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Abstract

For visual tracking, an ideal filter learned by the correla-

tion filter (CF) method should take both discrimination and

reliability information. However, existing attempts usually

focus on the former one while pay less attention to reliabil-

ity learning. This may make the learned filter be dominated

by the unexpected salient regions on the feature map, there-

by resulting in model degradation. To address this issue, we

propose a novel CF-based optimization problem to jointly

model the discrimination and reliability information. First,

we treat the filter as the element-wise product of a base fil-

ter and a reliability term. The base filter is aimed to learn

the discrimination information between the target and back-

grounds, and the reliability term encourages the final filter

to focus on more reliable regions. Second, we introduce

a local response consistency regular term to emphasize e-

qual contributions of different regions and avoid the tracker

being dominated by unreliable regions. The proposed op-

timization problem can be solved using the alternating di-

rection method and speeded up in the Fourier domain. We

conduct extensive experiments on the OTB-2013, OTB-2015

and VOT-2016 datasets to evaluate the proposed tracker.

Experimental results show that our tracker performs favor-

ably against other state-of-the-art trackers.

1. Introduction

Visual tracking is a hot topic for its wide applications in

many computer vision tasks, such as video surveillance, be-

haviour analysis, augmented reality, to name a few. Though

many trackers [12, 26, 20, 25, 16] have been proposed to

address this task, designing a robust visual tracking system

is still challenging as the tracked target may undergo large

deformations, rotations and other challenges.

Numerous recent studies apply the correlation filter (CF)

for robust visual tracking. With low computational load,

the CF-based tracker can exploit large numbers of cycli-
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Figure 1. Example tracking results of different methods on the

OTB dataset. Our tracker (DRT) has comparable or better results

compared with the existing best tracker ECO.

cally shifted samples for learning, thus showing superior

performance. However, as the correlation filter takes the

entire image as the positive sample and the cyclically shift-

ed images as negative ones, the learned filters are likely to

be influenced by the background regions. Existing meth-

ods (e.g. [8, 10, 5]) address this problem by incorporating

a spatial regularization on the filter, so that the learned fil-

ter weights focus on the central part of the target object.

In [14], the authors prove that the correlation filter method

can be used to simulate the conventional ridge regression

method. By multiplying the filter with a binary mask, the

tracker is able to generate the real training samples having

the same size as the target object, and thus better suppress-

ing the background regions. However, this method has t-

wo limitations: first, it exploits the augmented Lagrangian

method for model learning, which limits the model exten-

sion; second, even though the background region outside

the bounding box is suppressed, the tracker may also be in-

fluenced by the background region inside the bounding box.

With the great success of deep convolutional neural net-

work (CNN) in object detection and classification, more

and more CF based trackers resort to the pre-trained CN-

N model for robust target representation [29, 28, 5]. Since

most of CNN models are pre-trained with respect to the task
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of object classification or detection, they tend to retain the

features useful for distinguishing different categories of ob-

jects, and lose much information for instance level classi-

fication. Thus, the responses of the feature map are usual-

ly sparsely and non-uniformly distributed, which makes the

learned filter weights inevitably highlight the high response

regions. In this case, the tracking results are dominated by

such high response regions, while these regions are in fact

not always reliable (see Figure 3 for an example).

In this paper, we present a novel CF-based optimiza-

tion problem to clearly learn the discrimination and relia-

bility information, and then develop an effective tracking

method (denoted as DRT). The concept of the base filter is

proposed to focus on discrimination learning. To do this,

we introduce the local response consistency constraint into

the traditional CF framework. This constraint ensures that

the responses generated by different sub-regions of the base

filter have small difference, thereby emphasizing the sim-

ilar importance of each sub-region. The reliability weight

map is also considered in our formula. It is online jointly

learned with the base filter and is aimed at learning the re-

liability information. The base filter and reliability term are

jointly optimized by the alternating direction method, and

their element-wise product produces effective filter weight-

s for the tracking task. Finally, we conduct extensive ex-

periments on three benchmark datasets to demonstrate the

effectiveness of our method (see Figure 1 and Section 6).

Our contributions are four folds:

• Our work is the first attempt to jointly model both dis-

crimination and reliability information using the cor-

relation filter framework. We treat an ideal filter as the

element-wise product of a base filter and a reliability

term and propose a novel optimization problem with

insightful constraints.

• The local response consistency constraint is introduced

to ensure that different sub-regions of the base filter

have similar importance. Thus, the base filter will

highlight the entire target even though the feature maps

may be dominated by some specific regions.

• The reliability weight map is exploited to depict the

importance of each sub-region in the filter (i.e. relia-

bility learning) and is online jointly learned with the

base filter. Being insusceptible to the response distri-

butions of the feature map, it can better reflect the real

tracking performance for different sub-regions.

• Our tracker achieves remarkable tracking performance

on the OTB-2013, OTB-2015 and VOT-2016 bench-

marks. Our tracker has the best results on all the re-

ported datasets.

2. Relate Work

Correlation filters (CF) have shown great success in vi-

sual tracking for their efficient learning process. In this

section, we briefly introduce the CF-based trackers that are

closely related to our work.

The early CF-based trackers exploit a single feature

channel as input, and thus usually have very impressive

tracking speed. The MOSSE tracker [3] exploits the adap-

tive correlation filter, which optimizes the sum of squared

error. Henriques et al. [11] introduce the kernel trick in-

to the correlation filter formula. By exploiting the property

of the circulant matrix, they provide an efficient solver in

the Fourier domain. The KCF [12] tracker further extends

the method [11], and shows improved performance can be

achieved when muti-channel feature maps are used. Moti-

vated by the effectiveness of the multi-channel correlation

filter methods and the convolution neural network, sever-

al methods are proposed to combine them both. Deeply

investing the representation property of different convolu-

tion layers in the CNN model, Ma et al. [21] propose to

combine feature maps generated by three layers of convo-

lution filters, and introduce a coarse-to-fine searching strat-

egy for target localization. Danelljan et al. [10] propose

to use the continuous convolution filter for combinations of

feature maps with different spatial resolutions. As fewer

model parameters are used in the model, the tracker [10] is

insusceptible to the over-fitting problem, and thus has su-

perior performance than [21]. Another research hotspot for

the CF-based methods is how to suppress the boundary ef-

fects. Typical methods include the trackers [8] and [14]. In

the SRDCF tracker [8], a spatial regular term is exploited to

penalize the filter coefficients near the boundary regions. D-

ifferent from [8], the BACF tracker [14] directly multiplies

the filter with a binary matrix. This tracker can generate

real positive and negative samples for training while at the

same time share the computation efficiency of the original

CF method. Compared to our method, these trackers have

not attempted to suppress the background regions inside the

target bounding box, and their learned filter weights tend to

be dominated by the salient regions in the feature map.

Patch-based correlation filters have also been widely ex-

ploited [19, 18]. Liu et al. [19] propose an ensemble of

part trackers based on the KCF method, and use the peak-

to-sidelobe ratio and the smooth constraint of confidence

map for combinations of different base trackers. In the

method [18], the authors attempt to learn the filter coef-

ficients of different patches simultaneously under the as-

sumption that the motions of sub-patches are similar. Li et

al. [17] detect the reliable patches in the image, and propose

to use the Hough voting-like strategy to estimate the target

states based on the sub-patches. Most of the previous patch-

based methods intend to address the problems of deforma-

tion and partial occlusion explicitly. Different from them,

our method is aimed to suppress the influence of the non-

uniform energy distribution of the feature maps and conduct

a joint learning of both discrimination and reliability.
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3. Proposed Method

3.1. Correlation Filter for Visual Tracking

We first briefly revisit the conventional correlation fil-

ter (CF) formula. Let y=[y1, y2, ..., yK ]
⊤

∈ R
K×1 denote

gaussian shaped response, and xd ∈ R
K×1 be the input

vector (in the two-dimensional case, it should be a feature

map) for the d-th channel, then the correlation filter learns

the optimal w by optimizing the following formula:

ẇ = argmin
w

K∑

k=1

(
yk −

D∑

d=1

x⊤

k,dwd

)2

2

+ λ ‖w‖
2
2 , (1)

where xk,d is the k-step circular shift of the input vector xd,

yk is the k-th element of y, w=
[
w⊤

1 ,w
⊤
2 , ...,w

⊤

D

]⊤
where

wd ∈ R
K×1 stands for the filter of the d-th channel. For

circular matrix in CF, K stands for both the dimension of

features and the number of training samples. An analytical

solution can be found to efficiently solve the optimization

problem (1) in the Fourier domain.

3.2. Joint Discrimination and Reliability Modeling

Different from the previous CF-based methods, we treat

the filter weight wd of the d-th feature channel as the

element-wise product of a base filter hd and a reliability

weight map vd,

wd = hd ⊙ vd, (2)

where ⊙ is the hadamard product, hd ∈ R
K×1 is used to

denote the base filter, vd ∈ R
K×1 is the reliability weight

for each target region, the values of vd corresponding to the

non-target region are set to zeros (illustrated in Figure 2).

To learn a compact reliability map, we divide the tar-

get region into M patches, and use a variable βm,m ∈
{1, ...,M} to denote the reliability for each patch (βm is

shared across the channels), thus vd can be written as

vd =

M∑

m=1

βmpm
d , (3)

where pm
d ∈ R

K×1 is a binary mask (see Figure 2) which

crops the filter region for the m-th patch.

 m 91   

p1
d pm

d p9
d vd

Figure 2. Illustration showing how we compute the reliability map

vd. The computed reliability map only has non-zeros values cor-

responding to the target region, thus the real positive and negative

samples can be generated when we circularly shift the input image.

Input Image

Convolutional Features Learned Filters

(a)

(b)

Feature

Extraction

Figure 3. Example showing that our learned filter coefficients are

insusceptible to the response distribution of the feature map. In (a)

and (b), we compute the square sum of filter coefficients across the

channel dimension, and obtain a spatial energy distribution for the

learned filter. (a) The baseline method, which does not consider

the local consistency regular term and set βm,m = {1, ...,M}
as 1. (b) The proposed joint learning formula. Compared to our

method, the baseline method learns large coefficients on the back-

ground (i.e. the left-side region in the bounding box).

Based on the previous descriptions, we attempt to jointly

learn the base filter h =
[
h⊤
1 , ...,h

⊤

D

]⊤
∈ R

KD×1 and the

reliability vector β = [β1, ..., βM ]
⊤

by using the following

optimization problem:
[
ḣ, β̇

]
= argmin

h,β
f (h,β;X)

s.t. θmin ≤ βm ≤ θmax, ∀m
, (4)

where the objective function f (h,β;X) is defined as

f (h,β;X) = f1 (h,β;X) + ηf2 (h;X) + γ ‖h‖
2
2 . (5)

In this equation, the first term is the data term with re-

spect to the classification error of training samples, the sec-

ond term is a regularization term to introduce the local re-

sponse consistency constraint on the filter coefficient vector

h, and the last one is a squared ℓ2-norm regularization to

avoid model degradation. In the optimization problem (4),

we also add some constraints on the learned reliability coef-

ficients β1, ..., βM . These constraints prevent all reliability

weights being assigned to a small region of the target espe-

cially when the number of training samples is limited, and

encourage our model to obtain an accurate weight map. We

note that the optimization problem (5) encourages learning

more reliable correlation filters (see Figure 4 for example).

Data Term. The data term f1(h,β;X) is indeed a loss

function which ensures that the learned filter has a Gaussian

shaped response with respect to the circulant sample matrix.

By introducing our basic assumption in equation (3) into the

standard CF model, f1 (h,β;X) can be rewritten as

f1 (h,β;X)

=
K∑

k=1

(
yk −

D∑
d=1

x⊤

k,d (vd ⊙ hd)

)2

=
K∑

k=1

(
yk −

D∑
d=1

x⊤

k,dVdhd

)2

=

∥∥∥∥y −
D∑

d=1

X⊤

d Vdhd

∥∥∥∥
2

2

=
∥∥y −X⊤Vh

∥∥2
2

, (6)
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where Vd = diag (vd (1) ,vd (2) , ...,vd (K)) ∈ R
K×K

is a diagonal matrix, Xd = [x1,d,x2,d, ...,xK,d] ∈
R

K×K is the circulant matrix of the d-th channel, X =[
X⊤

1 ,X
⊤
2 , ...,X

⊤

D

]⊤
∈ R

KD×K stands for a contactated

matrix of all circulant matrices from different channels, and

V = V1 ⊕V2 ⊕ · · · ⊕VD ∈ R
DK×DK denotes a block

diagonal matrix where Vd is the d-the diagonal block.

Local Response Consistency. The regularization term

f2 (h;X) constrains that the base filter generates consisten-

t responses for different fragments of the cyclically shifted

sample. By this means, the base filter learns equal impor-

tance for each local region, and reliability information is

separated from the base filter. The term f2 (h;X) can be

defined as

f2 (h;X)

=
K∑

k=1

M∑
m,n

(
D∑

d=1

(Pm
d xk,d)

⊤
hd −

D∑
d=1

(Pn
dxk,d)

⊤
hd

)2

=
M∑
m,n

∥∥∥∥
D∑

d=1

X⊤

d P
m
d hd −

D∑
d=1

X⊤

d P
n
dhd

∥∥∥∥
2

2

=
M∑
m,n

∥∥X⊤Pmh−X⊤Pnh
∥∥2
2

,

(7)

where Pm
d = diag(pm

d (1),pm
d (2),...,pm

d (K)) ∈ R
K×K ,

Pm = Pm
1 ⊕Pm

2 ⊕· · ·⊕Pm
D ∈ R

DK×DK . For each cycli-

cally shifted sample xk,d, (Pm
d xk,d)

⊤
hd is the response for

the m-th fragment of xk,d.

3.3. Joint Discrimination and Reliability Learning

Based on the discussions above, the base filter and the

reliability vector can be jointly learned by solving the opti-

mization problem (4), which is a non-convex but differen-

tiable problem for both h and β. However, it can be con-

verted into a convex differentiable problem if either h or

β is known. Thus, in this work, we attempt to solve the

optimal ḣ and β̇ via the alternating direction method.

Solving h. To solve the optimal h, we first compute the

derivative of the objective function (5) , then by setting the

derivative to be zero, we obtain the following normal equa-

tions:

Ah = V⊤Xy. (8)

The matrix A is defined as

A = g(V,X) + 2η
M∑

m=1
Mg(Pm,X)

− 2ηg(
M∑

m=1
Pm,X) + γI

, (9)

where g (Λ,R) = Λ⊤RR⊤Λ, R is a circulant matrix and

Λ is a diagonal matrix.

In this work, we exploit the conjugate gradient descent

method due to its fast convergence speed. The update pro-

cess can be performed via the following iterative steps [24]:

α(i) = r(i)
⊤

r(i)/u(i)⊤Au(i)

h(i+1) = h(i) + α(i)u(i)

r(i+1) = r(i) + α(i)Au(i)

µ(i+1) =
∥∥r(i+1)

∥∥2
2
/
∥∥r(i)

∥∥2
2

u(i+1) = −r(i+1) + µ(i+1)u(i)

, (10)

where u(i) denotes the search direction at the i-th iteration,

r(i) is the residual after the i-th iteration. Clearly, the com-

putational load lies in the update of α(i) and r(i+1) since

it requires to compute u(i)⊤Au(i) and Au(i) in each itera-

tion. As shown in equation (9), the first three terms have the

same form. For clarity, we take the first term as an example

to show how we compute u(i)⊤Au(i) and Au(i) efficiently.

Let A1 denote the first term of equation (9), then

u(i)⊤A1u
(i) = u(i)⊤V⊤XX⊤Vu(i)

=

∥∥∥∥
D∑

d=1

X⊤

d Vdu
(i)
d

∥∥∥∥
2

2

= 1
K

∥∥∥∥
D∑

d=1

X̂H
d ⊙F

(
Vdu

(i)
d

)∥∥∥∥
2

2

, (11)

where X̂d = F(xd) is the Fourier transform of the base

vector xd (corresponding to the input image without shift),

u
(i)
d is the subset of u(i) corresponding to the d-th channel,

(·)H denotes the conjugate of a vector. Because Vdu
(i)
d

is a vector and Xd is the circulant matrix, the operation

X⊤

d (Vdu
(i)
d ) can be viewed as a circular correlation pro-

cess and can be efficiently computed in the Fourier domain.

Similarly, A1u
(i) can be computed as

A1u
(i) = V⊤XX⊤Vu(i) =




V⊤
1 X1

D∑
j=1

X⊤

j Vju
(i)
j

V⊤
2 X2

D∑
j=1

X⊤

j Vju
(i)
j

...

V⊤

DXD

D∑
j=1

X⊤

j Vju
(i)
j




.

(12)

The d-th term V⊤

d Xd

D∑
j=1

X⊤

j Vju
(i)
j can be computed

as

V⊤

d Xd

D∑
j=1

X⊤

j Vju
(i)
j

= V⊤

d F
−1

(
X̂d ⊙

(
D∑

j=1

X̂H
j ⊙F(Vju

(i)
j )

)) , (13)

where X̂H
j ⊙F(Vju

(i)
j ) has been computed in equa-

tion (11) and can be directly used. The computational com-

plexities of (11) and (12) are therefore O(DK logK).
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Solving β. If the filter vector h is given, the reliability

weight vector β = [β1, β2, ..., βM ]
⊤

can be obtained by

solving the following optimization problem:

β̇ = argmin
β

∥∥∥∥y −
D∑

d=1

X⊤

d Vdhd

∥∥∥∥
2

2
s.t. θmin ≤ βm ≤ θmax, ∀m

, (14)

where the term f2(h;X) is ignored as it does not include β.

With some derivations, the problem (14) can be converted

as follows:

β̇ = argmin
β

β⊤C⊤Cβ − 2β⊤C⊤y

s.t. θmin < βm < θmax, ∀m
, (15)

where C =
[
C1, ...,CM

]
∈ R

K×M , and Cm is computed

as Cm = F−1(
D∑

d=1

X̂H
d ⊙F(Pm

d hd)), whose computation-

al complexity is O(DKlog(K)). This optimization prob-

lem is a convex quadratic programming method, which can

be efficiently solved via standard quadratic programming.

3.4. Model Extension

We note the proposed model (Section 3.2) and its op-

timization method (Section 3.3) are defined and derived

based on the training sample in one frame. Recent studies

(like [10]) demonstrate that it is more effective to learn the

correlation filter using a set of training samples from multi-

ple frames. Thus, we can extend our optimization problem

(4) to consider multi-frame information as follows:

[
ḣ, β̇

]
= argmin

h,β

T∑
t=1

κtf(h,β;X
t)

s.t. θmin < βm < θmax, ∀m
, (16)

where Xt denotes the sample matrix in the t-th frame, κt

is a temporal weight to indicate the contribution of the t-th
frame. It is not difficult to prove that the previous deriva-

tions (in Section 3.2 and 3.3) can be applicable for solving

the optimization problem (16).

In Figure 4, we provide examples showing that our track-

er can accurately learn the reliability value for each patch re-

gion. In the first row, the left part of the frisbee is frequent-

ly occluded, our method learns a small reliability value for

such regions. The example in the second row demonstrates

that our method can accurately determine that the fast mov-

ing legs are not reliable. In the last example, the background

regions are associated with small weights via the proposed

model, thereby facilitating the further tracking process.

4. Model Update

Most correlation filter based tracking algorithms perform

model update in each frame, which results in high compu-

tation load. Recently, the ECO method proves that the s-

parse update mechanism is a better choice for the CF based

   

 

   

   

Training samples Reliability map

High ConfidenceLow Confidence

Figure 4. Illustration showing that reliable regions can be deter-

mined through the joint learning formula. We show three example

training samples on the left three columns, and show the learned

reliable weight maps on the fourth column.

trackers. Following the ECO method, we also exploit the s-

parse update mechanism in our tracker. In the update frame,

we use the conjugate gradient descent method to update the

base filter coefficient vector h and then we update β based

on the updated base filter by solving a quadratic program-

ming problem. In each frame, we initialize the weight for

the training frame as ω and weights of previous training

samples are decayed as (1 − ω)κt. When the number of

training samples exceeds the pre-defined value Tmax, we

follow the ECO method and use the Gaussian Mixture Mod-

el (GMM) for sample fusion. We refer the readers to [5] for

more details.

5. Target Localization

In the detection process at the t-th frame, we use a

multi-scale search strategy [10, 5] for joint target local-

ization and scale estimation. We extract the ROI region-

s with different scales centred in the estimated position

of last frame, and obtain the multi-channel feature map

xs
d, d = {1, ..., D}, s = {1, ..., S} for the ROI region,

where s is the scale index. Then we compute the response

for the target localization in scale s as

rs =
D∑

d=1

F−1(F(wd)⊙ (F(xs
d))

H). (17)

The target location and scale are then jointly determined

by finding the maximum value in the S response maps. This

joint estimation strategy shows better performance than the

previous methods, which first estimate the target position

and then refine the scale based on the estimated position.
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Figure 5. Precision and success plots of different trackers on the OTB-2013 and OTB-2015 datasets in terms of the OPE rule. This figure

only shows the plots of top 10 trackers for clarity. In the legend behind of name of each tracker, we show the distance precision score at

the threshold on 20 pixels and the area under curve (AUC) score.
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Figure 6. Performance evaluation on different attributes of the benchmark in terms of the OPE criterion. Merely top 10 trackers for each

attributes are illustrated for clarity.

6. Experimental Results

We demonstrate the effectiveness of the proposed tracker

on the OTB-2013 [30], OTB-2015 [31] and VOT-2016 [15]

benchmark datasets. Since our method jointly considers

both discrimination and reliability for tracking, we denote

it as DRT for clarity.

6.1. Implementation Details

The proposed DRT method is mainly implemented in

MATLAB and is partially accelerated with the Caffe toolk-

it [13]. Similar with the ECO method, we also exploit an en-

semble of deep (Conv1 from VGG-M, Conv4-3 from VGG-

16 [4]) and hand-crafted (HOG and Color Names) features

for target representation. In our tracker, we use a rela-

tively small learning rate ω (i.e. 0.011) for first 10 frames

to avoid model degradation with limited training samples,

and use a larger one (i.e. 0.02) in the following tracking

process. The maximum number of training samples Tmax

and the number of fragments as set as 50 and 9 repective-

ly. As to the online joint learning formula, the trade-off

parameter η for the local consistency term is set as 1 by

default and θmin and θmax are set as 0.5 and 1.5 respec-

tively. One implementation of our tracker can be found in

https://github.com/cswaynecool/DRT.

6.2. Performance Evaluation

OTB-2013 Dataset. The OTB-2013 dataset [30] is one of

the most widely used dataset in visual tracking and contains

50 image sequences with various challenging factors. Using

this dataset, we compare the proposed DRT method with the

29 default trackers in [30] and 9 more state-of-the-art track-

ers including ECO [5], C-COT [10], Staple [1], CF2 [21],

DeepSRDCF [7], SRDCFdecon [9], SINT [27], SiamFC [2]

and MEEM [32]. The one-pass evaluation (OPE) is em-

ployed to compare different trackers, based on two criteria

(center location error and bounding box overlap ratio).

Figure 5 (a) reports the precision and success plots of

different trackers based on the two criteria above, respec-

tively. Among all compared trackers, the proposed DRT
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Table 1. Performance evaluation of different state-of-the-art trackers in the VOT-2016 dataset. In this dataset, we compare our DRT method

with the top 10 trackers. The best two results are marked in red and blue bold fonts, respectively.

STAPLE+ SRBT EBT DDC Staple MLDF SSAT TCNN C-COT ECO DRT

EAO 0.286 0.290 0.291 0.293 0.295 0.311 0.321 0.325 0.331 0.374 0.442

R 0.368 0.350 0.252 0.345 0.378 0.233 0.291 0.268 0.238 0.200 0.140

A 0.557 0.496 0.465 0.541 0.544 0.490 0.577 0.554 0.539 0.551 0.569

method obtains the best performance, which achieves the

95.3% distance precision rate at the threshold of 20 pixels

and a 72.0% area-under-curve (AUC) score.

We note that it is very useful to evaluate the performance

of trackers in various attributes. The OTB-2013 dataset is

divided into 11 attributes, each of which corresponds to a

challenging factor (e.g., illumination, deformation and scale

change). Figure 6 illustrates the overlap success plots of the

top 10 algorithms on 8 attributes. We can see that our track-

er achieves the best performance in all these attributes. Spe-

cially, the proposed method improves the second best track-

er ECO by 1.4%, 2.5%, 2.9% and 2.5% in the attributes of

deformation, background clutter, illumination variation and

scale variation, respectively. These results validate that our

method is effective in handling such challenges. When the

object suffers from large deformations, parts of the target

object will be not reliable. Thus, it is crucial to conduc-

t accurate reliability learning in dealing with this case. S-

ince our joint learning formula is insusceptible to the feature

map response distributions, it can learn the reliability score

for each region more accurately. Similarly, influenced by

the cluttered background and abrupt illumination change,

the feature map inevitably highlights the background or un-

reliable regions in the image. Existing CF-based algorithms

learn large filter weights in such regions, thereby resulting

in the tracking failure. In addition, these trackers usually

assign most filter weights to the learned dominant region-

s and ignore certain parts of the target object, which leads

to inferior scale estimation performance. By joint discrim-

ination and reliability learning, the proposed DRT method

is robust to numerous challenges and therefore achieves a

remarkable performance in comparison with other ones.

OTB-2015 Dataset. The OTB-2015 dataset [31] is an ex-

tension of the OTB-2013 dataset, and contains 50 more

video sequences. We also evaluate the performance of the

proposed DRT method over all 100 videos in this dataset. In

our experiment, we compare with 29 default trackers in [31]

and other 9 state-of-the-art trackers including ECO [5], C-

COT [10], Staple [1], CF2 [21], DeepSRDCF [7], SRD-

CFDecon [9], LCT [22], DSST [6] and MEEM [32].

Figure 5 (b) reports both precision and success plots of d-

ifferent trackers in terms of the OPE rule. Overall, our DRT

method provides the best result with a distance precision

rate of 92.3% and with an AUC score of 69.9%, which again

achieves a substantial improvement of several outstanding

trackers (e.g., ECO, C-COT and DeepSRDCF).
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Figure 7. Expected Average Overlap (EAO) curve for 11 state-of-

the-art trackers on the VOT-2016 dataset. Our DRT tracker has

much better performance than the compared trackers.

VOT-2016 Dataset. The VOT-2016 dataset [15] contain-

s 60 image sequences with 5 challenges including camer-

a motion, illumination change, motion change, occlusion

and scale change. Different from the OTB-2013 and OTB-

2015 datasets, the VOT-2016 dataset pays much attention

to the short-term visual tracking, and thus incorporates the

reset-based experiment settings. In this work, we compare

the proposed DRT method with 11 state-of-the-art trackers

including ECO [5], C-COT [10], TCNN [23], SSAT [15],

MLDF [15], Staple [1], DDC [15], EBT [33], SRBT [15]

and STAPLE+ [1]. The results of different tracking algo-

rithms are reported in Table 1 (a), using the expected aver-

age overlap (EAO), robustness raw value (R) and accuracy

raw value (A) criteria.

Before our tracker, the ECO method has the best perfor-

mance in the VOT-2016 dataset, which achieves an EAO of

0.374. Our DRT method has an EAO of 0.442, which out-

performs ECO with a relative performance gain of 18.2%.

In addition, our method has the best performance in terms

of robustness (i.e., fewer failures) among all the compared

methods. Figure 7 shows the EAO curve of the compared

trackers, which also demonstrates the effectiveness of our

tracker.
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Figure 8. Performance evaluation for each component of the proposed method.

6.3. Ablation Studies

In this section, we test effectiveness for each component

of the proposed joint learning formula on both the OTB-

2015 and VOT-2016 datasets. First, we use the notation

“Baseline” to denote the baseline method which does not

exploit the local consistency constraint and the reliability

map (i.e. βm = 1,m ∈ {1, ...,M}). Like the conventional

correlation filter, the baseline method does not separate the

discrimination and reliability information. In addition, we

also use the notation “Baseline+LRC” to denote the mod-

ified baseline tracker with the local response consistency

constraint. The “Baseline+LRC” method focuses on learn-

ing the discrimination information while ignoring the reli-

ability information of the target. The abbreviation “RW”

stands for reliability weight map and “Baseline+LRC+RW’

denotes the proposed joint learning method. In Figure 8,

we show that the proposed joint learning formula improves

the baseline method by 3.5% and 2.3% on the OTB-2015

dataset in terms of the distance precision rate and the AUC

score. In addition, the joint learning formula also improves

the baseline method by 6.9% in EAO on the VOT-2016

dataset. By comparing our method with “Baseline+LRC”,

we show the effectiveness of the reliability learning pro-

cess. Considering the reliability learning, our tracker im-

proves the “Baseline+LRC” method by 1.5% in terms of

AUC score on the OTB-2015 dataset, and our tracker al-

so improves it by 2.3% in terms of EAO on the VOT-2016

dataset.

6.4. Failure cases

We show some failure cases of the proposed tracker in

Figure 9. In the first and third columns, the cluttered back-

ground regions contain numerous distractors, which causes

the proposed method to drift off the targets. In the second

column, the proposed method does not track the target ob-

ject well as it undergoes large deformations and rotations

in a short span of time. These tracking failures can be par-

tially addressed when the information of the optical flow is

considered, which will be the focus of our future work.

Figure 9. Failure cases of the proposed method, where we use red

and green bounding boxes to denote our results and ground-truths.

7. Conclusion

In this paper, we clearly consider the discrimination and

reliability information in the correlation filter (CF) formu-

la and rewrite the filter weight as the element-wise product

of a base filter and a reliability weight map. First, we in-

troduce a local response consistency constraint for the base

filter, which constrains that each sub-region of the target

has similar importance. By this means, the reliability infor-

mation is separated from the base filter. In addition, we

consider the reliability information in the filter, which is

jointly learned with the base filter. Compared to the ex-

isting CF-based methods, our tracker is insusceptible to the

non-uniform distributions of the feature map, and can better

suppress the background regions. The joint learning of the

base filter and reliability term can be preformed by solving

the proposed optimization problem and being speeded up in

the Fourier domain. Finally, we evaluate our DRT method

on the OTB-2013, OTB-2015 and VOT-2016 datasets. Ex-

tensive experiments demonstrate that the proposed track-

er outperforms the state-of-the-art algorithms over all three

benchmarks.
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