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Abstract

Localizing text in the wild is challenging in the situations

of complicated geometric layout of the targets like random

orientation and large aspect ratio. In this paper, we propose

a geometry-aware modeling approach tailored for scene

text representation with an end-to-end learning scheme. In

our approach, a novel Instance Transformation Network

(ITN) is presented to learn the geometry-aware representa-

tion encoding the unique geometric configurations of scene

text instances with in-network transformation embedding,

resulting in a robust and elegant framework to detect words

or text lines at one pass. An end-to-end multi-task learning

strategy with transformation regression, text/non-text clas-

sification and coordinates regression is adopted in the ITN.

Experiments on the benchmark datasets demonstrate the ef-

fectiveness of the proposed approach in detecting scene text

in various geometric configurations.

1. Introduction

As an important and challenging problem in computer

vision, scene text detection aims at accurately localizing

text regions within an image of natural scene, and has a wide

range of applications such as image retrieval, scene parsing,

and blind-navigation. Despite the advanced techniques in

documental and digital text detection, scene text detection

is still challenging since text in the wild often appears to be

in the forms of complicated geometric layout like random

orientation and large aspect ratio.

In recent literature, various convolutional neural network

(CNN) based methods [20, 9, 30, 32, 26, 22] have been

proposed to detect scene text. Most of these works are

built on successful generic object detection frameworks,

such as proposal based two-stage frameworks like Faster-

RCNN [24] and end-to-end one stage detectors like SS-

D [19], taking words or text lines as a special case of object.
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Figure 1. Demonstration of regular representation and geometry-

aware representation. For clear illustration of physical location,

we use input images to represent feature maps. The first row shows

the fixed receptive fields on feature maps of regular representations

(yellow and red dotted grids). The second row shows the adaptive

receptive fields of geometry-aware representations.

Different from generic objects, scene text usually possesses

some particular geometric configurations such as large as-

pect ratio, random orientation, ranging scale, etc. To this

point, proposal based detection frameworks use extensive

proposals with limited geometric configurations to recall

text, which face an enormous search space and lack gen-

eralization ability. One-stage end-to-end detectors usually

generate feature maps through a fully convolutional neu-

ral network and produce representations through standard

convolution with a fixed receptive field on the feature maps

for all text instances. Such modeling is usually not suit-

able for scene text since it is incapable of well encoding

their drastically varying geometric distributions. Therefore,

how to effectively perform adaptive geometry-aware model-

ing for scene text representation with an end-to-end learning

scheme is a key issue to solve.

Motivated by the above observations, we propose an

adaptive geometry-aware representation learning scheme

customized for scene text and incorporate it into a nov-

el end-to-end network, Instance Transformation Network

(ITN), to effectively detect multi-scale, multi-oriented and

multi-lingual scene text. As illustrated in Figure 1, a regu-

lar representation is generated by standard 7 × 7 convolu-

tion operation with fixed receptive field, while a geometry-
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aware representation is convolved from a receptive field

which is adaptive to the spatial layout of text area on the fea-

ture map. The generation of geometry-aware representation

is realized by warping the regular convolutional sampling

grid so that its receptive field can suitably cover the text re-

gion. The warping procedure is carried out under the guid-

ance of the rigid geometric transformation from the regu-

lar sampling grid to the adaptive sampling grid. To learn

adaptive geometry-aware representation, specific transfor-

mations are estimated for specific text instances and em-

bedded in a convolutional layer in our Instance Transforma-

tion Network to perform instance-level modeling for scene

text, which explores the unique geometric configurations

for each instance. The ITN incorporates geometry-aware

representation learning with an in-network transformation

embedding module and perform joint optimization among

instance transformation regression, text/non-text classifica-

tion and coordinate regression, resulting in a robust and el-

egant framework to detect scene text at one pass.

The ITN is advantageous as follows. First, our net-

work combines adaptive representation and concise one-

pass structure by performing geometry-aware modeling for

scene text. Second, the geometry-aware representation en-

codes the instance-level geometric configurations of scene

text, which benefits both classification and regression tasks.

Third, our network directly outputs tight word-level or line-

level detections without complicated post-processing proce-

dures like clustering, merging, or connecting of segments.

The contributions of this work are threefold:

• We introduce a geometry-aware representation cus-

tomized for scene text which encodes the unique ge-

ometric configurations of text instances, allowing ac-

curate scene text modeling in a one-pass structure.

• We present an in-network transformation embedding

module which can be easily incorporated into oth-

er convolutional neural networks to generate adaptive

representations for scene text.

• We propose an end-to-end Instance Transformation

Network for scene text detection with geometry-aware

representation learning. The proposed network is

able to effectively detect scene text in various sce-

narios (e.g., multi-scale, multi-orientation, and multi-

language) without complicated post-processing.

2. Related Work

Scene text detection has been widely studied in the past

few years. In this section, we review related works of tradi-

tional methods and deep learning based methods on scene

text detection, and then we review most related works on

learning transformation in convolutional neural networks.

Traditional methods Traditional methods on scene text

detection are mainly bottom-up approaches which focus on

stroke or character-level structures. The two mainstreams

of them are connected-components based approaches and

sliding-window based methods. Connected-components

based methods like Maximally Stable Extremal Regions

(MSER) [23], Stroke Width Transform (SWT) [3] and their

extensions [10, 11, 37, 38, 33] extract stroke or character

candidates by filtering pixels according to low-level features

(e.g.color, intensity, gradient). This method is impressive-

ly fast but the following negative suppression and text line

construction require complex post-processing procedures.

Sliding window based approaches [29, 31, 14, 28] dense-

ly shift a scanning window through locations and scales of

an image to detect character candidates. Then windows are

classified into text and non-text with pre-trained classifiers,

which is computationally expensive.

Deep learning based methods In recent years, the main-

stream of scene text detection has altered from character-

level bottom-up methods to CNN-based detection system-

s [18, 9, 12, 5, 8, 40, 7] which consider words or text lines

as a specially case of objects. Methods based on segmen-

tation networks like FCN [21] usually generate text-salient

maps first and use geometric techniques to calculate coordi-

nates [36, 39]. Approaches in this manner translate noisy

prediction maps to detections with several post process-

ing steps. Methods [22] built on a proposal based detec-

tion system (e.g., Faster-RCNN) seek to incorporate orien-

tation in the proposal stage and represent text with Region-

of-Interest (RoI) pooling features [4]. Other approach-

es [30, 32, 26] detect text segments with a one-stage RP-

N [24] or SSD [19]-style detector, then utilize hand-crafted

steps like connecting, clustering and merging to acquire

words or text lines. Compared with previous approaches us-

ing regular representations, our method focuses on learning

geometry-aware representations for scene text in a one-pass

network.

Transformation learning networks The idea of learning

spatial transformation in a network of our method is sim-

ilar to STN [13]. STN performs global transformation on

the entire feature map, while we apply instance-level trans-

formations for multi-target detection. Inspired by recent

work Deformable Convolutional Networks [2], we embed

transformations in a convolutional layer to produce trans-

formed representation. Notably, unlike unsupervised gener-

al transformation adopted in [2], the deformation of feature

sampling grid in the ITN is constrained by rigid geometric

transformation learnt under supervision, which is tailored

for scene text detection.

3. Geometry-aware Scene Text Detection

The fundamental difficulty in detecting scene text lies in

its drastically changeable geometry configurations includ-

ing scale, orientation and aspect ratio. Mainstream regu-
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Figure 2. Illustration of geometry-aware representation. (a) shows

the warping of the sampling grid: the orange dots show a regular

7 × 7 sampling grid and the dark blue dots are the warped adap-

tive sampling grid. (b) illustrates the generation of output feature

map V from input feature map M (visualized as the input image).

The orange and blue patches are simplified form of regular and

adaptive sampling grids.

lar representation learnt in standard CNN models is inca-

pable of well encoding the unique geometric distributions of

scene text. So in this work, we propose an Instance Trans-

formation Network (ITN) to learn geometry-aware repre-

sentation tailored for scene text in an end-to-end network.

In this section, we present details of our method. Specifi-

cally, we first introduce the geometry-aware representation.

Then we illustrate the framework of the ITN including the

in-network transformation embedding module. The opti-

mization of the ITN is introduced at last.

3.1. Geometry­aware Representation

Given an input feature map M generated by a backbone

fully convolutional neural network, we aim to produce an

output feature map V for the text classification and coordi-

nate regression tasks with a convolutional layer. The clas-

sification and regression tasks are performed on the feature

vector vxy at the pixel location (x, y) in V, convolved by

w of kernel size (2k+ 1)× (2k+ 1) (e.g., 7× 7) on M. A

standard convolution operation is defined as:

vxy =

k
∑

p=−k

k
∑

q=−k

w(p, q)M(x+ p, y + q). (1)

Such feature vxy is sampled from a fixed square patch of

size (2k+ 1)× (2k+ 1) in the input feature map M for all

locations. Thus for all text instances in an input image, their

representations share the same shape of receptive field. Fea-

tures learnt with this strategy can hardly be both intact and

clean when the target is of large aspect ratio and inclined.

To address this problem, we seek to guide the sampling of

features with a transformation to generate geometry-aware

representation for text instances in the input image.

For the choice of the particular transformation, we adopt

affine transformation. We observe that scene texts are often

rigid rectangle targets in actual world and their deformation-

s in a picture obey projective transformation. A projective

transformation matrix is composed of two parts, an affine

matrix and a projection vector. In practice, directly learn-

ing a projective transformation in a network is hard since

the deformation is sensitive to the parameters of projection

vector. So we choose the affine transformation to encode the

essential characteristics of the text deformation (e.g., rota-

tion, translation, scale and shear), which is easier to learn

and sufficient to approximate the real case.

We estimate an affine transformation Tθxy
parameterized

by θxy at pixel location (x, y) in V and embed it in the fea-

ture sampling stage to adaptively fit the current receptive

field to the surrounding text instance area. Particularly, we

do not care about the transformation if the current location

falls into no instance area. The transformation embedment

is realized by warping the regular sampling grid to an adap-

tive sampling grid under the guidance of Tθxy
through pixel-

to-pixel alignment:

vxy =
k

∑

p=−k

k
∑

q=−k

w(p, q)M(Tθxy
(x+ p, y + q)), (2)

where Tθ(u, v) = (u′, v′), and

(

u′

v′

)

= Aθ





u
v
1



 =

[

θ1 θ2 θ3
θ4 θ5 θ6

]





u
v
1



 , (3)

in which Aθ is a 2D affine transformation matrix parameter-

ized by a 6-dimensional vector θ = (θ1, θ2, θ3, θ4, θ5, θ6).
Particularly, transformations are estimated for all the pixel

locations in V, forming a 3-order tensor Θ with the same

spatial resolution such that θxy = Θ(x, y) is the transfor-

mation parameters for location (x, y).
The procedure of warping a regular sampling grid to an

adaptive sampling grid is shown in Figure 2 (a). Compared

with the standard sampling strategy in Eq. 1, the convolved

feature vxy in Eq. 2 is extracted from a region which is able

to cover the whole text instance without introducing redun-

dant background, and thus is more suitable for the tasks of

text classification and regression. The process of generating

output feature map V from input feature map M is illustrat-

ed in Figure 2 (b).

We compute M(u′, v′) on a real valued location (u′, v′)
via bilinear interpolation which allows back-propagation

through both transformation matrix and input feature map.
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Figure 3. The architecture of the ITN. The ITN consists of three parts: convolutional feature extraction and fusion layers shown in the

left where feature maps of three different scales are fused; in-network transformation embedding module shown in the gray dashed box

where instance-level affine transformations are predicted and embedded; and multi-task learning shown in the right where classification,

transformation regression and coordinate regression are jointly optimized.

The gradients with respect to Θ and M are defined in a

similar way as [13] for end-to-end training.

An important property of the predicted transformation-

s is that they are translational variant. For pixel loca-

tions falling into different instance regions, their estimated

transformations are different to adapt to their correspond-

ing instances. For pixel locations who fall into the same

instance, their predicted transformations are expected to re-

sult in the same sampling grid covering this particular in-

stance. That is to say, affine transformations estimated at

different locations for the same instance will share parame-

ters with respect to rotation, scale, and shear and only differ

in translation. Despite the changes in translational parame-

ters, we consider the predicted transformations as instance-

level transformations in this work.

3.2. Instance Transformation Network

The ITN is an end-to-end detection network which

takes in an input image I and output word-level or line-

level quadrilateral detections D. Each detection contain-

s a quadrilateral d represented by four clockwise cor-

ners (starting from the left-top vertex) in the form of

(d1x, d1y, d2x, d2y, d3x, d3y, d4x, d4y) and its confidence s-

core s. As depicted in Figure 3, the ITN includes main-

ly three parts: convolutional feature extraction and fusion,

in-network transformation embedding introduced in Sec-

tion 3.1 and multi-task learning.

Feature maps from different layers of a fully convolu-

tional network are fused into a feature map M to detect

targets in different scales. Then geometry-aware represen-

tation is produced by an in-network transformation embed-

ding module. In this module, the parameters of affine trans-

formations Θ are generated by adding a branch of a 3 × 3
convolutional layer over the input feature map M. The out-

put of this branch has the same spatial resolution as the out-

put feature map V. Predicted transformations and the input

feature map M are then fed into the convolution operation

(7× 7 kernel size) defined in Eq. 2.

Then the ITN performs multi-task learning which par-

allels three branches: text/non-text classification, coordi-

nate regression and transformation regression. Taking one

pixel location as an example, geometry-aware representa-

tion is used for classification, and the estimated transfor-

mation is simultaneously regressed. The coordinate regres-

sion demands both the representation and transformation.

The bounding-box F of the adaptive sampling grid is trans-

formed from the bounding-box E (a fixed 7 × 7 square in

ITN) of the regular sampling grid under the guidance of the

transformation. F is taken as a coarse estimation of the de-

tection, and offset between F and the ground-truth is the tar-

get for coordinate regression. The three tasks are all trained

under supervision.

The network produces three outputs for each pixel loca-

tion in feature map V, including: (a) the predicted probabil-

ity s of the feature extracted at the current location being a

“text”; (b) the predicted parameters of an affine transforma-

tion matrix θ = (θ1, θ2, θ3, θ4, θ5, θ6); and (c) the predicted

coordinate offset t = (t1x, t1y, t2x, t2y, t3x, t3y, t4x, t4y).
In the test stage, the detections can be recovered from the

network outputs:

d = Tθ(E) + t, (4)

here we abuse the notation of Tθ(E) to indicate iterative

functioning on the four vertices of E. We apply a Soft-

NMS [1] step with the linear rescoring function and no

thresholding to decay the scores of overlapped detections

to generate final detections D.
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3.3. Optimization

Training targets We divide pixels in the feature map V

into three categories: positive pixels who lie in the region of

a ground-truth instance, negative pixels who are excluded

by all the ground-truth instances, and at last, silent pixels

who fall in the boundary area. In the training stage, positive

pixels are involved in all classification and regression tasks,

while negative pixels are only involved in the classification

task. Silent pixels contribute none to all the tasks.

For the text/non-text classification task, the label s∗ at

a positive pixel location, negative pixel location and silent

pixel location is set to 1 (text), 0 (non-text), and -1 (ignore),

respectively.

For the transformation regression task, the ground-truth

affine matrix at each positive pixel location is calculated by

projecting the bounding-box E of the regular sampling grid

to the approximated parallelogram of its targeting ground-

truth bounding-box G which is already re-scaled to the fea-

ture map V by solving the linear least-squares.

Additionally, we observe that the feature extracted from

a part of a whole word or a text line is still a valid “text”

due to the natural gaps between words or characters, which

makes the boundaries of a word or a text line difficult to

determine. To this point, we note that it is not trivial to let

the detector see the whole boundaries of the target by in-

cluding some background context into the effective recep-

tive field. To generate representations with context, we ex-

pand the ground-truth text area with a scale factor of 1.2 to

compute the target affine transformation parameter θ∗.

For the coordinate regression task, we use the learn-

t transformation Tθ at each positive pixel location and E
to generate a bounding-box F = Tθ(E) in the feature map

V as a coarse estimation of G. Then F is refined through

coordinate regression using the geometry-aware representa-

tion. The regression target at each positive pixel location is

defined as t∗ = G−F where G and F are in the form of an

8-dimensional vector containing four clock-wise vertices.

The offset regression strategy is also adopted in pro-

posal based methods like Fast-RCNN [4] and Faster-

RCNN [24], which regress the offsets between the ground-

truth bounding-boxes and the proposal coordinates. The

bounding-box F and the region it covers in our method are

analogous to their proposal and region of interest (RoI).

The difference is that in proposal based methods, their

RoIs from the proposal generation stage remain unchanged

through the regression and thus RoI features are extracted

from fixed regions in the feature map. But in the ITN, F and

its constrained sampling grid evolves with the regressions,

producing dynamically adaptive representation which ben-

efit both classification and coordinate regression.

Loss function The ITN adopts a multi-task learning s-

trategy. The overall loss function consists of three part-

s: text/non-text classification, coordinate regression, and

transformation regression:

L({si}, {ti}, {θi}) =
1

Ncls

∑

i

Lcls(si, s
∗

i )

+
λ1

Ncoor

∑

i

[s∗i = 1]Lcoor(ti, t
∗

i )

+
λ2

Ntrans

∑

i

[s∗i = 1]Ltrans(θi,θ
∗

i ),

(5)

where i enumerates the location indices in the final fea-

ture map (here we use i to replace (x, y) for simplicity),

and [·] is the indicator function. Lcls, Lcoor and Ltrans

are loss functions for text/non-text classification, coordi-

nate regression and transformation regression, respective-

ly. These three terms are normalized by Ncls, Ncoor and

Ntrans, where Ncls is the number of positive and negative

pixels and Ncoor = Ntrans is the number of positive sam-

ples. λ1 and λ2 are the balancing weights, in which λ1 is

set to 0.1 and λ2 is set to 0.01 empirically. s∗i , t∗i and θ
∗

i are

the supervision for the three tasks.

Similar to the RPN [24], Lcls is a two-class softmax loss

for classification task. For coordinate regression and trans-

formation regression, we use Lcoor(ti, t
∗

i ) = R(ti − t
∗

i )
and Ltrans(θi,θ

∗

i ) = R(θi − θ
∗

i ) where R is the smooth-

L1 loss function defined in [4].

4. Experiments

4.1. Implementation Details

In the proposed method, the layers in feature extraction

stage are initialized with the backbone models (ResNet-

50 [6] and VGG-16 [27]) pretrained on ImageNet [25]. New

layers are initialized by random weights with Gaussian dis-

tribution of 0 mean and 0.01 standard deviation except the

convolutional layer for matrix prediction which is initialized

to produce an identity matrix at each spatial location. Each

input image is resized such that its shorter side is 600 pix-

els similar to [24] during both training and test stage. The

ITN is trained end-to-end by using the standard stochastic

gradient descent (SGD) with back-propagation with a mo-

mentum of 0.9 and weight decay of 0.0005. We adopt the

“step” policy in Caffe [15] to adjust learning rate. The base

learning rate is 10−3 and decays by a weight of 0.1 every

50k iterations. Training a model of the maximum iteration

100k with a batch size of 1 takes less than a day. The ITN

is implemented in Caffe framework [15] and run on a server

with 3.0GHz CPU and Titan X GPU.

Pixel labeling The convolutional feature map V is scaled

by a factor of 1/h against the input image I as the convolu-

tion stride accumulates. So we associate each pixel location

in the V to a grid B of size h×h on the input image (h = 8
in our case). We define the intersection ratio of a grid B
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with a ground-truth bounding-box G′ as |B ∩G′|/|B|. We

define a positive pixel as whose associated grid has inter-

section ratio with a ground-truth instance over 0.7 or whose

grid has the highest intersection ratio with a ground-truth

bounding-box to make sure that both large and small in-

stances can be recalled. Negative pixels are defined as those

whose highest intersection ratio with all instances is lower

than 0.3 among the rest of the pixels. Other pixels are cate-

gorized as silent pixels.

Data augmentation An online data augmentation strate-

gy is adopted in the training stage of our method. Train-

ing images are randomly rotated by [−15, 15] degrees and

scaled by a factor of [0.8, 1.2]. We abandon the shifted sam-

ple when the new ground-truths are out of the frame and use

the original image instead.

Hard negative mining Considering that negative pixels

are usually much more than positive pixels in the feature

map, we utilize online hard negative mining similar to [26]

to benefit the classification task. The largest ratio between

negative pixels and positive pixels is set to 3:1 and the rest

of the pixels are ignored.

Feature fusion To tackle with multi-scale targets, we fuse

feature maps of different scales. For ResNet-50, we take

res 5c, res 4f and res 3d, which are the final outputs of

the last three blocks in ResNet-50. Specifically, res 5c and

res 4f are up-sampled to the scale of res 3d (1/8 of the

input image), then the three feature maps are concatenat-

ed. One additional convolutional layer is added following

the concatenated feature maps to smooth the feature space.

Similarly, we fuse the outputs of conv5 3 and conv4 3 for

VGG-16 (scale is also 1/8 of the input image).

4.2. Datasets

We evaluate the in-network transformation embedding

module and the ITN on standard multi-oriented scene

text detection benchmarks: MSRA-TD500 [35] and IC-

DAR2015 [17].

ICDAR2015 ICDAR2015 is an incidental scene tex-

t dataset which contains 1000 training images and 500 test

images. This dataset is very challenging because the images

are collected by wearable cameras without the users taking

any specific prior action. So texts in the images appear in

random scale, orientation, location, viewpoint and blurring.

The annotations of ICDAR2015 are provided as quadrilat-

eral bounding-boxes represented by 8 coordinates of four

clock-wise corners. Word-level detections are required in

evaluation stage.

MSRA-TD500 MSRA-TD500 contains 300 training im-

ages and 200 test images of multi-oriented texts. It is a

multi-lingual dataset including English and Chinese. Unlike

ICDAR2015, the annotations of MSRA-TD500 are at line-

level which are represented by aligned horizontal rectangles

Table 1. Results on MSRA-TD500

Method Precision Recall F-measure

Kang et al. [16] 71 62 66

Yao et al. [35] 63 63 60

Yin et al. [37] 81 63 74

Yin et al. [38] 71 61 65

Zhang et al. [39] 83 67 74

Ma et al. [22] 82 68 74

Yao et al. [36] 77 75 76

Shi et al. [26] 86 70 77

Zhou et al. [40] 87 67 76

Baseline VGG16 58.8 55.3 57.0

Baseline ResNet50 82.1 68.7 74.8

ITN VGG16 80.3 65.6 72.2

ITN ResNet50 90.3 72.3 80.3

and their orientations. We adopt the same standard evalua-

tion metric as the ICDAR challenges for MSRA-TD500.

4.3. Experimental Results

4.3.1 Detecting Oriented Multi-Lingual Text Lines

We evaluate our in-network transformation embedding

module and the ITN in detecting oriented multi-lingual text

lines on MSRA-TD500. The MSRA-TD500 only contains

300 training images which is too small to train our mod-

el. Following a standard solution widely adopted in the

community [39, 36, 26], we mix the training set of MSRA-

TD500 with other additional data. We use the training and

test set of HUST-TR400 [34], which collects 400 images

similar to MSRA-TD500 in scale and appearance. Detec-

tions with a score higher than 0.9 are taken as final results.

Our baseline network is built by replacing the in-network

transformation embedding module in ITN with a standard

convolutional layer of same configurations. Regular rep-

resentations for text/non-text classification and coordinate

regression are generated by 7 × 7 regular sampling grids.

Other experimental conditions are the same with ITN in the

baseline network.

The comparison results in terms of precision, recall and

F-measure of the proposed method, baseline and other state-

of-the-art methods are listed in Table 1. Our ITN based

on ResNet-50 (ITN ResNet50) outperforms all the other

methods in precision and F-measure, and ranks second in

recall. Moreover, promotions of 5.5% and 15.2% in F-

measure are achieved by the ITNs with respect to their base-

line networks (ResNet-50 and VGG-16) respectively. The

experimental results demonstrate the effectiveness of the in-

network transformation embedding module and the robust-

ness of our geometry-aware representation. The high preci-

sion is mainly benefited by the geometry-aware representa-

tion which excludes redundant background noises. Figure 4

shows some detection results and how the geometry-aware

representation adapts to each instance. We observe that the
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Figure 4. Examples on MSRA-TD500. The first row shows detection results (yellow bounding-boxes) of the ITN. The second row shows

the regular sampling grids (blue) and the adaptive sampling grids (red) on the feature maps (visualized as input images). For clarity, we

draw two pairs of sampling grid examples on one image at most.

Figure 5. Examples on ICDAR2015. Detection results (yellow bounding-boxes) and zoom-in small windows (blue boxes at the image

corners) are shown in each image.

ITN is able to detect oriented text in long lines. The reason

behind this phenomenon is that the embedment of transfor-

mation allows the model to see the global representation of

a text line so that boundaries of long instances can be accu-

rately determined.

4.3.2 Detecting Oriented English Words

To further demonstrate the effectiveness of our in-network

transformation embedding module and the ITN in detecting

oriented English words, we evaluate our baseline network

and the ITN on ICDAR2015 Incidental Text. Targets in this

dataset are commonly small and thus the positive pixels in

the feature map is much less than MSRA-TD500. To ensure

effective recall, we keep all the detections classified as “tex-

t” as the final detections. For fair comparison, we evaluate

our performance with the official submission server.

As listed in Table 2, our method (ITN VGG16) outper-

forms other methods, and the ITNs achieves improvements

Table 2. Results on ICDAR 2015 Incidental Text

Method Precision Recall F-measure

MCLAB FCN [39] 70.8 43.0 53.6

CTPN [30] 51.6 74.2 60.9

Yao et al. [36] 72.3 58.7 64.8

DMPN [20] 68.22 73.23 70.64

Shi et al. [26] 73.1 76.8 75.0

Zhou et al. [40] 83.6 73.5 78.2

Baseline ResNet50 76.2 70.9 73.4

Baseline VGG16 78.1 73.7 75.8

ITN ResNet50 81.3 71.6 76.1

ITN VGG16 85.7 74.1 79.5

of 2.7% and 3.7% in F-measure against the baselines based

on ResNet-50 and VGG-16 respectively. As shown in Fig-

ure 5, our ITN is able to effectively detect English words

in challenging situations like complex environment, skewed

viewpoint and low resolution. Notably, our ITN generate

tight quadrilateral detections which is much more accurate
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Figure 6. Example of the learnt transformations. Transformed sampling grids (red) and corresponding regular sampling grids (blue) on

feature maps (visualized as input images) of (a) ITN-general, (b) ITN w/o transformation regression and (c) ITN.

than rigid rectangles especially in skewed viewpoints. This

is because the combination of affine transformation and co-

ordinate regression can closely approximate the real case.

4.4. Discussion

Comparison with other frameworks Compared with

proposal based two-stage frameworks like [24], our one-

stage ITN framework is impressively concise and does not

need extensive proposals with discrete configurations of s-

cale, rotation angle and aspect ratio. In a sense, our transfor-

mation embedding module incorporates RoI feature pool-

ing into a convolutional layer, while the feature extraction

and coordinate regression in our ITN are mutually calibrat-

ed in a dynamic way during training instead of fixed RoIs as

we discussed in subsection 3.3. The comparison of exper-

imental results between Faster-RCNN based method [22]

and our ITN on MSRA-TD500 proves the robustness of

our framework (74% vs. 80.3% in F-measure). Com-

pared with other one-stage frameworks like RPN [24] or

SSD [19], our framework produces geometry-aware repre-

sentation rather than regular representation. The competi-

tive methods [26, 20] are based on SSD [19] framework to

detect words or segments. In comparison, our ITN achieves

favorable results without pre-defined anchors or complicat-

ed post-processing.

Ablation study We empirically compare different option-

s on the transformation in our ITN framework (ResNet-50

based): (a) ITN-general: using a general transformation [2],

which makes the transformation supervision infeasible; (b)

ITN w/o transformation regression: training an ITN without

supervision on transformation regression.

The F-measure scores of baseline, ITN-general, ITN w/o

transformation regression, and ITN on MSRA-TD500 are

74.8%, 78.2%, 79.0% and 80.3% respectively.

Both ITN w/o transformation regression and ITN-

general achieve better results than baseline, which further

demonstrates the effectiveness of our geometry-aware rep-

resentation learning framework. The performance of ITN

w/o transformation regression is better than ITN-general

mainly due to the geometry constraint on transformation,

which makes the transformation learning easier. The ITN

trained with supervision on transformation regression out-

performs both ITN-general and ITN w/o transformation re-

gression. With the help of such supervision, the model is

more likely to find a better solution during training, while

the transformation learning may fall into different local op-

timal solutions without supervision, as shown in Figure 6.

5. Conclusion

In this paper, we have presented a novel end-to-end ITN

to effectively detect scene text in the forms of complicat-

ed geometric layout. An adaptive geometry-aware repre-

sentation learning scheme incorporated in the ITN has been

proposed to encode the unique geometric configurations of

scene text instances. The experimental results on standard

benchmarks demonstrate that ITN is able to effectively de-

tect multi-scale, multi-oriented and multi-lingual words or

text lines at one pass. 1

1 Acknowledgements. This work is supported in part by the Nation-

al Natural Science Foundation of China under Grant U1509206 and Grant

61472353, in part by the National Basic Research Program of China under

Grant 2015CB352302. Xi Li is supported by the Alibaba-Zhejiang Uni-

versity Joint Institute of Frontier Technologies. Dacheng Tao is supported

by the grants: ARC FL-170100117, DP-180103424, DP-140102164, and

LP-150100671.

1388



References

[1] N. Bodla, B. Singh, R. Chellappa, and L. S. Davis. Improv-

ing object detection with one line of code. In ICCV, 2017.

[2] J. Dai, H. Qi, Y. Xiong, Y. Li, G. Zhang, H. Hu, and Y. Wei.

Deformable convolutional networks. In ICCV, 2017.

[3] B. Epshtein, E. Ofek, and Y. Wexler. Detecting text in natural

scenes with stroke width transform. In CVPR, 2010.

[4] R. B. Girshick. Fast R-CNN. In ICCV, 2015.

[5] A. Gupta, A. Vedaldi, and A. Zisserman. Synthetic data for

text localisation in natural images. In CVPR, 2016.

[6] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning

for image recognition. In CVPR, 2016.

[7] P. He, W. Huang, T. He, Q. Zhu, Y. Qiao, and X. Li. Single

shot text detector with regional attention. In ICCV, 2017.

[8] T. He, W. Huang, Y. Qiao, and J. Yao. Text-attentional con-

volutional neural network for scene text detection. IEEE

Trans. Image Processing, 25(6):2529–2541, 2016.

[9] W. He, X. Zhang, F. Yin, and C. Liu. Deep direct regression

for multi-oriented scene text detection. In ICCV, 2017.

[10] W. Huang, Z. Lin, J. Yang, and J. Wang. Text localization

in natural images using stroke feature transform and text co-

variance descriptors. In ICCV, 2013.

[11] W. Huang, Y. Qiao, and X. Tang. Robust scene text detection

with convolution neural network induced MSER trees. In

ECCV, 2014.

[12] M. Jaderberg, K. Simonyan, A. Vedaldi, and A. Zisserman.

Reading text in the wild with convolutional neural networks.

IJCV, 116(1):1–20, 2016.

[13] M. Jaderberg, K. Simonyan, A. Zisserman, and

K. Kavukcuoglu. Spatial transformer networks. In

NIPS, 2015.

[14] M. Jaderberg, A. Vedaldi, and A. Zisserman. Deep features

for text spotting. In ECCV, 2014.

[15] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. B.

Girshick, S. Guadarrama, and T. Darrell. Caffe: Convolu-

tional architecture for fast feature embedding. In ACMMM,

2014.

[16] L. Kang, Y. Li, and D. S. Doermann. Orientation robust text

line detection in natural images. In CVPR, 2014.

[17] D. Karatzas, L. Gomez-Bigorda, A. Nicolaou, S. K. Ghosh,

A. D. Bagdanov, M. Iwamura, J. Matas, L. Neumann, V. R.

Chandrasekhar, S. Lu, F. Shafait, S. Uchida, and E. Valve-

ny. ICDAR 2015 competition on robust reading. In ICDAR,

2015.

[18] M. Liao, B. Shi, X. Bai, X. Wang, and W. Liu. Textboxes: A

fast text detector with a single deep neural network. In AAAI,

2017.

[19] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. E. Reed,

C. Fu, and A. C. Berg. SSD: single shot multibox detector.

In ECCV, 2016.

[20] Y. Liu and L. Jin. Deep matching prior network: Toward

tighter multi-oriented text detection. In CVPR, 2017.

[21] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional

networks for semantic segmentation. In CVPR, 2015.

[22] J. Ma, W. Shao, H. Ye, L. Wang, H. Wang, Y. Zheng, and

X. Xue. Arbitrary-oriented scene text detection via rotation

proposals. CoRR, abs/1703.01086, 2017.

[23] J. Matas, O. Chum, M. Urban, and T. Pajdla. Robust wide-

baseline stereo from maximally stable extremal regions. Im-

age Vision Comput., 22(10):761–767, 2004.

[24] S. Ren, K. He, R. B. Girshick, and J. Sun. Faster R-CNN:

towards real-time object detection with region proposal net-

works. In NIPS, 2015.

[25] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,

S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein,

et al. Imagenet large scale visual recognition challenge. I-

JCV, 115(3):211–252, 2015.

[26] B. Shi, X. Bai, and S. J. Belongie. Detecting oriented text in

natural images by linking segments. In CVPR, 2017.

[27] K. Simonyan and A. Zisserman. Very deep convolution-

al networks for large-scale image recognition. CoRR, ab-

s/1409.1556, 2014.

[28] S. Tian, S. Lu, B. Su, and C. L. Tan. Scene text recognition

using co-occurrence of histogram of oriented gradients. In

ICDAR, 2013.

[29] S. Tian, Y. Pan, C. Huang, S. Lu, K. Yu, and C. L. Tan. Text

flow: A unified text detection system in natural scene images.

In ICCV, 2015.

[30] Z. Tian, W. Huang, T. He, P. He, and Y. Qiao. Detecting text

in natural image with connectionist text proposal network. In

ECCV, 2016.

[31] K. Wang, B. Babenko, and S. J. Belongie. End-to-end scene

text recognition. In ICCV, 2011.

[32] D. Xiang, Q. Guo, and Y. Xia. Robust text detection with

vertically-regressed proposal network. In ECCV, 2016.

[33] I. Z. Yalniz, D. Gray, and R. Manmatha. Efficient exploration

of text regions in natural scene images using adaptive image

sampling. In ECCV, 2016.

[34] C. Yao, X. Bai, and W. Liu. A unified framework for multi-

oriented text detection and recognition. IEEE Trans. Image

Processing, 23(11):4737–4749, 2014.

[35] C. Yao, X. Bai, W. Liu, Y. Ma, and Z. Tu. Detecting texts of

arbitrary orientations in natural images. In CVPR, 2012.

[36] C. Yao, X. Bai, N. Sang, X. Zhou, S. Zhou, and Z. Cao.

Scene text detection via holistic, multi-channel prediction.

CoRR, abs/1606.09002, 2016.

[37] X. Yin, W. Pei, J. Zhang, and H. Hao. Multi-orientation

scene text detection with adaptive clustering. PAMI,

37(9):1930–1937, 2015.

[38] X. Yin, X. Yin, K. Huang, and H. Hao. Robust text detection

in natural scene images. PAMI, 36(5):970–983, 2014.

[39] Z. Zhang, C. Zhang, W. Shen, C. Yao, W. Liu, and X. Bai.

Multi-oriented text detection with fully convolutional net-

works. In CVPR, 2016.

[40] X. Zhou, C. Yao, H. Wen, Y. Wang, S. Zhou, W. He, and

J. Liang. East: An efficient and accurate scene text detector.

In CVPR, 2017.

1389


