground-truth depth data

is available, it is often imperfect and causes distinct pre-

diction artifacts. Rotating LIDAR scanners cannot produce

depth that temporally aligns with the corresponding image

taken by a camera—even if the camera and LIDAR are care-

fully synchronized. Structured light depth sensors—and to

a lesser extent, LIDAR and time-of-flight sensors—suffer

from noise and structural artifacts, especially in presence

of reflective, transparent, or dark surfaces. Lastly, there is

usually an offset between the depth sensor and the camera,

which causes gaps or overlaps when the point cloud is pro-

jected onto the camera’s viewpoint. These problems lead to

artifacts in models trained on such data.
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This paper proposes a method for unsupervised learning

of depth and ego-motion from monocular (single-camera)

videos. The only form of supervision that we use comes

from assumptions about consistency and temporal coher-

ence between consecutive frames in a monocular video

(camera intrinsics are also used).

Cameras are by far the best understood and most ubiq-

uitous sensor available to us. High quality cameras are in-

expensive and easy to deploy. The ability to train on arbi-

trary monocular video opens up virtually infinite amounts of

training data, without sensing artifacts or inter-sensor cali-

bration issues.

In order to learn depth in a completely unsupervised

fashion, we rely on existence of ego-motion in the video.

Given two consecutive frames from the video, a neural

network produces single-view depth estimates from each

frame, and an ego-motion estimate from the frame pair. Re-

quiring that the depth and ego-motion estimates from adja-

cent frames are consistent serves as supervision for training

the model. This method allows learning depth because the

transformation from depth and ego-motion to a new frame

is well understood and a good approximation can be written

down as a fixed differentiable function.

Our main contributions are the following:

Imposing 3D constraints. We propose a loss which di-

rectly penalizes inconsistencies in the estimated depth with-

out relying on backpropagation through the image recon-

struction process. We compare depth extracted from ad-

jacent frames by directly comparing 3D point clouds in a

common reference frame. Intuitively, assuming there is no

significant object motion in the scene, one can transform

the estimated point cloud for each frame into the predicted

point cloud for the other frame by applying ego-motion or

its inverse (Fig. 1 and Fig. 2).

To the best of our knowledge, our approach is the first

depth-from-video algorithm to use 3D information in a dif-

ferentiable loss function. Our experiments show that adding

losses computed directly on the 3D geometry improves re-

sults significantly.

Principled masking. When transforming a frame and

projecting it, some parts of the scene are not covered in the

new view (either due to parallax effects or because objects

left or entered the field of view). Depth and image pixels

in those areas are not useful for learning; using their val-

ues in the loss degrades results. Previous methods have ap-

proached this problem by adding a general-purpose learned

mask to the model [32], or applying post-processing to re-

move edge artifacts [11]. However, learning the mask is not

very effective. Computing the masks analytically leaves a

simpler learning problem for the model.

Learning from an uncalibrated video stream. We

demonstrate that our proposed approach can consume and

learn from any monocular video source with camera mo-
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Figure 2. The 3D loss: ICP is applied symmetrically in forward

and backward directions to bring the depth and ego-motion esti-

mates from two consecutive frames into agreement. The products

of ICP generate gradients which are used to improve the depth and

ego-motion estimates.

tion. We record a new dataset containing monocular video

captured using a hand-held commercial phone camera while

riding a bicycle. We train our depth and ego-motion model

only on these videos, then evaluate the quality its predic-

tions by testing the trained model on the KITTI dataset.

2. Related Work

Classical solutions to depth and ego-motion estima-

tion involve stereo and feature matching techniques [25],

whereas recent methods have shown success using deep

learning [7].

Most pioneering works that learn depth from images rely

on supervision from depth sensors [6, 15, 18]. Several

subsequent approaches [16, 17, 3] also treat depth estima-

tion as a dense prediction problem and use popular fully-

convolutional architectures such as FCN [19] or U-Net [22].

Garg et al. [8] propose to use a calibrated stereo cam-

era pair setup in which depth is produced as an intermedi-

ate output and the supervision comes from reconstruction of

one image in a stereo pair from the input of the other. Since

the images on the stereo rig have a fixed and known trans-

formation, the depth can be learned from that functional re-

lationship (plus some regularization). Other novel learning

approaches, that also need more than one image for depth

estimation are [29, 21, 15, 14, 30].

Godard et al. [11] offer an approach to learn single-view

depth estimation using rectified stereo input during training.

The disparity matching problem in a rectified stereo pair re-
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quires only a one-dimensional search. The work by Um-

menhofer et al. [26] called DeMoN also addresses learning

of depth from stereo data. Their method produces high-

quality depth estimates from two unconstrained frames as

input. This work uses various forms of supervision includ-

ing depth and optical flow.

Zhou et al. [32] propose a novel approach for unsuper-

vised learning of depth and ego-motion using only monoc-

ular video. This setup is most aligned with our work as we

similarly learn depth and ego-motion from monocular video

in an unsupervised setting. Vijayanarasimhan et al. [27] use

a similar approach which additionally tries to learn the mo-

tion of a handful of objects in the scene. Their work also

allows for optional supervision by ground-truth depth or op-

tical flow to improve performance.

Our work differs in taking the training process to three

dimensions. We present differentiable 3D loss functions

which can establish consistency between the geometry of

adjacent frames, and thereby improve depth and ego-motion

estimation.

3. Method

Our method learns depth and ego-motion from monoc-

ular video without supervision. Fig. 1 illustrates its dif-

ferent components. At the core of our approach there is

a novel loss function which is based on aligning the 3D

geometry (point clouds) generated from adjacent frames

(Sec. 3.4). Unlike 2D losses that enforce local photomet-

ric consistency, the 3D loss considers the entire scene and

its geometry. We show how to efficiently backpropagate

through this loss.

This section starts with discussing the geometry of the

problem and how it is used to obtain differentiable losses. It

then describes each individual loss term.

3.1. Problem Geometry

At training time, the goal is to learn depth and ego-

motion from a single monocular video stream. This prob-

lem can be formalized as follows: Given a pair of consec-

utive frames Xt−1 and Xt, estimate depth Dt−1 at time

t− 1, depth Dt at time t, and the ego-motion Tt represent-

ing the camera’s movement (position and orientation) from

time t− 1 to t.

Once a depth estimate Dt is available, it can be projected

into a point cloud Qt. More specifically, the image pixel at

coordinates (i, j) with estimated depth D
ij
t can be projected

into a structured 3D point cloud

Q
ij
t = D

ij
t ·K−1[i, j, 1]T , (1)

where K is the camera intrinsic matrix, and the coordinates

are homogeneous.

Given an estimate for Tt, the camera’s movement from

t − 1 to t, Qt can be transformed to get an estimate for the

previous frame’s point cloud: Q̂t−1 = TtQt. Note that the

transformation applied to the point cloud is the inverse of

the camera movement from t to t−1. Q̂t−1 can then be pro-

jected onto the camera at frame t−1 as KQ̂t−1. Combining

this transformation and projection with Eq. 1 establishes a

mapping from image coordinates at time t to image coordi-

nates at time t − 1. This mapping allows us to reconstruct

frame X̂t by warping Xt−1 based on Dt, Tt:

X̂
ij
t = X

îĵ
t−1, [̂i, ĵ, 1]

T = KTt

(

D
ij
t ·K−1[i, j, 1]T

)

(2)

Following the approach in [32, 13], we compute X̂
ij
t by

performing a soft sampling from the four pixels in Xt−1

whose coordinates overlap with (̂i, ĵ).
This process is repeated in the other direction to project

Dt−1 into a point cloud Qt−1, and reconstruct frame X̂t−1

by warping Xt based on Dt−1 and T−1
t .

3.2. Principled Masks

Computing X̂t involves creating a mapping from image

coordinates in Xt to Xt−1. However, due to the camera’s

motion, some pixel coordinates in Xt may be mapped to

coordinates that are outside the image boundaries in Xt−1.

With forward ego-motion, this problem is usually more pro-

nounced when computing X̂t−1 from Xt. Our experiments

show that including such pixels in the loss degrades perfor-

mance. Previous approaches have either ignored this prob-

lem, or tried to tackle it by adding a general-purpose mask

to the network [8, 32, 27], which is expected to exclude

regions that are unexplainable due to any reason. However,

this approach does not seem to be effective and often results

in edge artifacts in depth images (see Sec. 4).

As Fig. 3 demonstrates, validity masks can be com-

puted analytically from depth and ego-motion estimates.

For every pair of frames Xt−1, Xt, one can create a pair

of masks Mt−1, Mt, which indicate the pixel coordinates

where X̂t−1 and X̂t are valid.

3.3. Image Reconstruction Loss

Comparing the reconstructed images X̂t, X̂t−1 to the in-

put frames Xt, Xt−1 respectively produces a differentiable

image reconstruction loss that is based on photometric con-

sistency [32, 8], and needs to be minimized2:

Lrec =
∑

ij

‖(Xij
t − X̂

ij
t )M ij

t ‖ (3)

The main problem with this type of loss is that the pro-

cess used to create X̂t is an approximation—and, because

differentiability is required, a relatively crude one. This

process is not able to account for effects such as light-

ing, shadows, translucence, or reflections. As a result, this

2Note: All losses mentioned in this section are repeated for times t and

t− 1. For brevity, we have left out the terms involving t− 1.
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Figure 3. Principled Masks. The masks shown are examples of

Mt−1, which indicate which pixel coordinates are valid when re-

constructing X̂t−1 from Xt. There is a complementary set of

masks Mt (not shown), which indicate the valid pixel coordinates

when reconstructing X̂t from Xt−1.

loss is noisy and results in artifacts. Strong regularization

is required to reduce the artifacts, which in turn leads to

smoothed out predictions (see Sec. 4). Learning to predict

the adjacent frame directly would avoid this problem, but

such techniques cannot generate depth and ego-motion pre-

dictions.

3.4. A 3D Point Cloud Alignment Loss

Instead of using Q̂t−1 or Q̂t just to establish a mapping

between coordinates of adjacent frames, we construct a loss

function that directly compares point clouds Q̂t−1 to Qt−1,

or Q̂t to Qt. This 3D loss uses a well-known rigid reg-

istration method, Iterative Closest Point (ICP) [4, 2, 23],

which computes a transformation that minimizes point-to-

point distances between corresponding points in the two

point clouds.

ICP alternates between computing correspondences be-

tween two 3D point clouds (using a simple closest point

heuristic), and computing a best-fit transformation between

the two point clouds, given the correspondence. The next

iteration then recomputes the correspondence with the pre-

vious iteration’s transformation applied. Our loss function

uses both the computed transformation and the final resid-

ual registration error after ICP’s minimization.

Because of the combinatorial nature of the correspon-

dence computation, ICP is not differentiable. As shown be-

low, we can approximate its gradients using the products it

computes as part of the algorithm, allowing us to backprop-

agate errors for both the ego-motion and depth estimates.

ICP takes as input two point clouds A and B (e. g. Q̂t−1

and Qt−1). Its main output is a best-fit transformation

Qt

Qt-1
Qt-1
^

Ego-motion Tt

ICP TransĲorm

T’t

ICP Residual

rtAdjust Qt

Adjust Tt

T’tQt-1
^

Figure 4. The point cloud matching process and approximate gra-

dients. The illustration shows the top view of a car front with side

mirrors. Given the estimated depth Dt for timestep t a point cloud

Qt is created. This is transformed by the estimated ego-motion Tt

into a prediction the previous frame’s point cloud, Q̂t−1. If ICP

can find a better registration between Qt−1 and Q̂t−1, we adjust

our ego-motion estimate using this correction T ′

t . Any residuals

rt after registration point to errors in the depth map Dt, which are

minimized by including ‖rt‖1 in the loss.

T ′ which minimizes the distance between the transformed

points in A and their corresponding points in B:

argmin
T ′

1

2

∑

ij

‖T ′ ·Aij −Bc(ij)‖2 (4)

where c(·) denotes the point to point correspondence found

by ICP. The secondary output of ICP is the residual rij =
Aij−T ′−1 ·Bc(ij), which reflects the residual distances be-

tween corresponding points after ICP’s distance minimizing

transform has been applied 3.

Fig. 4 demonstrates how ICP is used in our method to

penalize errors in the estimated ego-motion Tt and depth

Dt. If the estimates Tt and Dt from the neural network are

perfect, Q̂t−1 would align perfectly with Qt−1. When this

is not the case, aligning Q̂t−1 to Qt−1 with ICP produces a

transform T ′
t and residuals rt which can be used to adjust Tt

and Dt toward a better initial alignment. More specifically,

we use T ′
t as an approximation to the negative gradient of

the loss with respect to the ego-motion Tt
4. To correct the

depth map Dt, we note that even after the correction T ′
t has

been applied, moving the points in the direction rt would

decrease the loss. Of the factors that generate the points in

Qt and thereby Q̂t−1, we can only change Dt. We there-

fore use rt as an approximation to the negative gradient of

the loss with respect to the depth Dt. Note that this approxi-

mation of the gradient ignores the impact of depth errors on

3While we describe a point-to-point distance, we use the more pow-

erful point-to-plane distance [4] as in the Point Cloud Library [24]. The

definition of the residual changes to include the gradient of the distance

metric used, but it is still the gradient of the error.
4Technically, T ′ is not the negative gradient: it points in the direction

of the minimum found by ICP, and not in the direction of steepest descent.

Arguably, this makes it better than a gradient.
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ego-motion and vice versa. However, ignoring these second

order effects works well in practice. The complete 3D loss

is then

L3D = ‖T ′
t − I‖1 + ‖rt‖1, (5)

where ‖ · ‖1 denotes the L1-norm, I is the identity matrix.

3.5. Additional Image­Based Losses

Structured similarity (SSIM) is a commonly-used metric

for evaluating the quality of image predictions. Similar to

[11, 31], we use it as a loss term in the training process. It

measures the similarity between two images patches x and

y and is defined as SSIM(x, y) =
(2µxµy+c1)(2σxy+c2)

(µ2
x+µ2

y+c1)(σx+σy+c2)
,

where µx, σx are the local means and variances [28]. In our

implementation, µ and σ are computed by simple (fixed)

pooling, and c1 = 0.012 and c2 = 0.032. Since SSIM

is upper bounded to one and needs to be maximized, we

instead minimize

LSSIM =
∑

ij

[

1− SSIM(X̂ij
t , X

ij
t )

]

M
ij
t . (6)

A depth smoothness loss is also employed to regularize

the depth estimates. Similarly to [12, 11] we use a depth

gradient smoothness loss that takes into account the gradi-

ents of the corresponding input image:

Lsm =
∑

i,j

‖∂xD
ij‖e−‖∂xX

ij‖ + ‖∂yD
ij‖e−‖∂yX

ij‖ (7)

By considering the gradients of the image, this loss func-

tion allows for sharp changes in depth at pixel coordinates

where there are sharp changes in the image. This is a re-

finement of the depth smoothness losses used by Zhou et

al. [32].

3.6. Learning Setup

All loss functions are applied at four different scales s,

ranging from the model’s input resolution, to an image that

is 1
8 in width and height. The complete loss is defined as:

L =
∑

s

αLs
rec + βLs

3D + γLs
sm + ωLs

SSIM (8)

where α, β, γ, ω are hyper-parameters, which we set to α =
0.85, β = 0.1, γ = 0.05, and ω = 0.15.

We adopt the SfMLearner architecture [32], which is in

turn based on DispNet [20]. The neural network consists of

two disconnected towers: A depth tower receives a single

image with resolution 128 × 416 as input and produces a

dense depth estimate mapping each pixel of the input to a

depth value. An ego-motion tower receives a stack of video

frames as input, and produces an ego-motion estimate—

represented by six numbers corresponding to relative 3D ro-

tation and translation—between every two adjacent frames.

Both towers are fully convolutional.

At training time, a stack of video frames is fed to the

model. Following [32], in our experiments we use 3-frame

training sequences, where our losses are applied over pairs

of adjacent frames. Unlike prior work, our 3D loss requires

depth estimates from all frames. However, at test time, the

depth tower can produce a depth estimate from an individual

video frame, while the ego-motion tower can produce ego-

motion estimates from a stack of frames.

We use TensorFlow [1] and the Adam optimizer with

β1 = 0.9, β2 = 0.999, and α = 0.0002. In all exper-

iments, models are trained for 20 epochs and checkpoints

are saved at the end of each epoch. The checkpoint which

performs best on the validation set is then evaluated on the

test set.

4. Experiments

4.1. Datasets

KITTI. We use the KITTI dataset [9] as the main train-

ing and evaluation dataset. This dataset is the most common

benchmark used in prior work for evaluating depth and ego-

motion accuracy [8, 32, 11, 26]. The KITTI dataset includes

a full suite of data sources such as stereo video, 3D point

clouds from LIDAR, and the vehicle trajectory. We use

only a single (monocular) video stream for training. The

point clouds and vehicle poses are used only for evaluation

of trained models. We use the same training/validation/test

split as [32]: about 40k frames for training, 4k for valida-

tion, and 697 test frames from the Eigen [6] split.

Uncalibrated Bike Video Dataset. We created a new

dataset by recording some videos using a hand-held phone

camera while riding a bicycle. This particular camera offers

no stabilization. The videos were recorded at 30fps, with a

resolution of 720×1280. Training sequences were created

by selecting frames at 5fps to roughly match the motion in

KITTI. We used all 91, 866 frames from the videos without

excluding any particular segments. We constructed an in-

trinsic matrix for this dataset based on a Google search for

“iPhone 6 video horizontal field of view” (50.9◦) and with-

out accounting for lens distortion. This dataset is available

on the project website.

4.2. Evaluation of Depth Estimation

Fig. 5 compares sample depth estimates produced by our

trained model to other unsupervised learning methods, in-

cluding the state-of-the-art results by [32].

Table 1 quantitatively compares our depth estimation re-

sults against prior work (some of which use supervision).

The metrics are computed over the Eigen [6] test set. The

table reports separate results for a depth cap of 50m, as this

is the only evaluation reported by Garg et al. [8]. When

trained only on the KITTI dataset, our model lowers the

mean absolute relative depth prediction error from 0.208
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Method Supervision Dataset Cap Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

Train set mean - K 80m 0.361 4.826 8.102 0.377 0.638 0.804 0.894

Eigen et al. [6] Coarse Depth K 80m 0.214 1.605 6.563 0.292 0.673 0.884 0.957

Eigen et al. [6] Fine Depth K 80m 0.203 1.548 6.307 0.282 0.702 0.890 0.958

Liu et al. [18] Depth K 80m 0.201 1.584 6.471 0.273 0.68 0.898 0.967

Zhou et al. [32] - K 80m 0.208 1.768 6.856 0.283 0.678 0.885 0.957

Zhou et al. [32] - CS + K 80m 0.198 1.836 6.565 0.275 0.718 0.901 0.960

Ours - K 80m 0.163 1.240 6.220 0.250 0.762 0.916 0.968

Ours - CS + K 80m 0.159 1.231 5.912 0.243 0.784 0.923 0.970

Garg et al. [8] Stereo K 50m 0.169 1.080 5.104 0.273 0.740 0.904 0.962

Zhou et al. [32] - K 50m 0.201 1.391 5.181 0.264 0.696 0.900 0.966

Zhou et al. [32] - CS + K 50m 0.190 1.436 4.975 0.258 0.735 0.915 0.968

Ours - K 50m 0.155 0.927 4.549 0.231 0.781 0.931 0.975

Ours - CS + K 50m 0.151 0.949 4.383 0.227 0.802 0.935 0.974

Table 1. Depth evaluation metrics over the KITTI Eigen [6] test set. Under the Dataset column, K denotes training on KITTI [10] and CS

denotes training on Cityscapes [5]. δ denotes the ratio between estimates and ground truth. All results, except [6], use the crop from [8].
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Figure 5. Sample depth estimates from the KITTI Eigen test set, generated by our approach (4th row), compared to Garg et al. [8], Zhou et

al. [32], and ground truth [9]. Best viewed in color.
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Figure 6. Comparison of models trained only on KITTI vs. mod-

els pre-trained on Cityscapes and then fine-tuned on KITTI. The

first two rows show depth images produced by models from [32].

These images are generated by us using models trained by [32].

The bottom two rows show depth images produced by our method.

[32] to 0.163, which is a significant improvement. Fur-

thermore, this result is close to the state-of-the-art result of

0.148 by Godard et al. [11], obtained by training on rectified

stereo images with known camera baseline.

Since our primary baseline [32] reports results for pre-

training on Cityscapes [5] and fine-tuning on KITTI, we

replicate this experiment as well. Fig. 6 shows the increase

in quality of depth estimates as a result of pre-training

on Cityscapes. It also visually compares depth estimates

from our models with the corresponding models by Zhou

et al. [32]. As Fig. 6 and Table 1 show, our proposed

method achieves significant improvements. The mean in-

ference time on an input image of size 128×416 is 10.5 ms

on a GeForce GTX 1080.

4.3. Evaluation of the 3D Loss

Fig. 7 shows sample depth images produced by models

which are trained with and without the 3D loss. As the

sample image shows, the additional temporal consistency

enforced by the 3D loss can reduce artifacts in low-texture

regions of the image.

Fig. 8 plots the validation error from each model over

time as training progresses. The points show depth error at
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Figure 7. Example depth estimation results from training without

the 3D loss (middle), and with the 3D loss (bottom).
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Figure 8. Evolution of depth validation error over time when train-

ing our model with and without the 3D loss. Training on KITTI

and on Cityscapes + KITTI are shown. Using the 3D loss lowers

the error and also reduces overfitting.

Method Seq. 09 Seq. 10

ORB-SLAM (full) 0.014± 0.008 0.012± 0.011

ORB-SLAM (short) 0.064± 0.141 0.064± 0.130
Mean Odom. 0.032± 0.026 0.028± 0.023
Zhou et al. [32] (5-frame) 0.021± 0.017 0.020± 0.015
Ours, no ICP (3-frame) 0.014± 0.010 0.013± 0.011
Ours, with ICP (3-frame) 0.013± 0.010 0.012± 0.011

Table 2. Absolute Trajectory Error (ATE) on the KITTI odometry

dataset averaged over all multi-frame snippets (lower is better).

Our method significantly outperforms the baselines with the same

input setting. It also matches or outperforms ORB-SLAM (full)

which uses strictly more data.

the end of different training epochs on the validation set—

and not the test set, which is reported in Table 1. As the

plot shows, using the 3D loss improves performance no-

tably across all stages of training. It also shows that the 3D

loss has a regularizing effect, which reduces overfitting. In

contrast, just pre-training on the larger Cityscapes dataset is

not sufficient to reduce overfitting or improve depth quality.

Figure 9. Composite of two consecutive frames from the Bike

dataset. Since the phone is hand-held, the motion is less stable

compared to existing driving datasets. Best viewed in color.

4.4. Evaluation of Ego­Motion

During the training process, depth and ego-motion are

learned jointly and their accuracy is inter-dependent. Ta-

ble 2 reports the ego-motion accuracy of our models over

two sample sequences from the KITTI odometry dataset.

Our proposed method significantly outperforms the unsu-

pervised method by [32]. Moreover, it matches or outper-

forms the supervised method of ORB-SLAM, which uses

the entire video sequence.

4.5. Learning from Bike Videos

To demonstrate that our proposed method can use any

video with ego-motion as training data, we recorded a num-

ber of videos using a hand-held phone camera while riding

a bicycle. Fig. 9 shows sample frames from this dataset.

We trained our depth and ego-motion model only on

the Bike videos. We then evaluated the trained model on

KITTI. Note that no fine-tuning is performed. Fig. 10 show

sample depth estimates for KITTI frames produced by the

model trained on Bike videos. The Bike dataset is quite dif-

ferent from the KITTI dataset (∼ 51◦ vs. ∼ 81◦ FOV, no

distortion correction vs. fully rectified images, US vs. Euro-

pean architecture/street layout, hand-held camera vs. stable

motion). Yet, as Table 3 and Fig. 10 show, the model trained

on Bike videos is close in quality to the best unsupervised

model of [32], which is trained on KITTI itself.

Fig. 11 shows the KITTI validation error for models

trained on Bike videos. It verifies that the 3D loss improves

learning and reduces overfitting on this dataset as well.

4.6. Ablation Experiments

In order to study the importance of each component in

our method, we trained and evaluated a series of models,

each missing one component of the loss function. The ex-

periment results in Table 3 and Fig. 12 show that the 3D

loss and SSIM components are essential. They also show

that removing the masks hurts the performance.
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Method Dataset Cap Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

All losses CS + K 80m 0.159 1.231 5.912 0.243 0.784 0.923 0.970

All losses K 80m 0.163 1.240 6.220 0.250 0.762 0.916 0.968

No ICP loss K 80m 0.175 1.617 6.267 0.252 0.759 0.917 0.967

No SSIM loss K 80m 0.183 1.410 6.813 0.271 0.716 0.899 0.961

No Principled Masks K 80m 0.176 1.386 6.529 0.263 0.740 0.907 0.963

Zhou et al. [32] K 80m 0.208 1.768 6.856 0.283 0.678 0.885 0.957

Zhou et al. [32] CS + K 80m 0.198 1.836 6.565 0.275 0.718 0.901 0.960

All losses Bike 80m 0.211 1.771 7.741 0.309 0.652 0.862 0.942

No ICP loss Bike 80m 0.226 2.525 7.750 0.305 0.666 0.871 0.946

Table 3. Depth evaluation metrics over the KITTI Eigen [6] test set for various versions of our model. Top: Our best model. Middle:

Ablation results where individual loss components are excluded. Bottom: Models trained only on the bike dataset.
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Figure 10. Sample depth estimates produced from KITTI frames

by the model trained only on the Bike video dataset.
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Figure 11. Evolution of KITTI depth validation error for models

trained only on the Bike Dataset, with and without the 3D loss.

5. Conclusions and Future Work

We proposed a novel unsupervised algorithm for learn-

ing depth and ego-motion from monocular video. Our main

contribution is to explicitly take the 3D structure of the

world into consideration. We do so using a novel loss func-

tion which can align 3D structures across different frames.

The proposed algorithm needs only a single monocular

video stream for training, and can produce depth from a

single image at test time.
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Figure 12. KITTI depth validation error for ablation experiments

comparing a model trained with all losses against models missing

specific loss components.

The experiments on the Bike dataset demonstrate that

our approach can be applied to learn depth and ego-motion

from diverse datasets. Because we require no rectification

and our method is robust to lens distortions, lack of sta-

bilization, and other features of low-end cameras, training

data can be collected from a large variety of sources, such

as public videos on the internet.

If an object moves between two frames, our loss func-

tions try to explain its movement by misestimating its depth.

This leads to learning biased depth estimates for that type

of object. Similar to prior work [32], our approach does

not explicitly handle largely dynamic scenes. Detecting and

handling moving objects is our goal for future work.

Lastly, the principled masks can be extended to account

for occlusions and disocclusions resulting from change of

viewpoint between adjacent frames.
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