
Unsupervised Domain Adaptation with Similarity Learning

Pedro O. Pinheiro

Element AI

Montreal, QC, Canada

pedro@elementai.com

Abstract

The objective of unsupervised domain adaptation is to

leverage features from a labeled source domain and learn

a classifier for an unlabeled target domain, with a simi-

lar but different data distribution. Most deep learning ap-

proaches to domain adaptation consist of two steps: (i)

learn features that preserve a low risk on labeled samples

(source domain) and (ii) make the features from both do-

mains to be as indistinguishable as possible, so that a clas-

sifier trained on the source can also be applied on the tar-

get domain. In general, the classifiers in step (i) consist

of fully-connected layers applied directly on the indistin-

guishable features learned in (ii). In this paper, we pro-

pose a different way to do the classification, using similarity

learning. The proposed method learns a pairwise similarity

function in which classification can be performed by com-

puting similarity between prototype representations of each

category. The domain-invariant features and the categori-

cal prototype representations are learned jointly and in an

end-to-end fashion. At inference time, images from the tar-

get domain are compared to the prototypes and the label

associated with the one that best matches the image is out-

puted. The approach is simple, scalable and effective. We

show that our model achieves state-of-the-art performance

in different unsupervised domain adaptation scenarios.

1. Introduction

Convolutional Neural Networks (ConvNets) [32] based

methods achieve excellent results in large-scale supervised

learning problems, where a lot of labeled data exists [30,

27]. Moreover, these features are quite general and can be

used in a variety of vision problems, such as image caption-

ing [58], object detection [33] and segmentation [26].

However, direct transfer of features from different do-

mains do not work very well in practice, as the data distri-

butions of domains might change. In computer vision, this

problem is sometimes referred to as domain shift [52]. The

most commonly used approach to transfer learned features
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Figure 1: Illustrative example of our similarity-based clas-

sifier. A query target-domain image representation is com-

pared to a set of prototypes, one per category, computed

from source-domain images. The label of the most similar

prototype is assigned to the test image.

is to further modify them through a process called “fine-

tuning”. In this case, the features are adapted by training

the network with labeled samples from the new data distri-

bution. In many cases, however, acquiring labeled data can

be expensive.

Unsupervised Domain Adaption deals with the domain

shift problem. We are interested in learning representations

that are invariant to domains with different data distribu-

tions. In this scenario, the machine has access to a labeled

dataset (called source domain) and an unlabeled one (with a

similar but different data distribution, called target domain),

and the objective is to correctly infer the labels on the latter.

Most current approaches are based on deep learning meth-

ods and consist of two steps: (i) learn features that preserve

a low risk on labeled samples (source domain) and (ii) make

the features from both domains to be as indistinguishable as

possible, so that a classifier trained on the source can also
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be applied on the target domain.

Unsupervised domain adaptation can also be used to

train models with synthetic data (e.g. 3D renders or game

engines). Assuming we are able to handle the domain shift

problem, we can make use of virtually unlimited number

of labeled (synthetic) images and adapt the model to nat-

ural images. Indeed, in certain areas of research, such as

robotics vision or reinforcement learning, acquiring train-

ing sample is very expensive. Training in a synthetic do-

main and transferring the learned features to real-world en-

vironments can be a solution to alleviate the high cost of

acquiring and labeling training data.

Theoretical studies in domain adaptation [5, 4] suggest

that a good cross-domain representation is one in which the

algorithms are not able to identify from which domain the

original input comes from. Most current approaches to do-

main adaptation achieve this goal by mapping cross-domain

features into a common space using deep learning methods.

This is generally achieved by minimizing some measure of

domain variance (such as the Maximum Mean Discrepancy

(MMD) [23, 55, 36, 38]), or by matching moments of the

two distributions [51].

Another way to deal with the domain variation problem

is to make use of adversarial training [1, 15, 53, 54, 7].

In this scenario, the domain adaptation problem is cast as

a minimax game between a domain classifier and feature

learning (see Figure 2a). A neural network learns features

that are, at the same time, as discriminative as possible

(in the source domain) and as indistinguishable as possible

(among the domains).

In general, the classifier used in the source domain is a

simple fully-connected network followed by a softmax over

the categories (as in standard supervised learning). While

this is, in principle, a good idea (given the representations

are trained to be indistinguishable), it leaves the shared rep-

resentation vulnerable to contamination by noise that is cor-

related with the underlying shared distribution [47, 7].

In this paper, we propose a different way to do classifica-

tion, while keeping the adversarial domain-confusion com-

ponent of [15]. Instead, we propose a similarity-based clas-

sifier in which each image (from either the source or target

domain) is compared to a set of prototypes (or centroides).

The label associated to the prototype that best matches the

query image is given to it. See Figure 1. Prototypes are

vector representations that are representative of each cate-

gory that appears in the dataset. They are learned at the

same time as the image embeddings, and the whole system

is backpropagable.

More precisely, we are interested in learning embeddings

for the inputs (the source/target domain images), the embed-

ding of each prototype (one per category), and a pairwise

similarity function that compares the inputs and the proto-

types (see Figure 2b). At the same time, adversarial training

is performed on the inputs to force domain-confusion. All

these components are learned jointly and in an end-to-end

fashion.

At inference time, each embedding prototype is com-

puted a priori (by averaging the embedding over multiple

source images). A test image (from target domain) is then

compared to each of the prototypes and the label of the near-

est prototype is assigned to it.

We show empirically that the proposed similarity-based

classification approach is more robust to the domain shift

between two datasets. Our method is able to outperform the

commonly used classifier and achieves new state of the art

in multiple domain adaptation scenarios. We show results

in three domain adaptation datasets: Digits, which con-

tains digit images from difference domains (MNIST [32],

USPS [13] and MNIST-M [15]), Office-31 [45], which con-

tains images of office objects in three different domains and

VisDA [42], a large-scale dataset focused on simulation-to-

reality shift.

The paper is organized as follows: Section 2 presents re-

lated work, Section 3 describes our proposed method and

architecture choices, and Section 4 describes our experi-

ments in different datasets. We conclude in Section 5.

2. Related Works

Similarity Learning: Many previous work focus on

learning a similarity measure that is also a metric, like the

case of the positive semi definite matrix that defines the Ma-

halanobis distance. See [3] for a survey.

Multiple authors (e.g. [60, 17, 18, 59, 40]) used a learned

similarity measure together with nearest neighbors classi-

fier. [48, 46, 10, 44, 9] propose methods in which features

are learned along with the metric learning. Chechik et

al. [9] uses similarity measure in large-scale image search.

Similar to us, they define similarity as a bilinear operator

but removes the positivity and symmetry constraints to fa-

vor scalability. Mensink et al. [40] and Snell et al. [49],

similar to this work, propose to learn metric space in which

classification is performed by computing distances to pro-

totype representation of each category (mean of its ex-

amples). However, the problem setting and the functions

parametrization of these works are very different form ours.

Unsupervised Domain Adaptation: Non-deep ap-

proaches for unsupervised domain adaptation usually con-

sist of matching the feature distribution between the source

and target domain [24, 11]. These methods can roughly be

divided into two categories: (i) sample re-weighting [29, 28,

19] and (ii) feature space transformation [41, 22, 2, 50, 31].

Recently, an increasing interest in ConvNets [32] ap-

proaches has emerged, due to its ability to learn pow-

erful features. These methods, in general, are trained

to minimize a classification loss and maximize domain-

confusion. The classification loss is in general computed
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through a fully-connected network trained on labeled data.

The domain-confusion is achieved in two different ways: (i)

discrepancy loss, that reduces the shift between the two do-

mains [51, 55, 36, 38, 57, 16] or (ii) adversarial loss, which

encourages a common feature space with respect to a dis-

criminator [53, 14, 15, 1, 54].

DeepCORAL [51] achieves the domain-confusion by

aligning the second-order statistics of the learned feature

representations. In Deep Domain Confusion (DDC) [55],

the authors propose a domain-confusion loss based on

MMD [23] applied on the final representation of a net-

work. Long et al. [36] (DAN) consider a sum of multiple

MMDs between several layers. They consider multiple ker-

nels for adapting the representations, achieving more robust

results than previous work. In Join Adaptation Networks

(JAN) [38], the authors propose an extension to DAN in

which they use the joint distribution discrepancy over deep

features (instead of their sum). More similar to ours, [57]

propose a method that uses hash code to perform classi-

fication (and MMD for domain confusion). This method

differs from ours in two ways: (i) we consider a different

method for domain confusion (adversarial loss instead of

MMD) and (ii) we explicitly learn a similarity measure and

the prototype embeddings (which brings big improvement

in performances as we show in the experiments).

Ganin et al. [14] and Ajakan et al. [1], and subse-

quently [15], impose domain confusion through an adver-

sarial objective with respect to a domain discriminator with

the reverse gradient algorithm (RevGrad). They treat do-

main invariance as a binary classification problem, but di-

rectly maximizes the loss of the domain classifier by revers-

ing its gradient. This allows the model to learn features that

are discriminative in the source domain and indiscriminate

with respect to the domain shift. ADDA [54] proposes a

general framework for adversarial deep domain adaptation

and uses an inverted label GAN [21] loss to achieve the do-

main confusion. The DSN [7] model divides the space of

images into two: one that captures information of the do-

main, and other that captures information shared between

domains.

Certain methods incorporate generative modeling (usu-

ally based on GANs [21]) into the feature learning pro-

cess. Coupled Generative Adversarial Networks [35] con-

sists of a tuple of GANs each corresponding to one of the

domains that learns a joint distribution of multi-domain im-

ages. In [6], the authors propose a model that generates im-

ages (conditioned on source-domain images) that are simi-

lar to images from target domain.

Most methods mentioned in this section use the same

classifier component: a fully-connected network. In this pa-

per, contrary to them, we use a different classifier based on

similarity learning. In our method, we follow the approach

of [15] to impose domain-confusion (due to its simplicity

and efficiency). We note, however, that our similarity-based

classifier could be applied to other approaches mentioned in

this section.

3. Method

In domain adaptation, we have access to labeled images

Xs = {(xs
i , y

s
i )}

Ns

i=0 drawn from a source domain distribu-

tion ps(x, y) and target images Xt = {(xt
i, y

t
i)}

Nt

i=0 drawn

from a target distribution pt(x, y). In the unsupervised set-

ting, we do not have any information about the label on the

target domain.

We address the problem of unsupervised domain adapta-

tion using a similarity-based classifier. Our model, which

we call SimNet, is composed of two different compo-

nents (see Figure 2b): (i) the domain-confusion compo-

nent, which forces the features of both domains, f(Xs) and

f(Xt), to be as indistinguishable as possible and (ii) a clas-

sifier based on a set of prototypes, µc (one for each category

c ∈ {1, 2, ..., C}). Both components are trained jointly and

in an end-to-end fashion.

This approach is based on the assumption that it exists an

embedding for each category such that all the points of the

category cluster around it, independent of its domain. Infer-

ence is then performed in a test image by simply finding the

most semantically similar prototype.

We next describe the proposed similarity-based classi-

fier, followed by the training and inference procedures and

implementation details.

3.1. Similarity­Based Classifier

Our classifier is composed of C different prototypes, one

per category. Each prototype represents a general embed-

ding for a category, incorporating all its variations. We as-

sume that there exists a representation space in which all

samples of a given category can be clustered around its cor-

responding prototype.

Each prototype is represented by a m-dimensional vec-

tor µc ∈ R
m parametrized by a ConvNet g(·), with trainable

parameters θg . The prototypes are computed by the average

representation of all source samples belonging to the cate-

gory c:

µc =
1

|Xc|

∑

xs
i
∈Xc

g(xs
i ) , (1)

where X
c is the set of all images in the source domain la-

beled with category c. Similarly, the input images (from

either domain) are represented as a n-dimensional vector

fi = f(xi) ∈ R
n, thanks to a ConvNet f(·) parametrized

by θf .

By leveraging the powerful representations of convolu-

tional neural networks, we propose a simple model that can

predict which of the prototypes (and therefore categories)

best describes a given input. For this purpose, a similarity
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Figure 2: Architectures for adversarial unsupervised domain adaptation. (a) Standard approaches usually consist of two

heads: disc, which imposes features do be indiscriminate w.r.t. the domain and class, that uses a fully-connected network to

classify source domain images. (b) Our method keeps the same disc component but uses instead a similarity-based classifier.

It compares the embedding of an image with a set of prototypes. The label that best matches the image is given. All

representations are learned jointly and in an end-to-end fashion.

metric between images and prototypes is learned, as illus-

trated in Figure 2b. The similarity between an input image

xi and prototype µc is defined simply as a bilinear opera-

tion:

h(xi, µc) = fT
i Sµc , (2)

with S ∈ R
n×m being the trainable parameters. S is an

unconstrained bilinear similarity operator, and it is not re-

quired to be positive or symmetric.

Note that the two ConvNets, f and g, do not share

the same parameters. This is particularly important in the

domain adaptation scenario, in which the representations

(from input and from prototypes) have different roles in

the classification. On the one hand, the domain features fi
should, at the same time, be domain invariant and match one

of the prototypes µc. On the other hand, the embedding pro-

totypes should be as close as possible to the source domain

images that represents its category. In the case of single

domain classification, it would make sense to use the same

network for f and g to reduce the capacity of the model,

since there is no shift in the domain. In this case, the model

would be similar to Siamese Networks [10].

The model is trained to discriminate the target prototype

µc from all other prototypes µk (with k 6= c), given a la-

beled image. We interpret the output of the network as class

conditional probabilities by applying a softmax [8] over the

bilinear operator:

pθ(c|xi, µ1, ..., µC) =
eh(xi,µc)

∑

k e
h(xi,µk)

. (3)

θ = {θf , θg,S} represents the set of all trainable parame-

ters of the model. Learning is achieved by minimizing the

negative log-likelihood (with respect to θ), over all labeled

samples (xi, yi) ∈ X
s:

Lclass(θ) = −
∑

(xi,yi)

[

h(xi, µyi
)−log

∑

k

eh(xi,µk)

]

+γR .

(4)

R is a regularization term that encourage the prototypes to

encode different aspects of each category. At each train-

ing iteration, the prototypes are approximated by choosing

a random subset of examples for each class.

The regularizer is modeled as a soft orthogonality con-

straint. Let Pµ be a matrix whose rows are the prototypes,

we write the regularization term as:

R = ||PT
µPµ − I||2F , (5)

where || · ||2F is the squared Frobenius norm and I is the

identity matrix.

3.2. Training and Inference

We are interested in training a classifier on the source

domain (labeled samples) and apply it to the target domain

(unlabeled samples). To achieve this goal, the model learns

features that maximize the domain confusion, while pre-

serving a low risk on the source domain.

The domain-invariant component is responsible to min-

imize the distance between the empirical source and target
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feature representation distributions, f(Xs) and f(Xt). As-

suming this is the case, the classifier trained on the source

feature representation can thus be directly applied to the tar-

get representation.

Domain confusion is achieved with a domain discrimi-

nator D, parametrized by θd. The discriminator classifies

whether a data point is drawn from the source or the target

domain, and it is optimized following a standard classifica-

tion loss:

Ldisc(θ, θd) = −

Ns
∑

i=0

logD(f(xs
i )) +

−

Nt
∑

i=0

log(1−D(f(xt
i))) .

(6)

We achieve domain confusion by applying the Reverse Gra-

dient (RevGrad) algorithm [15], which optimizes the fea-

tures to maximize the discriminator loss directly. We point

the reader to [15] for more details about this component.

The model is trained to jointly maximize the domain

confusion (between source and target) and infer the cor-

rect category on the source (labeled) samples, through the

similarity-based classifier described in the previous section.

Therefore, our final goal is to optimize the following mini-

max objective:

min
θf ,θg,S

max
θd

Lclass(θf , θg,S)− λLdisc(θf , θd) , (7)

where λ is a balance parameter between the two losses.

The objective is optimized using stochastic gradient descent

with momentum.

At inference time, the prototypes are computed a priori,

following Equation 1, and stored in memory. The similar-

ity between a target-domain test image and each prototype

is computed, and the label that best matches the query is

outputed.

3.3. Implementation Details

In our large-scale experiments (i.e. Office-31 and VisDA

datasets), the parameters of networks f and g are initial-

ized with a ResNet-50 [27] that was pre-trained to perform

classification on the ImageNet dataset [12], and the clas-

sification layer is removed. For the Digits experiments,

both f and g have three convolution layers with 5 × 5 ker-

nels and stride 1 (with batch normalization and ReLU non-

linearities) with 64, 64 and 128 hidden units, respectively.

We included a max-pooling after the first two convolutions.

The discriminator network and the bilinear classifier are

initialized randomly from a uniform distribution. We set

the balance parameter λ = 0.5 and the regularization coef-

ficient γ = 0.01 (we observed that the model is robust to

this hyperparameter). We use a learning rate of 10−5 (10−3

for digits), with a weight decay of 10−5 and momentum of

0.99. Since the similarity matrix and the discriminator are

trained from scratch, we set their learning rate to be 10 times

that of the other layers.

During training, the images (from both domains) are re-

sized such that the shorter dimension is of size 300 pixels

(32 for digits) and a patch of 224 × 224 (28 × 28 for dig-

its) is randomly sampled. Each mini-batch has 32 images

from each domain. At each training iteration, the proto-

types are approximated by picking one random sample for

each class. We noticed that the training converges with this

design choice and it is more efficient.

The discriminator is a simple fully-connected network.

It contains two layers, each of dimension 1024 and ReLU

non-linearity, followed by the domain classifier. It receives

as input the output of network f and outputs the probability

of which domain the input comes from (this probability is,

again, modeled by a softmax).

We parametrize the bilinear operation with a low-rank

approximation, S = U
T
V (U,V ∈ R

n×m, m = 512) and

Equation 2 becomes:

h(xi, µc) = (Ufi)
T · (Vµc) . (8)

This parametrization brings multiple benefits. First, it al-

lows us to control the capacity of the model. Second, it

can trivially be implemented in any modern deep learning

framework and benefits from an efficient implementation.

Finally, it also provides fast inference, as the right side of h

is independent of the input image; it can be computed only

once and stored in memory.

At inference time for the large-scale experiments, the

shorter dimensions of the test image is resized to 300 pix-

els, as in the training stage. The model is applied densely

at every location, resulting in an output with spatial dimen-

sions bigger than 1. The output is averaged over the spatial

dimensions to get one-dimensional vector. Because the sim-

ilarity measure is a bilinear operation, the averaging can be

seen as an ensemble over different spatial locations of the

test image. In the Digits experiments, we directly forward

the (28× 28 input).

4. Experimental Results

We evaluate the performance of our model, SimNet, in

three important unsupervised domain adaptation datasets

and across different domain shifts. Figure 3 illustrates im-

age samples from different datasets and domains.

In the experiments, we use all labeled source images and

all unlabeled target images, following the standard eval-

uation protocol for unsupervised domain adaptation [15,

38]. All hyperparameters were chosen via transfer cross-

validation [61]. We evaluate the performance of all methods

with classification accuracy metric.
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Figure 3: We evaluate our model on unsupervised domain adaptation across different domains in three distinct settings. The

first setting is on different digits datasets (MNIST, USPS and MNIST-M). The second setting is over all 6 combinations of

domains in Office-31 dataset. The third is on the synthetic-to-real domain shift on VisDA dataset.

USPS to
MNIST

MNIST to
USPS

MNIST to
MNIST-M

RevGrad-ours [15] 89.9 89.1 84.4

CoGAN [35] 89.1 91.2 62.0

ADDA [54] 90.1 89.4 –

DSN [7] – 91.3 83.2

AssocDA [25] – – 89.5

PixelDA [6] – 95.9 98.2

SimNet 95.6 96.4 90.5
Table 1: Per-class average classification accuracy (%) on

the three digits domain shift evaluated.

4.1. Digits Results

We evaluate our model in three different digits domain

shifts: (i) USPS to MNIST, (ii) MNIST to USPS and (iii)

MNIST to MNIST-M, a variation of MNIST for domain

adaptation proposed by [15]. In MNIST-M, the samples are

created by using each MNIST digit as a binary mask and

inverting it with the colors of a background image (made of

random crops from BSDS500 dataset [39]). In our experi-

ments, we follow a experimental protocol similar to [7, 6].

For the third experiment, we use the same data augmenta-

tion as [25]: we randomly invert MNIST images since they

are always white on black, unlike MNIST-M.

Table 1 compares our method with other approaches. We

are able to achieve competitive results in all different do-

main shifts. We note that PixelDA [6] performs extremely

well on the third task because it learns a transformation (on

pixel level) from one domain to another – and this is pre-

cisely how the target domain is generated in this scenario.

This, however, is not the case in more complex dataset shift.

4.2. Office­31 Results

Office-31 [45] is a standard dataset used for domain

adaptation. The dataset contains 4652 images of 31 dif-

ferent categories. The categories are everyday office ob-

jects, such as backpack, pen and phone. The images on this

dataset belong to three distinct domains: (i) Amazon (A),

which contains images from the Amazon website, (ii) DSLR

(D) and (iii) Webcam (W), which contains photos taken by

a high quality camera and a webcam, respectively (see Fig-

ure 3, left). We evaluate the performance of our method in

all 6 possible transfer tasks, using the same experimental

protocol as [38].

Table 2 compares the performance of our method with

other approaches. The first row shows results without any

adaptation, where the network is fine-tuned on the source

domain and directly applied to the target domain. This

serves as a lower bound. Other results are reported from

Long et al. [38]. For a fair comparison, all models use the

same base architecture, ResNet-50. SimNet beats the previ-

ous state of the art in most settings, while being similar in

the remaining ones.

4.3. VisDA Results

VisDA dataset [42] is focused on simulation-to-real do-

main shift.1 It contains two very distinct domains: (i) Syn-

thetic, which contains synthetic renderings of 3D models

from different angles and with different lightning condi-

tions and (ii) Real, which contains natural images cropped

either from COCO [34] (validation) or Youtube-BB [43]

(test) datasets (see Figure 3, right). It contains over 280K

images across 12 categories in the combined training, vali-

dation and test domains.

Comparison to other methods: Table 3 shows the per-

formance of different methods on the VisDA dataset, for

the synthetic to real (validation set) domain shift.2 Once

1This dataset also contains segmentation labels, but on this paper we

focus on classification task only.
2Some non-published results can be found on-line. However, no detail

of the methods nor how many tricks were used are mentioned.
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A→W D→W W→D A→D D→A W→A average

Source Only 68.4 ± 0.2 96.7 ± 0.1 99.3 ± 0.1 68.9 ± 0.2 62.5 ± 0.3 60.7 ± 0.3 76.1

TCA [41] 72.7 ± 0.0 96.7 ± 0.0 99.6 ± 0.0 74.1 ± 0.0 61.7 ± 0.0 60.9 ± 0.0 77.6

GFK [20] 72.8 ± 0.0 95.0 ± 0.0 98.2 ± 0.0 74.5 ± 0.0 63.4 ± 0.0 61.0 ± 0.0 77.5

DDC [55] 75.6 ± 0.2 96.0 ± 0.2 98.2 ± 0.1 76.5 ± 0.3 62.2 ± 0.4 61.5 ± 0.5 78.3

DAN [36] 80.5 ± 0.4 97.1 ± 0.2 99.6 ± 0.1 78.6 ± 0.2 63.6 ± 0.3 62.8 ± 0.2 80.4

RTN [37] 84.5 ± 0.2 96.8 ± 0.1 99.4 ± 0.1 77.5 ± 0.3 66.2 ± 0.2 64.8 ± 0.3 81.6

RevGrad [15] 82.0 ± 0.4 96.9 ± 0.2 99.1 ± 0.1 79.7 ± 0.4 68.2 ± 0.4 67.4 ± 0.5 82.2

JAN [38] 85.4 ± 0.3 97.4 ± 0.2 99.8 ± 0.2 84.7 ± 0.3 68.6 ± 0.3 70.0 ± 0.4 84.3

JAN-A [38] 86.0 ± 0.4 96.7 ± 0.3 99.7 ± 0.1 85.1 ± 0.4 69.2 ± 0.4 70.7 ± 0.5 84.6

SimNet 88.6 ± 0.5 98.2 ± 0.2 99.7 ± 0.2 85.3 ± 0.3 73.4 ± 0.8 71.8 ± 0.6 86.2

Table 2: Classification accuracy evaluation (%) on Office-31 dataset for unsupervised domain adaptation with different

domain pairs. All models utilize ResNet-50 as base architecture.

avg. acc.

Source Only 49.51

DAN [36] 53.02

RTN [37] 53.56

RevGrad [15] 55.03

JAN [38] 61.06

JAN-A [38] 61.62

RevGrad-ours 58.62

SimNet 69.58

Table 3: Per-class average classification accuracy (%) on

VisDA-val dataset for unsupervised domain adaptation. All

the models utilize ResNet-50 as base architecture.

again, all the experiments are computed using ResNet-50

backbone for fair comparison with the models. The results

reported are the average per-class accuracy. Results from

other models are taken from Long et al. [38]3.

RevGrad-ours reports our implementation of the

RevGrad method [15] (with a ResNet-50 architecture), in

which SimNet shares the adversarial learning component.

As RevGrad-ours and SimNet were trained with same train-

ing setup and discriminator function, we can disentan-

gle the performance improvements achieved by the pro-

posed similarity-based classifier. SimNet achieves over

10% boost in performance. This result gives us a hint

that similarity-based classifiers are more robust than typi-

cal fully-connected networks when features are subject to

domain invariance.

VisDA is more challenging than Office-31. The objects

in the target domain contains more variability and the do-

main shift between the two domains is much bigger. Re-

sults in Table 3 show that the model scales nicely with

the data. SimNet achieves a bigger improvement in per-

formance, compared to previously published state of the

art [38], when the scale of the dataset increases. These

3These values were presented by the authors on the conference where

the published paper was presented.

results are achieved without any inference trick (such as

model ensembling, multi-scale inference, etc.).

SimNet, when trained with VisDA-test as the target do-

main and without bells and whistles, achieves a similar per-

formance: 68.66% average per-class accuracy on the test

set.

Model variants: Table 4 shows the performance of dif-

ferent versions of SimNet in each of the 12 categories of the

VisDA-val. As before, Source Only shows the results when

trained on the source images only (this is a lower bound). In

this experiment, we use the proposed similarity-based clas-

sifier and we notice that even in the ‘source only’ scenario

it performs better than the fully-connected one: a perfor-

mance of 49.5% against 46.0%. Train on Target shows re-

sults when the model is trained with the labels of the target

domain (this can be interpreted as an upper bound).

We also show that sharing the weight between the two

networks, f and g, hurts the performance (SimNet-f=g).

The features learned by f need to be domain agnostic,

while this requirement is not necessary for g. Imposing

this constraint on g would make the learning more difficult

and thus hurt the performance. The results of SimNet-no-

reg emphasis the importance of the regularizer described in

Equation 5. The penalty term imposes the prototypes to

be orthogonal, which eases the similarity computation. In

SimNet-152, we show the results using a ResNet-152 (pre-

trained on ImageNet) as base architecture, which pushes the

performance even further. This results shows that proposed

bilinear classifier is also able to scale with the quality of the

features. For more insight on the performance of different

categories, we plot different confusion matrices in Figure 4.

Feature visualization: Finally, we use t-SNE [56] to vi-

sualize feature representations from different domains and

at different adaptation stages. Figure 5(a-b) show features

from source (blue) and target (red) domains before and after

adaptation, respectively. The features become much more

domain invariant after adaptation. We observe a strong cor-

respondence in terms of classification performance (on the
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Source Only 67.7 36.6 48.4 68.2 76.9 5.3 65.8 38.0 72.5 29.1 82.1 3.73 49.5

RevGrad-ours 75.9 70.5 65.3 17.3 72.8 38.6 58.0 77.2 72.5 40.4 70.4 44.7 58.6

SimNet-f=g 85.7 51.7 58.5 53.4 74.5 23.9 69.7 68.9 54.5 50.9 76.8 21.2 57.5

SimNet-no-reg 92.1 81.3 68.7 39.8 86.4 10.2 68.4 79.8 87.5 69.8 73.1 35.9 66.1

SimNet 94.5 80.2 69.5 43.5 89.5 16.6 76.0 81.1 86.4 76.4 79.6 41.9 69.6

SimNet-152 94.3 82.3 73.5 47.2 87.9 49.2 75.1 79.7 85.3 68.5 81.1 50.3 72.9

Train on target 99.5 91.9 97.3 96.8 98.3 98.5 94.1 96.2 99.0 98.2 97.9 82.3 95.8

Table 4: Per-class classification accuracy (%) for different variants of SimNet on VisDA-val.

Figure 4: Confusion matrix for source only, SimNet and or-

acle (trained on target domain) models on the synthetic-to-

real adaptation on VisDA-val dataset. Best viewed in color.

target domain) and the overlap between the domain distri-

butions.

Figure 5(c-d) show features after adaptation from source

and target domains, respectively. Each category is encoded

by a color and the prototypes are shown as black triangles.

As expected, the images on the source domain are sepa-

rated better than the images from the target domain. We

can observe few interesting facts about these plots. First,

the similarity measure is well learned for certain categories

(‘aeroplane’,‘horse’, ‘plant’). Categories that are similar in

terms of appearance and semantics are closer in the t-SNE

space: ‘bicycle’ and ‘motorcycle’ are very close and ‘truck’

is located between ‘car’ and ‘bus’. Interestingly, SimNet

seems to confuse the categories ‘knife’ and ‘skateboard’.

5. Conclusion

In this paper we propose SimNet, a neural net-

work model fur unsupervised domain adaptation using a

similarity-based classifier. We show that similarity learning,

together with feature learning, can outperform by a large

margin the ‘standard’ fully-connected classifier in the prob-

lem of domain adaptation. The method is simple and highly

effective. We demonstrate its efficacy by applying it in

different unsupervised adaptation problems, achieving new

state-of-the-art performance in multiple scenarios. Future

works include applying the model in different modalities

of domain adaptation (e.g. semantic segmentation, object

target domain
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Figure 5: (a-b) Image features from source (blue) and tar-

get (red) domains, respectively. The adaptation makes the

the distribution of features much closer. (c-d) Image fea-

tures after adaptation from source and target domain, re-

spectively. Each category is encoded by a color and the pro-

totypes are shown as black triangles. Best viewed in color.

detection) and with different domain discrepancy reduction

algorithms (such as MMD and its variants). It would also

be interest to explore how the similarity-based classifier can

scale to a larger number of categories and training samples.
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