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Abstract

We introduce a two-stream model for dynamic texture

synthesis. Our model is based on pre-trained convolutional

networks (ConvNets) that target two independent tasks: (i)

object recognition, and (ii) optical flow prediction. Given

an input dynamic texture, statistics of filter responses from

the object recognition ConvNet encapsulate the per-frame

appearance of the input texture, while statistics of filter re-

sponses from the optical flow ConvNet model its dynamics.

To generate a novel texture, a randomly initialized input se-

quence is optimized to match the feature statistics from each

stream of an example texture. Inspired by recent work on

image style transfer and enabled by the two-stream model,

we also apply the synthesis approach to combine the texture

appearance from one texture with the dynamics of another

to generate entirely novel dynamic textures. We show that

our approach generates novel, high quality samples that

match both the framewise appearance and temporal evo-

lution of input texture. Finally, we quantitatively evaluate

our texture synthesis approach with a thorough user study.

1. Introduction

Many common temporal visual patterns are naturally de-

scribed by the ensemble of appearance and dynamics (i.e.,

temporal pattern variation) of their constituent elements.

Examples of such patterns include fire, fluttering vegetation,

and wavy water. Understanding and characterizing these

temporal patterns has long been a problem of interest in hu-

man perception, computer vision, and computer graphics.

These patterns have been previously studied under a variety

of names, including turbulent-flow motion [17], temporal

textures [30], time-varying textures [3], dynamic textures

[8], textured motion [45] and spacetime textures [7]. Here,

we adopt the term “dynamic texture”. In this work, we pro-

pose a factored analysis of dynamic textures in terms of ap-

pearance and temporal dynamics. This factorization is then

used to enable dynamic texture synthesis which, based on

appearance target
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dynamics target

appearance & 
dynamics target output

Dynamic Texture Synthesis Dynamics Style Transfer

Figure 1: Dynamic texture synthesis. (left) Given an input

dynamic texture as the target, our two-stream model is able

to synthesize a novel dynamic texture that preserves the tar-

get’s appearance and dynamics characteristics. (right) Our

two-stream approach enables synthesis that combines the

texture appearance from one target with the dynamics from

another, resulting in a composition of the two.

example texture inputs, generates a novel dynamic texture

instance. It also enables a novel form of style transfer where

the target appearance and dynamics can be taken from dif-

ferent sources as shown in Fig. 1.

Our model is constructed from two convolutional net-

works (ConvNets), an appearance stream and a dynamics

stream, which have been pre-trained for object recognition

and optical flow prediction, respectively. Similar to previ-

ous work on spatial textures [13, 19, 33], we summarize an

input dynamic texture in terms of a set of spatiotemporal

statistics of filter outputs from each stream. The appear-

ance stream models the per frame appearance of the input

texture, while the dynamics stream models its temporal dy-

namics. The synthesis process consists of optimizing a ran-

domly initialized noise pattern such that its spatiotemporal

statistics from each stream match those of the input tex-

ture. The architecture is inspired by insights from human

perception and neuroscience. In particular, psychophysical

studies [6] show that humans are able to perceive the struc-

ture of a dynamic texture even in the absence of appearance

cues, suggesting that the two streams are effectively inde-
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pendent. Similarly, the two-stream hypothesis [16] models

the human visual cortex in terms of two pathways, the ven-

tral stream (involved with object recognition) and the dorsal

stream (involved with motion processing).

In this paper, our two-stream analysis of dynamic tex-

tures is applied to texture synthesis. We consider a range

of dynamic textures and show that our approach generates

novel, high quality samples that match both the frame-wise

appearance and temporal evolution of an input example.

Further, the factorization of appearance and dynamics en-

ables a novel form of style transfer, where dynamics of one

texture are combined with the appearance of a different one,

cf . [14]. This can even be done using a single image as

an appearance target, which allows static images to be an-

imated. Finally, we validate the perceived realism of our

generated textures through an extensive user study.

2. Related work

There are two general approaches that have dominated

the texture synthesis literature: non-parametric sampling

approaches that synthesize a texture by sampling pixels of

a given source texture [10, 26, 37, 47], and statistical para-

metric models. As our approach is an instance of a para-

metric model, here we focus on these approaches.

The statistical characterization of visual textures was in-

troduced in the seminal work of Julesz [23]. He conjectured

that particular statistics of pixel intensities were sufficient

to partition spatial textures into metameric (i.e., perceptu-

ally indistinguishable) classes. Later work leveraged this

notion for texture synthesis [19, 33]. In particular, inspired

by models of the early stages of visual processing, statistics

of (handcrafted) multi-scale oriented filter responses were

used to optimize an initial noise pattern to match the filter

response statistics of an input texture. More recently, Gatys

et al. [13] demonstrated impressive results by replacing the

linear filter bank with a ConvNet that, in effect, served as

a proxy for the ventral visual processing stream. Textures

are modelled in terms of the correlations between filter re-

sponses within several layers of the network. In subsequent

work, this texture model was used in image style transfer

[14], where the style of one image was combined with the

image content of another to produce a new image. Ruder et

al. [36] extended this model to video by using optical flow

to enforce temporal consistency of the resulting imagery.

Variants of linear autoregressive models have been stud-

ied [42, 8] that jointly model appearance and dynamics of

the spatiotemporal pattern. More recent work has consid-

ered ConvNets as a basis for modelling dynamic textures.

Xie et al. [48] proposed a spatiotemporal generative model

where each dynamic texture is modelled as a random field

defined by multiscale, spatiotemporal ConvNet filter re-

sponses and dynamic textures are realized by sampling the

model. Unlike our current work, which assumes pretrained

fixed networks, this approach requires the ConvNet weights

to be trained using the input texture prior to synthesis.

A recent preprint [12] described preliminary results ex-

tending the framework of Gatys et al. [13] to model and syn-

thesize dynamic textures by computing a Gram matrix of

filter activations over a small temporal window. In contrast,

our two stream filtering architecture is more expressive as

our dynamics stream is specifically tuned to spatiotemporal

dynamics. Moreover, as will be demonstrated, the factoriza-

tion in terms of appearance and dynamics enables a novel

form of style transfer, where the dynamics of one pattern

are transferred to the appearance of another to generate an

entirely new dynamic texture. To the best of our knowledge,

we are the first to demonstrate this form of style transfer.

The recovery of optical flow from temporal imagery

has long been studied in computer vision. Tradition-

ally, it has been addressed by handcrafted approaches e.g.,

[20, 29, 35]. Recently, ConvNet approaches [9, 34, 21, 49]

have been demonstrated as viable alternatives. Most closely

related to our approach are energy models of visual motion

[2, 18, 39, 31, 7, 25] that have been motivated and studied

in a variety of contexts, including computer vision, visual

neuroscience, and visual psychology. Given an input image

sequence, these models consist of an alternating sequence

of linear and non-linear operations that yield a distributed

representation (i.e., implicitly coded) of pixelwise optical

flow. Here, an energy model motivates the representation of

observed dynamics which is then encoded as a ConvNet.

3. Technical approach

Our proposed two-stream approach consists of an ap-

pearance stream, representing the static (texture) appear-

ance of each frame, and a dynamics stream, representing

temporal variations between frames. Each stream consists

of a ConvNet whose activation statistics are used to charac-

terize the dynamic texture. Synthesizing a dynamic texture

is formulated as an optimization problem with the objective

of matching the activation statistics. Our dynamic texture

synthesis approach is summarized in Fig. 2 and the individ-

ual pieces are described in turn in the following sections.

3.1. Texture model: Appearance stream

The appearance stream follows the spatial texture model

introduced by Gatys et al. [13] which we briefly review

here. The key idea is that feature correlations in a Con-

vNet trained for object recognition capture texture appear-

ance. We use the same publicly available normalized VGG-

19 network [40] used by Gatys et al. [13].

To capture the appearance of an input dynamic texture,

we first perform a forward pass with each frame of the im-

age sequence through the ConvNet and compute the feature

activations, Alt ∈ R
Nl×Ml , for various levels in the net-

work, where Nl and Ml denote the number of filters and
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Figure 2: Two-stream dynamic texture generation. Sets of

Gram matrices represent a texture’s appearance and dynam-

ics. Matching these statistics allows for the generation of

novel textures as well as style transfer between textures.

the number of spatial locations of layer l at time t, respec-

tively. The correlations of the filter responses in a particular

layer are averaged over the frames and encapsulated by a

Gram matrix, Gl ∈ R
Nl×Nl , whose entries are given by

Gl
ij = 1

TNlMl

∑T

t=1

∑Ml

k=1 A
lt
ikA

lt
jk, where T denotes the

number of input frames and Alt
ik denotes the activation of

feature i at location k in layer l on the target frame t. The

synthesized texture appearance is similarly represented by

a Gram matrix, Ĝlt ∈ R
Nl×Nl , whose activations are given

by Ĝlt
ij =

1
NlMl

∑Ml

k=1 Â
lt
ikÂ

lt
jk, where Âlt

ik denotes the acti-

vation of feature i at location k in layer l on the synthesized

frame t. The appearance loss, Lappearance, is then defined as

the temporal average of the mean squared error between the

Gram matrix of the input texture and that of the generated

texture computed at each frame:

Lappearance =
1

LappTout

Tout∑

t=1

∑

l

‖Gl − Ĝ
lt‖2F , (1)

where Lapp is the number of layers used to compute Gram

matrices, Tout is the number of frames being generated in

the output, and ‖ · ‖F is the Frobenius norm. Consistent

with previous work [13], we compute Gram matrices on the

following layers: conv1 1, pool1, pool2, pool3, and pool4.

3.2. Texture model: Dynamics stream

There are three primary goals in designing our dynamics

stream. First, the activations of the network must represent

the temporal variation of the input pattern. Second, the acti-

vations should be largely invariant to the appearance of the

images which should be characterized by the appearance

stream described above. Finally, the representation must be

differentiable to enable synthesis. By analogy to the ap-

pearance stream, an obvious choice is a ConvNet architec-

ture suited for computing optical flow (e.g., [9, 21]) which

is naturally differentiable. However, with most such mod-

els it is unclear how invariant their layers are to appearance.

Instead, we propose a novel network architecture which is

motivated by the spacetime-oriented energy model [7, 39].

In motion energy models, the velocity of image content

(i.e., motion) is interpreted as a three-dimensional orienta-

tion in the x-y-t spatiotemporal domain [2, 11, 18, 39, 46].

In the frequency domain, the signal energy of a translating

pattern can be shown to lie on a plane through the origin

where the slant of the plane is defined by the velocity of

the pattern. Thus, motion energy models attempt to identify

this orientation-plane (and hence the patterns velocity) via

a set of image filtering operations. More generally the con-

stituent spacetime orientations for a spectrum of common

visual patterns (including translation and dynamic textures)

can serve as a basis for describing the temporal variation of

an image sequence [7]. This suggests that motion energy

models may form an ideal basis for our dynamics stream.

Specifically, we use the spacetime-oriented energy

model [7, 39] to motivate our network architecture which

we briefly review here; see [7] for a more in-depth descrip-

tion. Given an input video, a bank of oriented 3D filters

are applied which are sensitive to a range of spatiotemporal

orientations. These filter activations are rectified (squared)

and pooled over local regions to make the responses robust

to the phase of the input signal, i.e., robust to the alignment

of the filter with the underlying image structure. Next, fil-

ter activations consistent with the same spacetime orienta-

tion are summed. These responses provide a pixelwise dis-

tributed measure of which orientations (frequency domain

planes) are present in the input. However, these responses

are confounded by local image contrast that makes it dif-

ficult to determine whether a high response is indicative

of the presence of a spacetime orientation or simply due

to high image contrast. To address this ambiguity, an L1

normalization is applied across orientation responses which

results in a representation that is robust to local appearance

variations but highly selective to spacetime orientation.

Using this model as our basis, we propose the follow-

ing fully convolutional network [38]. Our ConvNet in-

put is a pair of temporally consecutive greyscale images.

Each input pair is first normalized to have zero-mean and

unit variance. This step provides a level of invariance to

overall brightness and contrast, i.e., global additive and

multiplicative signal variations. The first layer consists of

32 3D spacetime convolution filters of size 11 × 11 × 2
(height×width×time). Next, a squaring activation function

and 5 × 5 spatial max-pooling (with a stride of one) is ap-

plied to make the responses robust to local signal phase. A

1×1 convolution layer follows with 64 filters that combines

energy measurements that are consistent with the same ori-

entation. Finally, to remove local contrast dependence, an
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Figure 3: Dynamics stream ConvNet. The ConvNet is based

on a spacetime-oriented energy model [7, 39] and is trained

for optical flow prediction. Three scales are shown for il-

lustration; in practice five scales were used.

L1 divisive normalization is applied.

To capture spacetime orientations beyond those capable

with the limited receptive fields used in the initial layer,

we compute a five-level spatial Gaussian pyramid. Each

pyramid level is processed independently with the same

spacetime-oriented energy model and then bilinearly up-

sampled to the original resolution and concatenated.

Prior energy model instantiations (e.g., [2, 7, 39]) used

handcrafted filter weights. While a similar approach could

be followed here, we opt to learn the weights so that they

are better tuned to natural imagery. To train the network

weights, we add additional decoding layers that take the

concatenated distributed representation and apply a 3 × 3
convolution (with 64 filters), ReLU activation, and a 1 × 1
convolution (with 2 filters) that yields a two channel output

encoding the optical flow directly. The proposed architec-

ture is illustrated in Fig. 3.

For training, we use the standard average endpoint er-

ror (aEPE) flow metric (i.e., L2 norm) between the pre-

dicted flow and the ground truth flow as the loss. Since no

large-scale flow dataset exists that captures natural imagery

with groundtruth flow, we take an unlabeled video dataset

and apply an existing flow estimator [35] to estimate opti-

cal flow for training, cf . [43]. For training data, we used

videos from the UCF101 dataset [41] with geometric and

photometric data augmentations similar to those used by

FlowNet [9], and optimized the aEPE loss using Adam [24].

Inspection of the learned filters in the initial layer showed

evidence of spacetime-oriented filters, consistent with the

handcrafted filters used in previous work [7].

Similar to the appearance stream, filter response cor-

relations in a particular layer of the dynamics stream are

averaged over the number of image frame pairs and en-

capsulated by a Gram matrix, Gl ∈ R
Nl×Nl , whose en-

tries are given by Gl
ij =

1
(T−1)NlMl

∑T−1
t=1

∑Ml

k=1 D
lt
ikD

lt
jk,

where Dlt
ik denotes the activation of feature i at location k

in layer l on the target frames t and t + 1. The dynam-

ics of the synthesized texture is represented by a Gram ma-

trix of filter response correlations computed separately for

each pair of frames, Ĝlt ∈ R
Nl×Nl , with entries Ĝlt

ij =
1

NlMl

∑Ml

k=1 D̂
lt
ikD̂

lt
jk, where D̂lt

ik denotes the activation of

feature i at location k in layer l on the synthesized frames t

and t+1. The dynamics loss, Ldynamics, is defined as the av-

erage of the mean squared error between the Gram matrices

of the input texture and those of the generated texture:

Ldynamics =
1

Ldyn(Tout − 1)

Tout−1∑

t=1

∑

l

‖Gl − Ĝ
lt‖2F , (2)

where Ldyn is the number of ConvNet layers being used in

the dynamics stream.

Here we propose to use the output of the concatenation

layer, where the multiscale distributed representation of ori-

entations is stored, as the layer to compute the Gram ma-

trix. While it is tempting to use the predicted flow out-

put from the network, this generally yields poor results as

shown in our evaluation. Due to the complex, temporal vari-

ation present in dynamic textures, they contain a variety of

local spacetime orientations rather than a single dominant

orientation. As a result, the flow estimates will tend to be

an average of the underlying orientation measurements and

consequently not descriptive. A comparison between the

texture synthesis results using the concatenation layer and

the predicted flow output is provided in Sec. 4.

3.3. Texture generation

The overall dynamic texture loss consists of the combi-

nation of the appearance loss, Eq. (1), and the dynamics

loss, Eq. (2):

Ldynamic texture = αLappearance + βLdynamics, (3)

where α and β are the weighting factors for the appearance

and dynamics content, respectively. Dynamic textures are

implicitly defined as the (local) minima of this loss. Tex-

tures are generated by optimizing Eq. (3) with respect to

the spacetime volume, i.e., the pixels of the video. Vari-

ations in the resulting texture are found by initializing the

optimization process using IID Gaussian noise. Consistent

with previous work [13], we use L-BFGS [28] optimization.

Naive application of the outlined approach will consume

increasing amounts of memory as the temporal extent of the

dynamic texture grows; this makes it impractical to gener-

ate longer sequences. Instead, long sequences can be in-

crementally generated by separating the sequence into sub-

sequences and optimizing them sequentially. This is real-

ized by initializing the first frame of a subsequence as the

last frame from the previous subsequence and keeping it

fixed throughout the optimization. The remaining frames
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of the subsequence are initialized randomly and optimized

as above. This ensures temporal consistency across synthe-

sized subsequences and can be viewed as a form of coordi-

nate descent for the full sequence objective. The flexibility

of this framework allows other texture generation problems

to be handled simply by altering the initialization of frames

and controlling which frames or frame regions are updated.

4. Experimental results

The goal of (dynamic) texture synthesis is to gener-

ate samples that are indistinguishable from the real input

target texture by a human observer. In this section, we

present a variety of synthesis results including a user study

to quantitatively evaluate the realism of our results. Given

their temporal nature, our results are best viewed as videos.

Our two-stream architecture was implemented using Ten-

sorFlow [1]. Results were generated using an NVIDIA Ti-

tan X (Pascal) GPU and synthesis times ranged between

one to three hours to generate 12 frames with an image

resolution of 256 × 256. For our full synthesis results

and source code, please refer to the supplemental material

on the project website: ryersonvisionlab.github.

io/two-stream-projpage.

4.1. Dynamic texture synthesis

We applied our dynamic texture synthesis process to a

wide range of textures which were selected from the Dyn-

Tex [32] database and others we collected in the wild. In-

cluded in our supplemental material are synthesized results

of nearly 60 different textures that encapsulate a range of

phenomena, such as flowing water, waves, clouds, fire, rip-

pling flags, waving plants, and schools of fish. Some sam-

ple frames are shown in Fig. 4 but we encourage readers to

view the videos to fully appreciate the results. In addition,

we performed a comparison with [12] and [48]. Generally,

we found our results to be qualitatively comparable or better

than these methods. See the supplemental for more details

on the comparisons with these methods.

We also generated dynamic textures incrementally, as

described in Sec. 3.3. The resulting textures were perceptu-

ally indistinguishable from those generated with the batch

process. Another extension that we explored were textures

with no discernible temporal seam between the last and first

frames. Played as a loop, these textures appear to be tempo-

rally endless. This was achieved by assuming that the first

frame follows the final frame and adding an additional loss

for the dynamics stream evaluated on that pair of frames.

Example failure modes of our method are presented

in Fig. 6. In general, we find that most failures result

from inputs that violate the underlying assumption of a

dynamic texture, i.e., the appearance and/or dynamics are

not spatiotemporally homogeneous. In the case of the

escalator example, the long edge structures in the ap-

pearance are not spatially homogeneous, and the dynam-

ics vary due to perspective effects that change the motion

from downward to outward. The resulting synthesized tex-

ture captures an overall downward motion but lacks the per-

spective effects and is unable to consistently reproduce the

long edge structures. This is consistent with previous ob-

servations on static texture synthesis [13] and suggests it is

a limitation of the appearance stream.

Another example is the flag sequence where the rip-

pling dynamics are relatively homogeneous across the pat-

tern but the appearance varies spatially. As expected, the

generated texture does not faithfully reproduce the appear-

ance; however, it does exhibit plausible rippling dynamics.

In the supplemental material, we include an additional fail-

ure case, cranberries, which consists of a swirling pat-

tern. Our model faithfully reproduces the appearance but is

unable to capture the spatially varying dynamics. Interest-

ingly, it still produces a result which is statistically indistin-

guishable from real in our user study discussed below.

Appearance vs. dynamics streams We sought to verify

that the appearance and dynamics streams were capturing

complementary information. To validate that the texture

generation of multiple frames would not induce dynamics

consistent with the input, we generated frames starting from

randomly generated noise but only using the appearance

statistics and corresponding loss, i.e., Eq. 1. As expected,

this produced frames that were valid textures but with no

coherent dynamics present. Results for a sequence contain-

ing a school of fish are shown in Fig. 5; to examine the

dynamics, see fish in the supplemental material.

Similarly, to validate that the dynamics stream did not in-

advertently include appearance information, we generated

videos using the dynamics loss only, i.e., Eq. 2. The re-

sulting frames had no visible appearance and had an ex-

tremely low dynamic range, i.e., the standard deviation of

pixel intensities was 10 for values in [0, 255]. This indi-

cates a general invariance to appearance and suggests that

our two-stream dynamic texture representation has factored

appearance and dynamics, as desired.

4.2. User study

Quantitative evaluation for texture synthesis is a partic-

ularly challenging task as there is no single correct output

when synthesizing new samples of a texture. Like in other

image generation tasks (e.g., rendering), human perception

is ultimately the most important measure. Thus, we per-

formed a user study to evaluate the perceived realism of our

synthesized textures.

Similar to previous image synthesis work (e.g., [5]), we

conducted a perceptual experiment with human observers

to quantitatively evaluate our synthesis results. We em-

ployed a forced-choice evaluation on Amazon Mechanical

6707
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Figure 4: Dynamic texture synthesis success examples. Names correspond to files in the supplemental material.

Turk (AMT) with 200 different users. Each user performed

59 pairwise comparisons between a synthesized dynamic

texture and its target. Users were asked to choose which

appeared more realistic after viewing the textures for an ex-

posure time sampled randomly from discrete intervals be-

tween 0.3 and 4.8 seconds. Measures were taken to control

the experimental conditions and minimize the possibility of

low quality data. See the supplemental material for further

experimental details of our user study.

For comparison, we constructed a baseline by using the

flow decode layer in the dynamics loss of Eq. 2. This corre-

sponds with attempting to mimic the optical flow statistics

of the texture directly. Textures were synthesized with this

model and the user study was repeated with an additional

200 users. To differentiate between the models, we label

“Flow decode layer” and “Concat layer” in the figures to

describe our baseline and final model, respectively.

The results of this study are summarized in Fig. 7 which

shows user accuracy in differentiating real versus generated

textures as a function of time for both methods. Over-

all, users are able to correctly identify the real texture

66.1% ± 2.5% of the time for brief exposures of 0.3 sec-

onds. This rises to 79.6%±1.1% with exposures of 1.2 sec-

onds and higher. Note that “perfect” synthesis results would

have an accuracy of 50%, indicating that users were unable

to differentiate between the real and generated textures and

higher accuracy indicating less convincing textures.

The results clearly show that the use of the concatenation

layer activations is far more effective than the flow decode

layer. This is not surprising as optical flow alone is known
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Figure 5: Dynamic texture synthesis versus texture synthe-

sis. (top row) Target texture. (middle) Texture synthesis

without dynamics constraints shows consistent per-frame

appearance but no temporal coherence. (bottom) Including

both streams induces consistent appearance and dynamics.

escalator

(original)

escalator

(synthesized)

flag

(original)

flag

(synthesized)

Figure 6: Dynamic texture synthesis failure examples. In

these cases, the failures are attributed to either the appear-

ance or the dynamics not being homogeneous.

to be unreliable on many textures, particularly those with

transparency or chaotic motion (e.g., water, smoke, flames,

etc.). Also evident in these results is the time-dependant

nature of perception for textures from both models. Users’

ability to identify the generated texture improved as expo-

sure times increased to 1.2 seconds and remained relatively

flat for longer exposures.

To better understand the performance of our approach,

we grouped and analyzed the results in terms of appear-

ance and dynamics characteristics. For appearance we used

the taxonomy presented in [27] and grouped textures as

either regular/near-regular (e.g., periodic tiling and brick

wall), irregular (e.g., a field of flowers), or stochastic/near-

stochastic (e.g., tv static or water). For dynamics we

grouped textures as either spatially-consistent (e.g., closeup

of rippling sea water) or spatially-inconsistent (e.g., rippling

sea water juxtaposed with translating clouds in the sky). Re-
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Figure 7: Time-limited pairwise comparisons across all tex-

tures with 95% statistical confidence intervals.

sults based on these groupings can be seen in Fig. 8.

A full breakdown of the user study results by texture and

grouping can be found in the supplemental material. Here

we discuss some of the overall trends. Based on appear-

ance it is clear that textures with large-scale spatial consis-

tencies (regular, near-regular, and irregular textures) tend to

perform poorly. Examples being flag and fountain 2

with user accuracies of 98.9% ± 1.6% and 90.8% ± 4.3%
averaged across all exposures, respectively. This is not un-

expected and is a fundamental limitation of the local na-

ture of the Gram matrix representation used in the appear-

ance stream which was observed in static texture synthe-

sis [13]. In contrast, stochastic and near-stochastic textures

performed significantly better as their smaller-scale local

variations are well captured by the appearance stream, for

instance water 1 and lava which had average accuracies

of 53.8%± 7.4% and 55.6%± 7.4%, respectively, making

them both statistically indistinguishable from real.

In terms of dynamics, we find that textures with

spatially-consistent dynamics (e.g., tv static,

water *, and calm water *) perform significantly

better than those with spatially-inconsistent dynamics (e.g.,

candle flame, fountain 2, and snake *), where

the dynamics drastically differ across spatial locations.

For example, tv static and calm water 6 have

average accuracies of 48.6% ± 7.4% and 63.2% ± 7.2%,

respectively, while candle flame and snake 5 have

average accuracies of 92.4% ± 4% and 92.1% ± 4%,

respectively. Overall, our model is capable of reproducing

a full spectrum of spatially-consistent dynamics. However,

as the appearance shifts from containing small-scale spatial

consistencies to containing large-scale consistencies,

performance degrades. This was evident in the user study

where the best-performing textures typically consisted of

a stochastic or near-stochastic appearance with spatially-

consistent dynamics. In contrast the worst-performing

textures consisted of regular, near-regular, or irregular

appearance with spatially-inconsistent dynamics.
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Figure 8: Time-limited pairwise comparisons across all tex-

tures, grouped by appearance (top) and dynamics (bottom).

Shown with 95% statistical confidence intervals.

4.3. Dynamics style transfer

The underlying assumption of our model is that appear-

ance and dynamics of texture can be factorized. As such, it

should allow for the transfer of the dynamics of one texture

onto the appearance of another. This has been explored pre-

viously for artistic style transfer [4, 15] with static imagery.

We accomplish this with our model by performing the same

optimization as above, but with the target Gram matrices for

appearance and dynamics computed from different textures.

A dynamics style transfer result is shown in Fig. 9 (top),

using two real videos. Additional examples are available

in the supplemental material. We note that when perform-

ing dynamics style transfer it is important that the appear-

ance structure be similar in scale and semantics, otherwise,

the generated dynamic textures will look unnatural. For in-

stance, transferring the dynamics of a flame onto a water

scene will generally produce implausible results.

We can also apply the dynamics of a texture to a static

input image, as the target Gram matrices for the appearance

loss can be computed on just a single frame. This allows us

to effectively animate regions of a static image. The result

of this process can be striking and is visualized in Fig. 9

(bottom), where the appearance is taken from a painting and

the dynamics from a real world video.

5. Discussion and summary

In this paper, we presented a novel, two-stream model of

dynamic textures using ConvNets to represent the appear-

appearance

target
synthesized output

Figure 9: Dynamics style transfer. (top row) Appearance of

still water was used with the dynamics of a different water

dynamic texture (water 4). (bottom row) The appearance

of a painting of fire was used with the dynamics of a real

fire (fireplace 1). Animated results and additional ex-

amples are available in the supplemental material.

ance and dynamics. We applied this model to a variety of

dynamic texture synthesis tasks and showed that, so long

as the input textures are generally true dynamic textures,

i.e., have spatially invariant statistics and spatiotemporally

invariant dynamics, the resulting synthesized textures are

compelling. This was validated both qualitatively and quan-

titatively through a large user study. Further, we showed

that the two-stream model enabled dynamics style transfer,

where the appearance and dynamics information from dif-

ferent sources can be combined to generate a novel texture.

We have explored this model thoroughly and found a few

limitations which we leave as directions for future work.

First, much like has been reported in recent image style

transfer work [14], we have found that high frequency noise

and chromatic aberrations are a problem in generation. An-

other issue that arises is the model fails to capture textures

with spatially-variant appearance, (e.g., flag in Fig. 6) and

spatially-inconsistent dynamics (e.g., escalator in Fig.

6). By collapsing the local statistics into a Gram matrix,

the spatial and temporal organization is lost. Simple post-

processing methods may alleviate some of these issues but

we believe that they also point to a need for a better rep-

resentation. Beyond addressing these limitations, a natural

next step would be to extend the idea of a factorized rep-

resentation into feed-forward generative networks that have

found success in static image synthesis, e.g., [22, 44].
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