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Abstract

Driving Scene understanding is a key ingredient for in-

telligent transportation systems. To achieve systems that

can operate in a complex physical and social environment,

they need to understand and learn how humans drive and

interact with traffic scenes. We present the Honda Research

Institute Driving Dataset (HDD), a challenging dataset to

enable research on learning driver behavior in real-life en-

vironments. The dataset includes 104 hours of real human

driving in the San Francisco Bay Area collected using an in-

strumented vehicle equipped with different sensors. We pro-

vide a detailed analysis of HDD with a comparison to other

driving datasets. A novel annotation methodology is intro-

duced to enable research on driver behavior understanding

from untrimmed data sequences. As the first step, baseline

algorithms for driver behavior detection are trained and

tested to demonstrate the feasibility of the proposed task.

1. Introduction

Driving involves different levels of scene understanding

and decision making, ranging from detection and tracking

of traffic participants, localization, scene recognition, risk

assessment based on prediction and causal reasoning, to

interaction. The performance of visual scene recognition

tasks has been significantly boosted by recent advances of

deep learning algorithms [27, 9, 35, 8], and an increasing

number of benchmark datasets [6, 21]. However, to achieve

an intelligent transportation system, we need a higher level

understanding.

Different vision-based datasets for autonomous driv-

ing [7, 12, 22, 28, 4, 34, 23] have been introduced and push

forward the development of core algorithmic components.

In core computer vision tasks, we have witnessed signifi-

cant advances in object detection and semantic segmenta-

tion because of large scale annotated datasets [6, 7, 4]. Ad-

ditionally, the Oxford RobotCar Dataset [22] addresses the

challenges of robust localization and mapping under signif-

Figure 1: An example illustrating different driver behaviors in

traffic scenes. The yellow trajectory indicates GPS positions of

our instrumented vehicle. The driver performs actions and reasons

about the scenes. To understand driver behavior, we define a 4-

layer annotation scheme: Goal-oriented action, Stimulus-driven

action, Cause and Attention. In Cause and Attention, we use

bounding boxes to indicate when the traffic participant causes a

stop or is attended by the driver. Best viewed in color.

icantly different weather and lighting conditions. However,

these datasets do not address many of the challenges in the

higher level driving scene understanding. We believe de-

tecting traffic participants and parsing scenes into the corre-

sponding semantic categories is only the first step. Toward

a complete driving scene understanding, we need to under-

stand the interactions between human driver behaviors and

the corresponding traffic scene situations [29].

To achieve the goal, we design and collect HDD1 with

the explicit goal of learning how humans perform actions

and interact with traffic participants. We collected 104

hours of real human driving in the San Francisco Bay Area

1The dataset will be made available at

https://usa.honda-ri.com/HDD
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using an instrumented vehicle. The recording consists of

137 sessions, and each session represents a navigation task

performed by a driver. Further details about the dataset will

be discussed in Section 3.

In each session, we decompose the corresponding navi-

gation task into multiple predefined driver behaviors. Fig-

ure 1 illustrates the decomposition of a navigation task.

The yellow trajectory indicates GPS positions of our in-

strumented vehicle. A 4-layer annotation scheme is intro-

duced to describe driver behaviors. The first layer is Goal-

oriented action, colored green. In this example, the driver

is making a left turn as shown in the upper left image of Fig-

ure 1. The second layer is Stimulus-driven action, colored

red and is shown in the lower left image. In this example,

the driver makes a stop because of stopped car. The stop ac-

tion corresponds to Stimulus-driven action layer and con-

gestion belongs to Cause, which is designed to indicate the

reason the vehicle makes a stop. The red bounding box lo-

calizes the Cause.

While driving, human drivers are aware of surrounding

traffic participants. We define the fourth layer called Atten-

tion, colored purple. In this example, the purple bounding

box is used to indicate the traffic participant attended by the

driver. Note that our annotation scheme is able to describe

multiple scenarios happening simultaneously. In Figure 1,

two different scenarios are illustrated. First, the driver in-

tends to make a left turn but stops because of congestion.

Second, the driver is making a U-turn while paying atten-

tion to a crossing pedestrian. A detailed description of our

annotation methodology is presented in Section 3.1.

With the multimodal data and annotations, our dataset

enables the following challenging and unique research di-

rections and applications for intelligent transportation sys-

tems. First, detecting unevenly (but naturally) distributed

driver behaviors in untrimmed videos is a challenging re-

search problem. Second, interactions between drivers and

traffic participants can be explored from cause and effect

labels. Third, a multi-task learning framework for learning

driving control can be explored. With the predefined driver

behavior labels, the annotations can be used as an auxiliary

task (i.e., classification of behavior labels) to improve the

prediction of future driver actions. Fourth, a multimodal

fusion for driver behavior detection can be studied.

Learning how humans drive and interact with traffic

scenes is a step toward intelligent transportation systems.

In this paper, we start from a driver-centric view to describe

driver behaviors. However, driving involves other aspects.

Particularly, it involves predicting traffic participants’ in-

tentions and reasoning overall traffic situations for motion

planning and decision making, which is not discussed in

this work. Toward the goal of developing intelligent driv-

ing systems, a scalable approach for constructing a dataset

is the next milestone.

2. Related work

We review a range of datasets and highlight the unique-

ness and the relationship between the current datasets and

the proposed dataset.

Driving Scene Datasets. The emergence of driving scene

datasets has accelerated the progress of visual scene recog-

nition for autonomous driving. KITTI [7] provides a suite

of sensors including cameras, LiDAR and GPS/INS. They

launch different benchmarks (e.g., object detection, scene

flow and 3D visual odometry) to push forward the algorith-

mic developments in these areas.

Cordts et al. [4] proposed a large scale road scene

dataset, Cityscapes Dataset, with 5000 images with

fine pixel-level semantic labeling. It enables research

in category-level and instance-level semantic segmenta-

tion [35, 8] in driving scenes that KITTI dataset does not

address. For long-term localization and mapping, the Ox-

ford Robotcar dataset [22] presents a huge data collection

collected under a variety of weather and lighting conditions

over a year.

Our dataset is complementary to [7] and [22] since we

focus on learning driver behavior under various traffic situ-

ations. A joint effort of ours and these existing datasets can

lead to intelligent transportation systems.

Recently, learning a vision-based driving model [3, 12,

28, 34, 13] for autonomous driving has attracted a lot of

attention. Chen et al. [3] used the driving game TORCS to

obtain training data for learning a driving model by defining

different affordance indicators. Jain et al., [12] proposed a

dataset and algorithms to anticipate driver maneuvers. San-

tana and Hotz [28] presented a dataset with 7.25 hours of

highway driving data to support research in this task. Ear-

lier developments are constrained by limited amount of real-

world driving data or simulated environment data [3]. With

these limitations in mind, the BDD-Nexar dataset [34, 23],

which includes video sequences, GPS and IMU, was pro-

posed and adopted a crowdsourcing approach to collect data

from multiple vehicles across three different cities in the

US.

The proposed dataset provides additional annotations to

describe common driver behaviors in driving scenes while

existing datasets only consider turn, go straight, and lane

change. Moreover, CAN signals are captured to provide

driver behaviors under different scenarios, especially inter-

actions with traffic participants.

Recently, Xu et al. [34] proposed an end-to-end FCN-

LSTM network for this task. They considered 4 discrete

actions in learning a driving model. The definition of four

actions is based on CAN signals with heuristics. Instead, we

provide an explicit definition of driver behaviors as shown

in Figure 6a. Multitask learning frameworks for learning a

driving model by introducing auxiliary tasks (i.e., classifica-
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Dataset Purpose Sensor types Hours Areas

Princeton

DeepDriving
[3] Vision-based control Driving game TORCS 4.5 Driving game TORCS

KITTI [7]
Semantic understanding &

vision-based control [19]

Camera, LiDAR, GPS,

and IMU
1.4 Suburban, urban and highway

BDD-Nexar [23]

Vision-based control &

semantic understanding &

representation learning using videos

Camera, GPS and IMU 1000 Suburban, urban and highway

Udacity [33]
Steering angle prediction &

image-based localization

Camera, LiDAR, GPS,

IMU, and CAN
8 Urban and highway

comma.ai [28] Driving simulator
Camera, GPS, IMU,

and CAN
7.25 Highway

Brain4Car [12] Driver Behavior Anticipation
Camera, GPS,

and speed logger

N/A

(1180 mi)
Suburban, urban and highway

Ours
Driver behavior &

causal reasoning

Camera, LiDAR, GPS,

IMU and CAN
104 Suburban, urban and highway

Table 1: Comparison of driving scene datasets

tion of current driver behavior and prediction of multisensor

values) can be designed. A similar idea is proposed in [34]

in that they introduced semantic segmentation as a side task.

Integrating a behavior classification task can make the mod-

els explainable to humans, and can allow the use of common

sense in traffic scenes from human priors.

A detailed comparison of different driving scene datasets

is shown in Table 1.

Human Activity Understanding Datasets. Human ac-

tivity understanding plays an important role in achiev-

ing intelligent systems. Different datasets have been pro-

posed [10, 31, 15, 25] to address the limitations in earlier

works. Note that our data can enable research in learn-

ing driver behaviors as mentioned in the introduction. Par-

ticularly, recognizing a Goal-oriented action is an ego-

centric activity recognition problem. The Stanford-ECM

dataset [25] is related to our dataset in the following two

aspects. First, they define egocentric activity classes for hu-

mans as in our Goal-oriented classes for drivers. Second,

they provide egocentric videos and signals from a wearable

sensor for jointly learning activity recognition and energy

expenditure while we provide multisensor recordings from

an instrumented vehicle for learning driver behavior. In

addition to learning egocentric activities, we also annotate

how traffic participants interact with drivers.

Datasets for research on pedestrian behaviors are re-

leased [18, 26]. Kooij et al., [18] proposed a dataset that

annotates a pedestrian with the intention to cross the street

under different scenarios. Rasouli et al., [26] provides a

dataset (Joint Attention in Autonomous Driving) with an-

notations for studying pedestrian crosswalk behaviors. Un-

derstanding interactions between the driver and pedestrian

are important for decision making. Robust pedestrian be-

havior modeling is also necessary [17, 16].

Visual Reasoning Datasets. Visual question answering

(VQA) is a challenging topic in artificial intelligence. A

VQA agent should be able to reason and answer questions

from visual input. An increasing number of datasets [1, 14]

and algorithms [2, 11] have been proposed recent years.

Specifically, CLEVR dataset [14] is presented to enable

the community to build a strong intelligent agent instead

of solving VQA without reasoning. In our work, we hope

to enable the community to develop systems that can un-

derstand traffic scene context, perform reasoning and make

decisions.

3. Honda Research Institute Driving Dataset

3.1. Data Collection Platform

The data was collected using an instrumented vehicle

equipped with the following sensors (their layout is shown

in Figure 2):

(i) 3 x Point Grey Grasshopper 3 video camera, resolution: 1920

1200 pixels, frame rate: 30Hz, field of view (FOV): 80 de-

grees x 1 (center) and 90 degrees x 2 (left and right).

(ii) 1 x Velodyne HDL-64E S2 3D LiDAR sensor, spin rate: 10

Hz, number of laser channel: 64, range: 100 m, horizontal

FOV: 360 degrees, vertical FOV: 26.9 degrees.

(iii) 1 x GeneSys Eletronik GmbH Automotive Dynamic Motion

Analyzer with DGPS outputs gyros, accelerometers and GPS

signals at 120 Hz.

(iv) a Vehicle Controller Area Network (CAN) that provides var-

ious signals from around the vehicle. We recorded throttle

angle, brake pressure, steering angle, yaw rate and speed at

100 Hz.
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Figure 2: Sensor layout of the instrumented vehicle.

All sensors on the vehicle were logged using a PC run-

ning Ubuntu Linux 14.04 with two eight-core Intel i5-

6600K 3.5 GHz Quad-Core processors, 16 GB DDR3 mem-

ory, and a RAID 0 array of four 2TB SSDs, for a total ca-

pacity of 8 TB. The sensor data are synchronized and times-

tamped using ROS2 and a customized hardware and soft-

ware designed for multimodal data analysis.

For our dataset, we are interested in having a diverse set

of traffic scenes with driver behaviors. The current data

collection spans from February 2017 to October 2017. We

drove within the San Francisco Bay Area including on ur-

ban, suburban and highway roads, as shown in Figure 3.

The total size of the post-processed dataset is around 150

GB and 104 video hours. The video is converted to a reso-

lution of 1280 × 720 at 30 fps.

3.2. Annotation Methodology

It is challenging to define driver behavior classes since it

involves cognitive processes and vehicle-driver interaction.

It is especially challenging to identify an exact segment of

driver behavior from data we collected, in particular from

video sequences. In our annotation processes, we make the

best effort in annotating different driver behaviors with a

mixture of objective criteria and subjective judgment.

Our annotation methodology is motivated by human fac-

tor and cognitive science. Michon [24] proposed three

classes of driving processes: operational processes that

correspond to the manipulation of the vehicle, tactical pro-

cesses that are the interactions between the vehicle, traffic

participants and environment, and strategic processes for

higher level reasoning, planning and decision making.

With these definitions in mind, we propose a 4-layer rep-

resentation to describe driver behavior, i.e., Goal-oriented

action, Stimulus-driven action, Cause and Attention,

which encapsulate driver behavior and causal reasoning. A

2http://www.ros.org/

Santa Cruz

San Jose

Oakland

Berkeley
San Francisco

Figure 3: The figure shows GPS traces of the HDD dataset.

We split the dataset into training and testing according to the

vehicle’s geolocation. The blue and red color traces denote

the training and testing sets, respectively.

Figure 4: Annotation interface. We use the open source

software toolkit ELAN to annotate different driver behav-

iors and causal relationships.

complete list of labels in the 4-layer representation for de-

scribing driver behavior can be found in Figure 6a.

Goal-oriented action involves the driver’s manipulation

of the vehicle in a navigation task such as right turn, left

turn, branch and merge. While operating the vehicle, the

driver can make a stop or deviate due to traffic participants

or obstacles. Stop and deviate are categorized as Stimulus-

driven action. When the driver performs a stop or a devi-

ate action, there is a reason for it. We define the third layer

Cause to explain the reason for these actions. For example,

a stopped car in front of us is an immediate cause for a stop

as in Figure 1. Finally, the fourth layer Attention is intro-
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Figure 5: Histograms of sensor measurements for the dataset.

duced to localize the traffic participants that are attended by

drivers. For example, a pedestrian near ego lane may be at-

tended by drivers since the pedestrian might perform certain

actions that would affect driver behavior.

Based on the aforementioned definition, we work with

experienced external annotators on this task. The annota-

tors use an open source software package ELAN3 to label

videos as shown in Figure 4. To ensure the consistency in

annotations, we conduct the following quality control strat-

egy. Given a driving session, it is first annotated by 2 inde-

pendent human annotators. Then, a third annotator merges

the three annotations with his/her own judgment into a sin-

gle annotation. Finally, we have an internal expert annotator

to review and obtain the final version.

To analyze the annotation consistency, we compare the

annotation quality of the third external annotator to the in-

ternal expert annotator on 10 sessions. Based on the same

annotation procedures, we found a 98% (driver behavior la-

bel) agreement between the third external annotator and the

internal expert annotator. However, the start time and end

time of a driver behavior is not trivial to assess since it in-

volves a subjective judgment. A systematic evaluation of

action localization consistency is needed and requires a fur-

ther investigation.

3.3. Dataset Statistics

In the current release, we have a total of 104 video hours,

which are annotated with the proposed 4-layer structure.

Within 104 video hours, we have 137 sessions correspond-

ing to different navigation tasks. The average duration of

each session is 45 minutes. The statistics of session dura-

tion can be found in Figure 6b. Figure 6a shows the number

of instances of each behavior. A highly imbalanced label

distribution can be observed from the figure.

4. Multimodal Fusion for Driver Behavior De-

tection

Our goal is to detect driver behaviors which occur during

driving sessions by predicting a probability distribution over

the list of our predefined behavior classes at every given

point of time. As the first step, we focus on the detec-

tion of Goal-oriented and Cause layers in our experiments.

To detect driver behaviors, we design an algorithm to learn

a representation of driving state which encodes the neces-

3https://tla.mpi.nl/tools/tla-tools/elan/

sary history of past measurements and effectively translates

them into probability distributions. Long-Short Term Mem-

ory (LSTM) networks were shown to be successful in many

temporal modeling tasks, including activity detection. We

thus employ an LSTM as the backbone architecture for our

model.

In addition to the input video stream, our model has ac-

cess to an auxiliary signal which provides complimentary

information about the vehicle dynamics. This auxiliary sig-

nal includes measurements from the following CAN bus

sensors: car speed, accelerator and braking pedal positions,

yaw rate, steering wheel angle, and the rotation speed of the

steering wheel, illustrated in Figure 5. This makes the task

and approach different from the standard activity detection

setup where models usually have access only to a single

modality. The proposed baseline architecture of driver be-

havior detection is shown in Figure 6c.

Our application domain dictates the necessity to design

a model which can be used in real-time in a streaming man-

ner. Thus, we constrain our model to the case where predic-

tions are made solely based on the current input and previ-

ous observations.

5. Experiments

To assess the quality of the visual representations learned

by our model on our challenging dataset, we perform rig-

orous experiments as well as comparisons to several base-

lines. First of all, we split the dataset based on the geolo-

cation data, thus, minimizing spatial overlap of train and

test routes. This way we avoid testing on the very same lo-

cations as those used to train the model. Fig 3 shows the

geolocation measurements in the training (in blue) and test

(in red) splits.

For baseline models we sample input frames from

video streams and values from CAN bus sensors at 3

Hz. We found this to be a reasonable trade-off be-

tween modeling complexity and precision. We employed

the Conv2d 7b 1x1 layer of InceptionResnet-V2 [32] pre-

trained on ImageNet [5] to get feature representations for

each frame.

Raw sensor values are passed through a fully-connected

layer before concatenation with visual features. In turn, vi-

sual features are represented by spatial grid of CNN acti-

vations. Additional 1x1 convolution is applied to reduce

dimensionality of Conv2d 7b 1x1 from 8 × 8 × 1536 to

8×8×20 before flattening it and concatenating with sensor
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Table 2: Detection results on test set for Goal-oriented action using per-frame average precision, Random illustrates the

portion of frames which belongs to the given action. Sensors model uses LSTM to encode the stream of 6-dimensional

vectors from CAN bus. Features from the last convolutional layer of InceptionResnet-V2 on RGB frames are provided as an

input to LSTM in CNN models.

Models
right

turn

left

turn

intersection

passing

railroad

passing

left

lane

branch

right

lane

change

left

lane

change

right

lane

branch

crosswalk

passing
merge u-turn mAP

Random 2.24 2.61 6.58 0.07 0.15 0.46 0.42 0.07 0.21 0.13 0.18 1.19

CNN pool 30.11 31.88 56.49 3.96 2.02 1.35 1.43 0.15 8.71 7.13 4.89 13.46

Sensors 74.27 66.25 36.41 0.07 8.03 13.39 26.17 0.20 0.30 3.59 33.57 23.84

CNN conv 54.43 57.79 65.74 2.56 25.76 26.11 27.84 1.77 16.08 4.86 13.65 26.96

CNN+Sensors 77.47 76.16 76.79 3.36 25.47 23.08 41.97 1.06 11.87 4.94 17.61 32.71

Table 3: Detection results on test split for Cause layer. Be-

haviors from this layer are immediate causes for either stop

or deviate actions.

Models sign congestion
traffic

light
pedestrian

parked

car
mAP

Random 2.49 2.73 1.22 0.20 0.15 1.36

CNN+Sensors 46.83 39.72 45.31 2.15 7.24 28.25

features. The necessity to preserve the spatial resolution is

illustrated by Table 2 where ‘CNN conv’ demonstrates the

substantial advantage in detection of turns. LSTM hidden

state size is set to 2000 in all experiments. During train-

ing, we formed batches of sequence segments by sequen-

tially iterating over driving sessions. The last LSTM hidden

state from the previous batch is used to initialize the LSTM

hidden state on the next step. Training is performed using

truncated backpropagation through time.

For Goal and Cause layers, we trained separate LSTMs

using batches of size 40 with each sequence length set to 90

samples. We confirmed that the larger batch size improves

convergence. We set dropout keep probability on the in-

put and output of the LSTM to 0.9. Taking into account

the data imbalance between foreground and background

frames, and also the imbalance of behavior classes them-

selves, we used the recently proposed technique for modi-

fying cross-entropy loss to deal with class imbalance [20].

This modification was originally applied to the task of ob-

ject detection where negative region proposals also domi-

nate.

Our evaluation strategy is inspired from the activity de-

tection literature [30] where each frame is evaluated for the

correct activity label. Specifically, Shou et al. [30] treated

the per-frame labeling task as a retrieval problem and com-

puted Average Precision (AP) for each activity class by

first ranking all frames according to their confidence scores.

Following this procedure, we compute the AP for individ-

ual driver behavior classes as well as the mean AP (mAP)

over all behavior classes. The test split we obtained via

the geospatial selection procedure described above includes

37 driving sessions, which contain a total of approximately

274,000 frames sampled at 3 FPS for the mean average pre-

cision evaluation.

6. Results and Discussion

Goal-oriented layer Table 2 provides the APs for 11 Goal-

oriented Actions (starting from ‘right turn’ to ‘u-turn’) for

our model and its ablated versions. The last column pro-

vides the mAP value for all the methods. First, we provide

a description of the baselines used in this experiment. The

first baseline (‘Random’) simply assigns random behavior

labels to each frame and serves as the lower bound on model

performance. It also illustrates the portion of frames in the

test data for which every class label is assigned. The next

one (‘CNN pool’) encodes each frame by extracting con-

volutional features using an InceptionResnet-V2 network

and pooling them spatially to a fixed-length vector. These

pooled representations of frames are sequentially fed to the

LSTM to predict the behavior label. The third baseline

(’Sensors’) uses only the sensor data as input to the LSTM.

The next method (‘CNN conv’) is a variant of the second

method: instead of spatially pooling CNN feature encod-

ings, we used a small convnet to reduce the dimensionality

of the CNN encodings of the frames before passing them

through the LSTM. Finally, the ‘CNN+Sensors’ method

adds sensor data to the ‘CNN conv’ method.

We can see that the performance of ‘CNN pool’ is quite

low. This can be attributed to the fact that information is

lost by the spatial pooling operation. ‘CNN conv’ replaces

pooling by a learnable conv layer and significantly increases

mAP. Sensor measurements (brake, steering wheel, etc.)

alone result in slightly better AP for simple actions like

left/right turns where the information about steering wheel

position can be sufficient in most of the cases. When it

comes to actions like lane changes, visual information used

in ‘CNN conv’ allows for proper scene interpretation, thus,

improving over ‘Sensor’ model. It is clear, that only sensor

information is not sufficient for driver behavior detection,

especially in an imbalanced scenario. The visual data and

data from sensors are complementary to each other in this

respect and thus their fusion gives the best results, as shown

in the last row of the table.
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Figure 7: Confusion matrices for Goal-oriented driver behavior classes using ‘CNN conv’ model (left) and ‘CNN+Sensors’ (right). For

better view we omit background class from visualization and normalize rows accordingly. Note the clear disambiguation between the

detection of turns and ‘intersection passing’ after adding the input data from sensors. Intersections usually have crosswalks, signs and road

markings which influence detection performance for other classes.

It is interesting to note that the ‘blind model’ (without

camera input) is able to successfully guess ‘intersection

passing’ because most of them are happening in a very spe-

cific pattern: ‘deceleration/wait/acceleration’. A ‘railroad

passing’ is surprisingly hard for the CNN model because

this behavior type includes not only railroad crossing in the

designated locations which have discriminative visual fea-

tures but also tram rails crossing. The confusion of behavior

classes with a ‘background’ class remains the most frequent

source of errors for all layers.

Cause Layer Table 3 represents the detection results of

causes for stimulus-driven actions. We observe a better de-

tection performance for sign, congestion and traffic light.

The corresponding motion pattern should be similar, i.e.,

deceleration. On the other hand, the vehicle dynamics for

pedestrian and parked car are very different from the rest.

For pedestrian, the vehicle usually makes a stop action for

pedestrians while making turns. For parked car, the vehi-

cle deviates from the original trajectory to avoid a collision.

We hypothesize that the weak performance of the proposed

model is due to the following two reasons. First, the two

classes are underrepresented in the dataset as shown in Fig-

ure 6a. A better approach to deal with an imbalanced distri-

bution is necessary. The same is true for rare Goal-oriented

actions. Second, the motion modeling for a short duration

of cause (e.g., pedestrian) may not be captured in the base-

line model (similar to railroad passing). The motion pattern

of a deviate action may not be modeled effectively to detect

parked car. This would benefit from better motion mod-

eling using optical flow features. We leave this for future

work.

In the current version of the dataset, we have only four

causes for a stop action, namely, sign, congestion, traffic

light, pedestrian, and one cause parked car for a deviate

action. Because detection of these immediate causes di-

rectly implies detection and discrimination of their respec-

tive actions we do not provide separate results for Stimulus-

driven layer.

7. Conclusion

In this paper, we introduce the Honda Research Institute

Driving Dataset, which aims to stimulate the community

to propose novel algorithms to capture the driver behavior.

To enable this, we propose a novel annotation methodology

that decomposes driver behaviors into a 4-layer representa-

tion, i.e., Goal-oriented, Stimulus-driven, Cause and At-

tention. A variety of baselines for detecting driver behav-

iors in untrimmed videos were proposed and tested on this

dataset. Our preliminary results show that this task is chal-

lenging for standard activity recognition methods based on

RGB frames. Although adding sensor data improves ac-

curacy, we need better representations, temporal modeling

and training strategy to achieve reasonable performance in

driver behavior detection before exploring the actual rela-

tionship between behaviors in different layers, i.e., the rela-

tionship between a driver and traffic situations.
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