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Abstract

Human pose estimation still faces various difficulties in

challenging scenarios. Human parsing, as a closely related

task, can provide valuable cues for better pose estimation,

which however has not been fully exploited. In this paper, we

propose a novel Parsing Induced Learner to exploit parsing

information to effectively assist pose estimation by learning

to fast adapt the base pose estimation model. The proposed

Parsing Induced Learner is composed of a parsing encoder

and a pose model parameter adapter, which together learn

to predict dynamic parameters of the pose model to extract

complementary useful features for more accurate pose es-

timation. Comprehensive experiments on benchmarks LIP

and extended PASCAL-Person-Part show that the proposed

Parsing Induced Learner can improve performance of both

single- and multi-person pose estimation to new state-of-the-

art. Cross-dataset experiments also show that the proposed

Parsing Induced Learner from LIP dataset can accelerate

learning of a human pose estimation model on MPII bench-

mark in addition to achieving outperforming performance.

1. Introduction

Human pose estimation is a fundamental task in com-

puter vision, aiming to estimate joint locations of human

body. Recent years have witnessed many efforts made to

push its performance frontier [11, 25, 36, 40], but it remains

challenging to apply it to realistic scenarios. Distracting fac-

tors, e.g. occlusion, self-similarity, large deformation, huge

variation in pose configuration and appearance, often lead

to inaccurate joint localization and even false joint catego-

rization. As shown in Figure 1 (a), partial occlusion on

left arm causes inaccurate localizations of left wrist, while

high similarity between left and right legs results in false

categorization of right ankle.

Human body parts, generated by human parsing meth-

ods [21, 23, 37], can provide useful contextual cues to help

localize body joints in these challenging scenarios. For

instance, when body part cues (from left-lower arm and

(a) (b) (c)
Figure 1. Illustration of our motivation for the proposed Parsing

Induced Learner. (a) Pose estimation result without exploiting

parsing information. (b) Parsing information generated from the

proposed PIL. (c) Pose estimation result with the proposed PIL. The

proposed PIL effectively leverages parsing information to refine

the inaccurate locations and correct false categorizations for the

highlighted body joints.

right-lower leg, as shown in Figure 1 (b)) are taken into

account in joint localization, estimation errors on the joints

of left wrist and right ankle can be effectively corrected, as

shown in Figure 1 (c). Motivated by this, some research

works [13, 20, 38, 39] exploit the parsing information to

help improve pose estimation performance. However, they

generally perform human body parsing and pose estimation

separately and utilize parsing results to refine body joint

localization as post processing. Although some improve-

ment has been achieved, they do not fully utilize parsing

information in an effective and efficient way, thus suffer

several limitations. First, they hand-craft features from pars-

ing results which are not powerful or robust to large pose

variations in the wild. Second, they only use parsing infor-

mation for inference other than learning pose models and

therefore do not strengthen pose models essentially. Third,

their overall frameworks are not end-to-end learnable.

In this work, we propose to leverage human parsing in-

formation more effectively and efficiently for learning better

pose estimation models and improving their performance.

Targeting at the above limitations of existing works, we make

following observations. First, the parsing representations

should be learned towards being beneficial to pose estima-

tion, instead of solely learned from the parsing supervision.
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Second, the learned parsing representations should be effec-

tively transferable to the pose estimation domain. Traditional

multi-task learning frameworks [3, 12] keep the architecture

for two tasks tied, which blurs the feature distinctiveness for

pose estimation and parsing and limits their mutual benefits.

Third, the pose estimation model should be dynamic and

can fast adapt to various testing samples of different char-

acteristics, relying on the transferred parsing information.

Furthermore, human parsing annotation is available [16, 38]

nowadays, providing us easy access to such information.

According to the above observations, we design a novel

Parsing Induced Learner (PIL) that learns to fast adapt the

pose estimation model conditioned on the parsing infor-

mation extracted from a specific sample, and therefore ef-

fectively improves both performance and flexibility of the

model. The proposed PIL refines inaccurate localization and

corrects false categorization of body joints effectively, which

are difficult to address for a static pose estimation model.

As shown in Figure 1, PIL can exploit body part cues to

constrain joint location and pose structure.

In particular, PIL consists of two components: an encoder

that encodes an input image into high-level parsing represen-

tations, and an adapter that learns to adapt parameters of the

pose model by leveraging parsing representations. The adap-

tive parameters predicted by PIL can help the pose model

learn more tailored representations for estimating poses for

each specific input, in which body part cues are effectively

integrated for constraining joint locations and pose struc-

tures. Moreover, PIL can efficiently learn to adapt pose

parameters in one-shot manner, yielding fast adaption of

the base pose model according to parsing information. We

implement PIL by combining a parsing encoder network and

a parameter adapter network, which can be directly applied

to various deep pose models and across different datasets.

The parameter adapter network is trained with supervision

from human pose to learn adaptive parameters for boosting

pose estimation. The parsing encoder is learned from both

the human parsing and pose annotations. Our whole model

integrating pose estimation and PIL is end-to-end learnable.

Comprehensive experiments on popular benchmarks

show that the PIL effectively improves performance for both

single- and multi-person pose estimation to new state-of-the-

art. We also conduct cross-dataset experiments to demon-

strate its generalizability and transferability of exploiting

parsing information from one dataset to another. Our con-

tributions are three-fold. Firstly and most importantly, we

propose a novel Parsing Induced Learner for efficiently learn-

ing to adapt pose estimation models by exploiting parsing

information, achieving better pose estimation performance.

Secondly, the proposed PIL is transferable across datasets,

verified via experiments to apply the PIL trained on LIP

dataset to MPII dataset, achieving both performance im-

provement and learning acceleration. Thirdly, with the help

of PIL, an Hourglass network [25] based pose estimation

model achieves new state-of-the-art on multiple benchmarks

for both single- and multi-person pose estimation.

2. Related Work

Recently, research efforts have been devoted to both

single- and multi-person pose estimation problems, via ex-

ploring network architecture engineering [25, 36, 40], en-

hancing training supervision [9, 10], and improving infer-

ence strategy [4, 14, 26]. However, they are still chal-

lenged by some distracting factors, e.g., occlusion and self-

similarity causing inaccurate joint locations and false joint

categorization. Human body part cues from human pars-

ing methods [7, 21, 23, 24, 37] can provide useful guid-

ance to address the above challenges for constraining joint

locations and pose structures. Motivated by this, some

works [13, 20, 38, 39] have exploited parsing information to

improve the performance of pose estimation.

In [39], Yamaguchi et al. proposed to use the normal-

ized histograms of parsing labels around each location as

additional features for refining the pose estimation results.

In [20], Ladicky et al. proposed to use semantic segmenta-

tion of body parts to provide information on the appearance

and shape of body joints. In [13], Dong et al. proposed

the Grid Layout Feature to model the pairwise geometry

relations between semantic parts and mixtures of joint-group

templates, and then constructed the “And-Or” graph for si-

multaneously estimating joint locations and semantic labels.

In [38], Xia et al. proposed to utilize semantic segmentation

results to formulate additional features as the segment-joint

smoothness term to encourage semantic and spatial con-

sistency between parts and joints, and they modeled the

multi-person pose estimation problem as a fully-connected

conditional random field and solved it based on an Integer

Linear Programming.

Despite the success of these existing works, they suffer

from some obvious drawbacks on feature extraction from

parsing information and guidance exploitation to learn pose

models, which hamper them from sufficiently leveraging

body part cues to estimate joint allocations. In contrast,

our proposed Parsing Induced Learner can utilize parsing

information to directly learn to extract features beneficial to

pose estimation models rather than hand-crafting them. In

addition, it can be integrated into the learning procedure of

human pose estimation models by auxiliary parsing super-

vision. Moreover, our whole framework can be efficiently

end-to-end learnable.

3. The Proposed Approach

3.1. The Formulation

Given an input RGB image I ∈ R
M×N×3 of size M×N ,

our goal is to detect the locations P={(xi, yi)}
J
i=1 of human
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body joints with assistance of the corresponding (estimated)

human parsing map S ∈ {0, 1, . . ., L}M×N of I . Here,

(xi, yi) are coordinates of the ith joint, and J and L are the

number of joint and body part categories, respectively. In

particular, 0 in S denotes the background category.

Existing works [13, 20, 38, 39] suggest applying the pars-

ing map S in post processing to refine the pose estimation

P . However, such a strategy does not essentially refine or

enhance the pose estimation model. Differently, we propose

a generic parsing induced pose estimation model f[θ,θ′] (pa-

rameterized by θ and θ′ together) to fully leverage parsing

information learned from the pair (I, S) in a flexible and

effective way for getting more accurate pose estimation P ,

which is formulated as

f[θ,θ′] : I → P, where θ′ = g(I, S). (1)

The above formulation features the essential difference be-

tween our proposed pose estimation model and existing ones.

We enforce a part of the pose model parameters θ′ to explic-

itly depend on the parsing map S for better leveraging the

parsing information through the function g(·, ·). Different

parsing maps S will induce different parameters θ′ and thus

modify the pose model f[θ,θ′] dynamically. In this way, the

pose model can be adaptive to the input image I and parsing

result S fast and favorably through learning a proper model

parameter prediction g(·, ·) end-to-end.

In particular, inspired by the “learning to learn” frame-

work [2], we design a Parsing Induced Learner (PIL) to learn

a well-performing function g(·, ·) such that the predicted

parameters θ′ can tailor the pose model to each input image

based on parsing information and provide better pose estima-

tion results. The proposed PIL consists of a parsing encoder

for extracting the parsing features and a parameter adapter

for learning the dynamic parameters θ′, denoted as ES
θS (·)

and Kφ(·), respectively.

In PIL, the parameter adapter Kφ(·) takes in the features

output by the parsing encoder ES
θS (·) and predicts proper

parameters θ′ for the pose estimation model. Namely,

θ′ = g(I, S) := Kφ

(
ES

θS (I)
)
.

The pose estimation model f[θ,θ′] contains an adaptive pose

encoder EP
[θP ,θ′](·), which adopts the predicted parameter

θ′ from the PIL model and the other global parameter θP to

output good features for body joint localizations. Introduc-

ing such a PIL model provides dynamic parameters θ′and

enables the adaptive pose encoder to fully exploit parsing

information to extract better features for more accurate pose

estimation through efficiently adapting its model parameters

to specific input in one-shot.

On top of these two encoders are pose and parsing clas-

sifiers CP
wP (·) and CS

wS (·) which output the final pose and

parsing estimations. In particular, wP and θP together in-

stantiate θ in Eqn. (1). Given pose and parsing annotations P̂

Parsing Induced Learner

SFPF

Parsing
Encoder

Parsing
Classifier

Parameter
Adapter

Adaptive
Convolution

aF

P*F

Pose
Classifier

Pose
Encoder

q’ 

Figure 2. Overall architecture of our model. Given an input image,

our model first utilizes a pose encoder to extract pose features FP

and the proposed PIL to predict dynamic parameters θ′ through a

parameter adapter taking in parsing features FS from a parsing en-

coder. Then, our model feeds FP and θ
′ to an adaptive convolution

to extract parsing induced features F a for fast adaption of the pose

model. Our model regards F a as residual information and fuses it

with F
P via addition, leading to the refined features FP∗ for body

joint localization. Finally, our model inputs FP∗ and F
S to pose

and parsing classifiers, respectively, to produce pose estimation and

parsing prediction (ignored during testing).

and Ŝ, to jointly learn PIL with the pose and parsing models,

we define the following loss function for training:

L := LP
(
CP

wP (E
P
[θP ,θ′](I)), P̂

)
+βLS

(
CS

wS (E
S
θS (I)), Ŝ

)
,

(2)

where LP and LS represent the pose and parsing loss func-

tions respectively, defined in Sec. 3.3, and β is a trade-off

coefficient. Below, we will explain the implementation de-

tails for each component in our proposed approach.

3.2. The Network Architecture

Our implementation is based on deep Convolutional Neu-

ral Networks (CNNs). The overall architecture is shown in

Figure 2. We now explain each component in details.

Pose Encoder The pose encoder EP
θP (·) extracts discrim-

inative features FP = EP
θP (I) from the input image I for

pose estimation. We implement it via CNNs and evaluate

two different network architectures in this work: one is the

VGG16 based Fully Convolutional Network (FCN) [32] and

the other is the state-of-the-art Hourglass network [25]. For

the VGG16 based FCN architecture, we further remove the

last two max pooling layers to reduce its total stride from 32

to 8 for more accurate joint localizations. For the Hourglass

network, we follow the configurations in [25].

Parsing Encoder The parsing encoder ES
θS (·) is one com-

ponent of the PIL model, aiming to extract features FS =
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Figure 3. The architecture of the parameter adapter in PIL. The

parameter adapter takes the features FS from the parsing encoder

as input and outputs the adaptive convolution parameters θ′. It is

composed by stacking three convolution layers and two pooling lay-

ers. For each layer, the kernel size, the number of channels/pooling

type, stride and padding size are specified from top to bottom.

ES
θS (I) for encoding useful information for both parsing and

pose estimation. In our implementation, the parsing encoder

is also based on CNNs. Similarly, we also explore it with

two different network architectures: the VGG16 based FCN

and the Hourglass network. Note the parsing encoder need

not be the same as the pose encoder as they are independent.

Parameter Adapter The parameter adapter Kφ(·) is the

other component of the PIL model, which is a one-shot

learner to predict the dynamic parameters θ′ via taking in

the output FS of I from the parsing encoder network. We

implement it by a small CNN with learnable parameters φ.

In particular, the parameter adapter network predicts certain

convolutional kernels of the pose encoder network. Its archi-

tecture is shown in Figure 3. The tensor θ′ ∈ R
h×h×c output

from the last layer of the parameter adapter network is taken

as the predicted dynamic convolutional kernels. Here h=7
is the convolution kernel size and c=ci×co is the number of

channels to learn for adaptive convolution with ci and co as

the number of input and output channels, respectively.

In practice, however, it is infeasible for the parameter

adapter to directly predict all convolution parameters due to

their large scale. For instance, given input feature maps with

256 channels and output feature maps with 256 channels,

the number of convolution filters to be predicted by the

parameter adapter is 256×256. The large scale parameters

to predict would cause high space and time cost, and may

result in overfitting [2]. To avoid these issues, we perform

the following factorization [2] on the dynamic convolutional

kernels θ′ to reduce the number of free parameters:

θ′ = U ∗ θ̃ ∗c V, (3)

where ∗ denotes the convolution operation, ∗c is the channel-

wise convolution, U and V are auxiliary parameters to learn

for the adaptive convolution and are explained in the next

part. θ̃∈Rh×h×ci are the actual parameters to predict by the

parameter adapter, with smaller size than original θ′ by a

magnitude. Eqn. (3) is analogous to SVD, where θ̃ can be

seen as coefficients over the parameter bases U and V .

Adaptive Convolution To make best use of dynamic con-

volutional kernels θ′ from the parameter adapter for directly

extracting features to assist human pose estimation, we ap-

ply θ′ on the highest-level features FP generated from the

pose encoder, resulting in an adaptive convolution layer. The

adaptive convolution layer is similar with the traditional

convolution layer, just with the static convolution kernels

replaced by the predicted dynamic convolution kernels θ′:

F a = θ′ ∗ FP = U ∗ θ̃ ∗c V ∗ FP ,

where F a denotes the extracted features by dynamic param-

eters θ′, U∈R1×1×ci×co and V ∈R1×1×ci×ci are auxiliary

learnable parameters. In particular, we ignore the bias param-

eters in the adaptive convolution layer, due to the residual

feature fusion strategy explained in the next part. Differ-

ent from traditional CNN based features, F a is extracted

in an efficient way by the dynamic parameters θ′ based on

parsing information for a given input image, rather than pre-

vious hand-crafted parsing based features for human pose

estimation. Moreover, the parameter basis θ′ of the adaptive

convolution layer can be efficiently learned by the proposed

PIL in one-shot, getting rid of iteratively updating weights

based on large training datasets. In the implementation for

the adaptive convolution layer, given FP , we first use a

1×1 convolution on it with V , then conduct the dynamic

convolution by group with θ̃, and finally adopt another 1×1
convolution with U to generate F a.

Feature Fusion Different with features FP from the pose

encoder network, F a is extracted based on parsing informa-

tion and complementary to FP for human pose estimation.

Hence, we adopt the residue learning idea [17] to regard F a

as a residue component, and fuse it with the original features

FP via addition:

FP∗ = FP + F a,

where FP∗ is the final feature refined by parsing information

for human pose estimation.

Classifiers After generating the final feature FP∗ for hu-

man pose estimation, we exploit a linear classifier CP
wP (·)

on it to generate the predicted confidence maps for each

kind of joints, by implementing a 1×1 convolution on FP∗.

Similarly, we exploit another linear classifier CS
wS (·) on FS

to generate the parsing prediction.

3.3. Training and Inference

As defined in Eqn. (2), we introduce two supervision

to train the overall network model. We use Mean Square

Error loss as LP for training the pose model and PIL, and

use Cross Entropy loss as LS together with LP to train the

parsing model. The overall model is end-to-end trainable by

gradient backpropagation.

In fact, the PIL can also be pretrained on one dataset and

directly applied to assist pose estimation on new datasets.

In other words, the PIL is able to transfer acquired parsing
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information across different application datasets. We verify

this property of PIL in the experiments.

During inference, the pose and parsing encoder networks

take in the same image. The parameter adapter learns the

parsing related convolution kernels in one feed-forward pass.

We ignore the predicted parsing results and only take the

output from the pose classifier for human pose estimation.

For single-person pose estimation, we directly output the

positions with maximum responses for each type of body

joints. For multi-person pose estimation, we perform NMS

to find joint candidates on the predicted confidence maps.

4. Experiments

4.1. Experimental Setup

Datasets We evaluate our proposed model on three most

popular benchmarks for human pose estimation: Look into

Person (LIP) [16], extended PASCAL-Person-Part [38], and

MPII Human Pose Single-Person (MPII) [1], ranging from

single-person to multi-person pose estimation and presenting

various challenging scenarios.

The LIP dataset is a large-scale single-person dataset pro-

viding both human pose and parsing annotations, including

locations for 16 body joints and annotations for 19 semantic

body parts with one background category. In total, there are

50,462 images, which are split into three subsets: 30,462 for

training, 10,000 for validation, and 10,000 for testing.

The extended PASCAL-Person-Part dataset presents

multi-person images with both pose and parsing annotations

for 14 body joints and 6 body parts. The total 3,533 images

are split into 1,716 for training and 1,817 for testing.

The MPII dataset is another large-scale benchmark for

single-person pose estimation. It contains 19,185 training

and 7,247 testing images but only provides pose annotations

for 16 body joints. On this dataset, we aim to evaluate

the cross-dataset generalizability and transferability of the

proposed PIL, i.e., how well the model learns useful and

transferable parsing information from one dataset (LIP) to

assist pose estimation on another new dataset (MPII).

Data Augmentation For the LIP and extended PASCAL-

Person-Part datasets, we crop training samples on original

images based on the person center. We augment each train-

ing sample with rotation degrees in [−40◦, 40◦], scaling

factors in [0.8, 1.5], translational offset [−40px, 40px], and

horizontally mirror. For MPII dataset, we augment each

training sample with rotation degrees in [−30◦, 30◦], scaling

factors in [0.7, 1.3], and horizontally mirror, but no transla-

tion augmentation. We resize and pad training samples to

size 256×256 before inputting to CNNs. These augmenta-

tions are common and also used by previous works for both

single- and multi-person pose estimation [4, 19, 25, 36].

Implementation For the LIP and extended PASCAL-

Person-Part datasets, we train the overall network from

scratch on their individual training samples. Since PASCAL-

Person-Part images contain multiple persons, we need to

associate joint candidates to corresponding person instances.

In experiments, we follow the approach in [26], which learns

to allocate joints simultaneously with the joint detection

model. For MPII dataset, we directly use the parsing encoder

and parameter adapter trained on the LIP dataset as PIL with-

out further fine-tuning. We train the pose estimation network

and auxiliary parameters in the adaptive convolution layer

from scratch using the training samples from this dataset.

We implement the proposed model using PyTorch [27]. We

use RMSProp [33] as the optimizer. The learning rate is ini-

tially set as 0.0025, and decreased by multiplying 0.5 at the

150th, 170th and 200th epoch. We train all the models for

250 epochs in total. Testing is conducted on six-scale image

pyramids with flipping. Our code will be made available.

Metrics The PCK [41] and Mean Average Precision

(mAP) [29] are used for performance evaluation on the LIP

and extended PASCAL-Person-Part datasets, respectively.

We use the official PCKh metric [1] for performance evalua-

tion on MPII dataset, following conventions.

4.2. Results on LIP Dataset

Ablation Analysis To evaluate our proposed model, we

investigate two different backbone networks on the LIP vali-

dation set: the prevalent VGG16 network [32] successfully

applied to various computer vision tasks [6, 29, 31], and

the state-of-the-art Hourglass network [25] for human pose

estimation. We first evaluate our proposed Parsing Induced

Learner (PIL) based on VGG16 and compare it with var-

ious popular strategies (including feature fusion through

adding, multiplying and concatenating) on exploiting pars-

ing features for pose estimation, in order to demonstrate

its efficacy. The results are summarized in Table 1, where

VGG16-PIL(VGG16) denotes our proposed full model with

VGG16 for both pose and parsing encoder networks, and

VGG16-Add/Multi/Concat represent the models using other

parsing utilization strategies. We also compare the adaptive

ability of PIL with the traditional multi-task learning frame-

work [31, 42] for joint human parsing and pose estimation,

which is implemented based on VGG16 for representation

learning with both pose and parsing supervision, denoted as

VGG16-MTL. To disentangle effects of the residual module

followed pose encoder on the estimation performance from

network architecture engineering, we also evaluate another

variant of our model by removing the proposed PIL and re-

placing the adaptive convolution layer with the traditional

convolution layer, denoted as VGG16-Self.

From Table 1, one can observe that the proposed VGG16-

PIL(VGG16) improves the baseline VGG16 by 8.5% in

terms of the average PCK, from 69.1% to 75.0%. This result

clearly shows our proposed model is effective at exploiting

parsing information to learn powerful representations for
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Table 1. VGG16 based ablation studies on LIP validation set. The

model in parenthesis denotes the parsing network used in PIL.

Head Sho. Elb. Wri. Hip Knee Ank. U.Body PCK

VGG16 88.0 80.0 68.0 69.5 48.9 60.2 64.5 76.6 69.1

VGG16-Add 88.1 79.5 68.0 69.9 48.3 59.7 61.7 76.6 68.6

VGG16-Multi 87.3 75.0 60.2 65.1 42.7 51.9 58.4 72.2 63.7

VGG16-Concat 88.2 77.7 64.1 67.4 44.0 55.2 61.0 74.6 66.1

VGG16-MTL 87.4 76.5 61.9 66.1 46.0 53.8 59.8 73.3 65.3

VGG16-Self 88.0 81.1 70.0 69.5 50.3 61.2 63.5 77.4 69.8

VGG16-PIL(VGG16) 90.0 83.3 75.2 75.0 57.0 69.3 72.0 81.1 75.0

Table 2. Hourglass based ablation studies on LIP validation set.

The model in parenthesis denotes the parsing network used in PIL.

Head Sho. Elb. Wri. Hip Knee Ank. U.Body PCK

HG-1s-1u: 91.7 86.7 80.6 77.4 67.8 73.5 69.0 84.3 78.8

HG-1s-1u-PIL(HG-1s-1u) 92.6 89.0 84.2 81.3 70.8 78.4 75.5 86.9 82.2

HG-2s-1u: 91.8 88.3 82.4 79.1 70.6 75.9 73.7 85.6 80.8

HG-2s-1u-PIL(HG-1s-2u) 92.7 89.8 84.9 81.6 72.8 79.2 76.7 87.4 83.0

HG-4s-2u 93.2 90.7 86.7 83.2 72.6 81.7 80.8 88.6 84.5

HG-4s-2u-PIL(HG-1s-2u) 93.3 91.1 87.5 84.7 73.5 82.6 81.9 89.3 85.3

HG-8s-1u 93.4 91.2 87.3 84.4 73.3 81.8 80.8 89.2 84.9

HG-8s-1u-PIL(HG-1s-2u) 93.3 91.3 88.0 85.1 73.5 83.5 82.1 89.5 85.6

Table 3. Experiments on impacts of the parsing performance (mea-

sured by mIOU) on human pose estimation in our model. The

model in parenthesis denotes the parsing network used in PIL.

mIOU Head Sho. Elb. Wri. Hip Knee Ank. U.Body PCK

HG-4s-2u - 93.2 90.7 86.7 83.2 72.6 81.7 80.8 88.6 84.5

+PIL(HG-1s-1u) 41.1 93.3 91.0 87.0 84.3 73.7 82.2 80.7 89.0 85.0

+PIL(HG-1s-2u) 42.4 93.3 91.1 87.5 84.7 73.5 82.6 81.9 89.3 85.3

+PIL(HG-1s-4u) 43.3 93.3 91.4 87.7 84.8 72.9 83.2 82.3 89.4 85.4

+PIL(HG-1s-8u) 43.9 93.2 91.2 87.9 85.1 73.4 83.4 82.1 89.5 85.5

assisting human pose estimation.

Comparing VGG16-PIL(VGG16) with VGG16-

Add/Multi/Concat baselines again demonstrates the

improvement is not simply due to using parsing fea-

tures. Although accessing and fusing parsing features,

VGG16-Add/Multi/Concat even harm the pose estimation

performance. This demonstrates naive feature fusion

is not an effective way of utilizing parsing information

as expected. Traditional multi-task learning framework

VGG16-MTL suffers performance decline on human

pose estimation, showing that directly introducing parsing

supervision in training cannot effectively adapt parsing

information to the pose estimation model. Comparing

with VGG16-MTL, our PIL can effectively adapt parsing

information to both learning and inference processes of

human pose estimation. Adding residual module to the

VGG16 backbone as VGG16-Self improves performance

incrementally (from 69.1% to 69.8%). This confirms that

the proposed PIL extracts valuable information from parsing

for human pose estimation rather than benefiting from the

network architecture engineering.

We conduct similar ablation analysis on the proposed

model using state-of-the-art architecture, the Hourglass net-

work [25], for human pose estimation. The results are shown

in Table 2, in which HG-ms-nu denotes the Hourglass net-

work consisting of m stacked Hourglass modules and each

module with n unit depth (32 layers). HG-ms-nu-PIL (HG-

Table 4. Comparison with state-of-the-arts on LIP testing set.

Head Sho. Elb. Wri. Hip Knee Ank. PCK

Hybrid Pose Machine 71.7 87.1 82.3 78.2 69.2 77.0 73.5 77.2

BUPTMM-POSE 90.4 87.3 81.9 78.8 68.5 75.3 75.8 80.2

Pyramid Stream Network 91.1 88.4 82.2 79.4 70.1 80.8 81.2 82.1

Chou et al. [10] 94.9 93.1 89.1 86.5 75.7 85.5 85.7 87.4

Our model 94.9 93.1 89.9 87.6 75.9 84.9 84.4 87.5

m′s-n′u) denotes the model with the proposed PIL. We make

such choices to comprehensively evaluate the Hourglass net-

work and its counterparts with our proposed PIL on the LIP

dataset, aiming to analyze the effects of the depth and stages

of Hourglass network on the performance of our proposed

model for human pose estimation.

From Table 2, one can observe that the proposed model

always brings performance improvement over the backbone

networks even though their performance is already very high.

We can also observe that although HG-1s-1u-PIL (HG-1s-1u)

and HG-2s-1u have similar numbers of parameters, HG-1s-

1u-PIL (HG-1s-1u) achieves superior performance 82.2%
PCK, compared with HG-2s-1u that achieves 80.8% PCK,

which also shows the efficiency and effectiveness of the

proposed model in exploiting parsing information for human

pose estimation. In addition, we can find that PIL with a

smaller parsing network can also improve the performance.

More importantly, the proposed model gives new state-of-

the-art of 85.6% PCK on the LIP validation dataset.

We also conduct ablation experiments to study how dif-

ferent parsing networks (with different parsing qualities)

affect human pose estimation. We fix the pose network as

HG-4s-2u, and increase the depth of the parsing network

from HG-1s-1u to HG-1s-8u to obtain increasingly better

parsing performance measured by Mean Intersection over

Union (mIOU) [16] from 41.1% to 43.9%. The results in

Table 3 reveal the trend that better parsing performance gives

better pose estimation, reflecting the proposed PIL is good

at exploiting parsing information.

Comparison with State-of-the-arts We compare the pro-

posed model HG-8s-1u-PIL(HG-1s-2u) with state-of-the-

arts on the LIP testing set. The results are shown in Table 4.

In particular, the model proposed in [10] wins the CVPR

2017 LIP Human Pose Estimation Challenge. It uses a self

adversarial training strategy for refining the pose estimation.

The other two models, BUPTMM-POSE and Hybrid Pose

Machines, combine the predictions of Hourglass networks

and convoutional pose machines. Without sophisticated re-

finement or model ensemble, our proposed model outper-

forms all these well established baselines and achieves new

state-of-the-art 87.5% PCK. The proposed model is superior

to [10] for most body joints, though the adversarial training

is slightly better at refining joints of knee and ankle. By the

PCK measurement, there is a tolerance between the predic-

tion and the groundtruth, and the estimated pose structure
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Table 5. Experiments on the extended PASCAL-Person Part dataset.

Head Sho. Elb. Wri. Hip Knee Ank. mAP

Chen and Yuille [8] 45.3 34.6 24.8 21.7 9.8 8.6 7.7 21.8

Insafutdinov et al. [19] 41.5 39.3 34.0 27.5 16.3 21.3 20.6 28.6

Xia et at. [38] 58.0 52.1 43.1 37.2 22.1 30.8 31.1 39.2

Our baseline (w/o PIL) 66.2 54.8 43.8 40.2 23.7 24.9 23.5 39.6

Our model 67.8 56.6 45.7 41.9 24.2 26.4 24.2 41.0

is more important than the absolute joint location. Hence,

our approach is not significantly superior to [10] under the

PCK measurement, since the adversarial training strategy

can also appropriately constrain the predicted pose struc-

ture. Nevertheless, our proposed model can help generate

more accurate joint locations. From experiments on MPII

dataset in Sec. 4.4, we can observe that our proposed model

significantly outperforms [10] under the AUC measurement.

Qualitative Results We visualize some qualitative results

in Figure 5 (a) to better show the effectiveness of the pro-

posed model in exploiting parsing information. From the

results, one can observe the PIL corrects false detections on

elbows caused by occlusion, benefiting from left and right

arm part cues. In addition, PIL helps recover the missed

detection on right lower arm due to large pose variations in

the second image.

4.3. Results on PASCALPersonPart Dataset

As the extended PASCAL-Person-Part dataset involves

multi-person pose estimation, we re-implement the model

proposed in [26] with Hourglass network as the backbone. In

particular, the pose network adopts Hourglass with 8 stacked

modules HG-8s-1u and the parsing network of PIL is a much

smaller one with only 1 Hourglass module HG-1s-2u.

Our performance and comparison with state-of-the-arts

are shown in Table 5. The vanilla baseline model (without

PIL) achieves 39.6% mAP. Introducing the PIL improves the

performance to 41.0% mAP, offering a new state-of-the-art

on this dataset. Moreover, our proposed model outperforms

the best performing baseline [38] by a margin 2% mAP.

These results also demonstrate the strong generalizability of

our proposed model from single-person to multi-person pose

estimation domain.

Figure 5 (c) shows qualitative results for multi-person

pose estimation. The proposed PIL effectively refines the

joint localizations by better exploiting the part cues. In par-

ticular, it successfully helps isolate joints from neighboring

persons that are easy to confuse (see the first and second

examples). Moreover, PIL corrects the false joint detections,

as shown in the third and forth examples.

4.4. Results on MPII Dataset

We consider a more challenging scenario where the PIL

model is trained on a different dataset, aiming to evaluate the

transferability of our proposed model on “learning to adapt”

Table 6. Ablation experiments on MPII validation set. The model

in parenthesis denotes the parsing network used in PIL.

Head Sho. Elb. Wri. Hip Knee Ank. U.Body PCKh

HG-8s-1u 97.7 96.2 90.6 86.3 89.8 85.9 82.1 92.7 90.2

HG-8s-1u-PIL(HG-1s-2u) 97.8 96.5 91.4 87.3 90.7 87.3 83.7 93.3 91.0

Table 7. Comparison with state-of-the-arts on MPII testing set.

Head Sho. Elb. Wri. Hip Knee Ank. PCKh AUC

Pishchulin et al. [28] 74.3 49.0 40.8 34.1 36.5 34.4 35.2 44.1 24.5

Tompson et al. [35] 95.8 90.3 80.5 74.3 77.6 69.7 62.8 79.6 51.8

Carreira et al. [5] 95.7 91.7 81.7 72.4 82.8 73.2 66.4 81.3 49.1

Tompson et al. [34] 96.1 91.9 83.9 77.8 80.9 72.3 64.8 82.0 54.9

Hu&Ramanan [18] 95.0 91.6 83.0 76.6 81.9 74.5 69.5 82.4 51.1

Pishchulin et al. [29] 94.1 90.2 83.4 77.3 82.6 75.7 68.6 82.4 56.5

Lifshitz et al. [22] 97.8 93.3 85.7 80.4 85.3 76.6 70.2 85.0 56.8

Gkioxary et al. [15] 96.2 93.1 86.7 82.1 85.2 81.4 74.1 86.1 57.3

Rafi et al. [30] 97.2 93.9 86.4 81.3 86.8 80.6 73.4 86.3 57.3

Insafutdinov et al. [19] 96.8 95.2 89.3 84.4 88.4 83.4 78.0 88.5 60.8

Wei et al. [36] 97.8 95.0 88.7 84.0 88.4 82.8 79.4 88.5 61.4

Newell et al. [25] 98.2 96.3 91.2 87.1 90.1 87.4 83.6 90.9 62.9

Chu et al. [11] 98.5 96.3 91.9 88.1 90.6 88.0 85.0 91.5 63.8

Chou et al. [10] 98.2 96.8 92.2 88.0 91.3 89.1 84.9 91.8 63.9

Chen et al. [9] 98.1 96.5 92.5 88.5 90.2 89.6 86.0 91.9 61.6

Yang et al. [40] 98.5 96.7 92.5 88.7 91.1 88.6 86.0 92.0 64.2

Our model 98.6 96.9 93.0 89.1 91.7 89.0 86.2 92.4 65.9
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(a) (b)
Figure 4. Training accuracy and loss on MPII training set, shown

in (a) and (b) respectively, to demonstrate the proposed PIL can

accelerate learning speed of human pose estimation model.

across different datasets. In the experiments, we use HG-

8s-1u as the backbone pose network and HG-1s-2u as the

parsing network of PIL. As MPII does not provide parsing

annotations, we directly exploit the PIL trained on the LIP

dataset. We fix the parameters of PIL to predict dynamic

filters θ̃ from LIP dataset, and learn auxiliary parameters U

and V with the pose model, together.

Ablation Analysis We use the same validation set with

Tompson et al. [34] to conduct the ablation analysis, and

show results in Table 6. Our implementation of HG-8s-1u

achieves 90.2% PCKh. Introducing PIL improves the per-

formance to 91.0% PCKh. We also find that PIL improves

prediction accuracy for all body joints, although it is trained

on a different dataset. This demonstrates that our proposed

model can successfully transfer useful parsing information

from LIP dataset to MPII dataset.

In Figure 4, we also plot the training accuracy and loss of

models with or without PIL on MPII training set. we can find
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(a)

(c) (b)
Figure 5. Qualitative results on (a) LIP dataset, (b) MPII dataset, and (c) extended PASCAL-Person-Part dataset. For each row, the left

image shows the pose estimation result of the baseline model HG-8s-1u, the middle one shows the parsing map predicted by the proposed

PIL, and the right one shows the pose estimation result of our proposed model HG-8s-1u-PIL(HG-1s-2u).

that both increase of training accuracy and decrease of loss

go much faster with the help of PIL. These results demon-

strate the effectiveness of the proposed PIL on accelerating

the learning speed of human pose estimation model.

Comparison with State-of-the-arts Table 7 shows com-

parison of our model with state-of-the-arts. With the PIL

from LIP dataset, our model achieves new state-of-the-art

92.4% PCKh. One can also observe that the PIL improves

the performance for most of the joints, except for the knee.

The reason lies in the differences between LIP dataset and

MPII dataset, which make the PIL model from LIP dataset

unable to cover all variations in the configuration of knees in

MPII dataset. Hence, our model cannot outperform [9, 10]

with adversarial training for constraining joint configura-

tions of human body. Moreover, our model significantly im-

proves AUC over the best performing baseline from 64.2%
to 65.9%, showing PIL can indeed effectively utilize parsing

information to better localize body joints.

Qualitative Results Qualitative results are shown in Fig-

ure 5 (b). One can observe that the PIL model trained on LIP

dataset can perform well for some images on MPII dataset,

e.g. the first example. In this case, PIL successfully transfers

parsing information and corrects false detections on legs of

the person due to self ambiguity. In the second example, the

parsing model fails to generate high-quality parsing results.

However, we surprisingly find that PIL is still able to pro-

vide useful cues to refine the pose estimation on hands. This

shows the good generalizability of PIL to transfer “learning

to adapt” information across datasets.

5. Conclusion

In this paper, we proposed a novel Parsing Induced

Learner (PIL) to assist human pose estimation by effectively

exploiting parsing information. PIL learns to predict certain

pose model parameters from parsing features and adapts

the pose model to extracting complementary useful features.

The whole model is end-to-end trainable. Comprehensive

experiments on single- and multi-person pose estimation

benchmarks LIP and extended PASCAL-Person-Part demon-

strated advantages of the proposed PIL over other parsing

utilization approaches, including traditional multi-task learn-

ing. In addition, cross-dataset evaluation by utilizing PIL

trained on LIP dataset to MPII dataset showed the PIL offers

appealing transferability. Even if the applied dataset does

not provide any parsing information, externally pre-trained

PIL still helps the model achieve new state-of-the-art.

Acknowledgement

Jiashi Feng was partially supported by NUS startup R-

263-000-C08-133, MOE Tier-I R-263-000-C21-112, NUS

IDS R-263-000-C67-646 and ECRA R-263-000-C87-133.

2107



References

[1] M. Andriluka, L. Pishchulin, P. Gehler, and B. Schiele. 2d

human pose estimation: New benchmark and state of the art

analysis. In CVPR, 2014. 5

[2] L. Bertinetto, J. F. Henriques, J. Valmadre, P. Torr, and

A. Vedaldi. Learning feed-forward one-shot learners. In

NIPS, 2016. 3, 4

[3] H. Bilen and A. Vedaldi. Integrated perception with recurrent

multi-task neural networks. In NIPS, 2016. 2

[4] Z. Cao, T. Simon, S.-E. Wei, and Y. Sheikh. Realtime multi-

person 2d pose estimation using part affinity fields. In CVPR,

2017. 2, 5

[5] J. Carreira, P. Agrawal, K. Fragkiadaki, and J. Malik. Human

pose estimation with iterative error feedback. In ICCV, 2016.

7

[6] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L.

Yuille. Semantic image segmentatin with deep convolutional

nets and fully connected crfs. In ICLR, 2015. 5

[7] L.-C. Chen, Y. Yang, J. Wang, W. Xu, and A. L. Yuille. At-

tention to scale: Scale-aware semantic image segmentation.

In CVPR, 2016. 2

[8] X. Chen and A. L. Yuille. Parsing occluded people by flexible

compositions. In CVPR, 2015. 7

[9] Y. Chen, C. Shen, X.-S. Wei, L. Liu, and J. Yang. Adversarial

posenet: A structure-aware convolutional network for human

pose estimation. In ICCV, 2017. 2, 7, 8

[10] C.-J. Chou, J.-T. Chien, and H.-T. Chen. Self adversarial

training for human pose estimation. In CVPR Workshop,

2017. 2, 6, 7, 8

[11] X. Chu, W. Yang, W. Ouyang, C. Ma, A. L. Yuille, and

X. Wang. Multi-context attention for human pose estimation.

In CVPR, 2017. 1, 7

[12] J. Dai, K. He, and J. Sun. Instance-aware semantic segmenta-

tion via multi-task network cascades. In CVPR, 2016. 2

[13] J. Dong, Q. Chen, X. Shen, J. Yang, and S. Yan. Towards

unified human parsing and pose estimation. In CVPR, 2014.

1, 2, 3

[14] H. Fang, S. Xie, Y. Tai, and C. Lu. RMPE: Regional multi-

person pose estimation. In ICCV, 2016. 2

[15] G. Gkioxari, A. Toshev, and N. Jaitly. Chained predictions

using convolutional neural networks. In ECCV, 2016. 7

[16] K. Gong, X. Liang, X. Shen, and L. Lin. Look into per-

son: Self-supervised structure-sensitive learning and a new

benchmark for human parsing. In CVPR, 2017. 2, 5, 6

[17] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning

for image recognition. In CVPR, 2016. 4

[18] P. Hu and D. Ramanan. Bottom-up and top-down reasoning

with hierarchical rectified gaussians. In CVPR, 2016. 7

[19] E. Insafutdinov, L. Pishchulin, B. Andres, M. Andriluka, and

B. Schiele. Deepercut: A deeper, stronger, and faster multi-

person pose estimation model. In ECCV, 2016. 5, 7

[20] L. Ladicky, P. H. Torr, and A. Zisserman. Human pose esti-

mation using a joint pixel-wise and part-wise formulation. In

CVPR, 2013. 1, 2, 3

[21] X. Liang, C. Xu, X. Shen, J. Yang, S. Liu, J. Tang, L. Lin, and

S. Yan. Human parsing with contextualized convolutional

neural network. In ICCV, 2015. 1, 2

[22] I. Lifshitz, E. Fetaya, and S. Ullman. Human pose estimation

using deep consensus voting. In ECCV, 2016. 7

[23] S. Liu, X. Liang, L. Liu, X. Shen, J. Yang, C. Xu, L. Lin,

X. Cao, and S. Yan. Matching-cnn meets knn: Quasi-

parametric human parsing. In CVPR, 2015. 1, 2

[24] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional

networks for semantic segmentation. In CVPR, 2015. 2

[25] A. Newell, K. Yang, and J. Deng. Stacked hourglass networks

for human pose estimation. In ECCV, 2016. 1, 2, 3, 5, 6, 7

[26] X. Nie, J. Feng, J. Xing, and S. Yan. Generative partition

networks for multi-person pose estimation. arXiv preprint

arXiv:1705.07422, 2017. 2, 5, 7

[27] A. Paszke, S. Gross, and S. Chintala. Pytorch, 2017. 5

[28] L. Pishchulin, M. Andriluka, P. Gehler, and B. Schiele. Strong

appearance and expressive spatial models for human pose

estimation. In ICCV, 2013. 7

[29] L. Pishchulin, E. Insafutdinov, S. Tang, B. Andres, M. An-

driluka, P. Gehler, and B. Schiele. Deepcut: Joint subset

partition and labeling for multi person pose estimation. In

CVPR, 2016. 5, 7

[30] U. Rafi, B. Leibe, J. Gall, and I. Kostrikov. An efficient

convolutional network for human pose estimation. In BMVC,

2016. 7

[31] S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: Towards

real-time object detection with region proposal networks. In

NIPS, 2015. 5

[32] K. Simonyan and A. Zisserman. Very deep convolutional

networks for large-scale image recognition. ICLR, 2015. 3, 5

[33] T. Tieleman and G. Hinton. Lecture 6.5-rmsprop: Divide

the gradient by a running average of its recent magnitude.

COURSERA: Neural Networks for Machine Learning, 2012.

5

[34] J. Tompson, R. Goroshin, A. Jain, Y. LeCun, and C. Bregler.

Efficient object localization using convolutional networks. In

CVPR, 2015. 7

[35] J. J. Tompson, A. Jain, Y. LeCun, and C. Bregler. Joint

training of a convolutional network and a graphical model for

human pose estimation. In NIPS, 2014. 7

[36] S.-E. Wei, V. Ramakrishna, T. Kanade, and Y. Sheikh. Con-

volutional pose machines. In CVPR, 2016. 1, 2, 5, 7

[37] F. Xia, P. Wang, L.-C. Chen, and A. L. Yuille. Zoom better to

see clearer: Human part segmentation with auto zoom net. In

ECCV, 2015. 1, 2

[38] F. Xia, P. Wang, X. Chen, and A. Yuille. Joint multi-person

pose estimation and semantic part segmentation. In CVPR,

2017. 1, 2, 3, 5, 7

[39] K. Yamaguchi, M. H. Kiapour, L. E. Ortiz, and T. L. Berg.

Parsing clothing in fashion photographs. In CVPR, 2012. 1,

2, 3

[40] W. Yang, S. Li, W. Ouyang, H. Li, and X. Wang. Learning

feature pyramids for human pose estimation. In ICCV, 2017.

1, 2, 7

[41] Y. Yang and D. Ramanan. Articulated human detection with

flexible mixtures of parts. IEEE Trans. Pattern Anal. Mach.

Intell., 35(12):2878–2890, 2013. 5

[42] Z. Zhang, P. Luo, C. C. Loy, and X. Tang. Facial landmark

detection by deep multi-task learning. In ECCV, 2014. 5

2108


