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Abstract

Multi-layer light field displays are a type of computa-

tional three-dimensional (3D) display which has recently

gained increasing interest for its holographic-like effect

and natural compatibility with 2D displays. However, the

major shortcoming, depth limitation, still cannot be over-

come in the traditional light field modeling and reconstruc-

tion based on multi-layer liquid crystal displays (LCDs).

Considering this disadvantage, our paper incorporates a

salience guided depth optimization over a limited display

range to calibrate the displayed depth and present the max-

imum area of salience region for multi-layer light field dis-

play. Different from previously reported cascaded light field

displays that use the fixed initialization plane as the depth

center of display content, our method automatically cali-

brates the depth initialization based on the salience results

derived from the proposed contrast enhanced salience de-

tection method. Experiments demonstrate that the proposed

method provides a promising advantage in visual percep-

tion for the compressive light field displays from both soft-

ware simulation and prototype demonstration.

1. Introduction

Technologies based on 3D have been increasingly ap-

plied in commercial products. However, these technologies,

based on binocular parallax using lenticular sheets or paral-

lax barriers suffer from discrepancy between visual accom-

modation and convergence; this can cause visual confusion

and fatigue as the eyes focus on the screen but converge

at the apparent distance of the image. To solve this prob-

lem, volumetric displays [51, 48] and holographic displays

[32] have been developed. A huge amount of data would be

involved to provide a true 3D image with both correct fo-

Figure 1. Different depth initialization for the same target light

field, here the configuration A is used by [47, 18], configuration B

is from [13] and configuration C is [28].

cus and parallax cues and this prevents these technologies

from being widely accepted for daily usage. In addition to

these pure optical or physics-based techniques, a compu-

tational 3D display technology known as compressive light

field display has also been investigated [15, 47, 14] for solv-

ing the problem. They not only take the advantages of var-

ious emerging display technologies such as multi-layer dis-

plays and high-speed temporal modulation, but also make

use of promising computer vision and pattern recognition

algorithms such as sparse reconstruction and compressive

factorization, which effectively compress the display data

from multi-view images to multi-layer images. Moreover,

the compressive light field 3D display is compatible with

2D displays since parallax barriers and lenticular sheets are

not used in this display method.

However, this kind of computational multi-layer dis-

play, including our three-layer light field 3D display, shares

the same limitation; the maximum depth range of multi-

layer display theoretically has an upper bound and cannot

be more than twice the distance between the outer layers

[23]. Considering the unsatisfactory depth range limita-

tion of multi-layer liquid crystal displays (LCDs), and the

bigger depth range in the light field capture, some depth
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Figure 2. The framework of the salience guided depth calibration for perceptually optimized compressive light field 3D display, including

light field capture, saliency detection, depth initialization, layered decompression and perceptually optimized light field display.

range may have to be ignored in the light field modeling and

reconstruction, this paper has proposed a salience-guided

depth calibration for perceptually optimized compressive

light field 3D display.

In this paper, we use a three-layer prototype as an exam-

ple, but the proposed method also can be extended to other

multi-layer displays with more LCD layers. In contrast to

existing work on cascaded light field displays that only use

the fixed depth initialization configuration [47, 13, 28] as

shown in Fig. 1, the proposed method will firstly detect the

higher salience objects in the light field capture region based

on a proposed contrast enhanced salience detection method,

then maps these objects into the compressive display depth

region of multi-layer LCDs as much as possible. The frame-

work of the proposed salience guided depth calibration for

optimized display is shown in Fig. 2. The experimental

results show that an improved display is produced by the

proposed optimization framework.

In this paper, Section 2 introduces the related work of

salience detection and compressive display of light fields

and Section 3 discusses the contrast enhanced salience de-

tection method. Section 4 proposes salience-guided depth

calibration for three-layer light field displays. The exper-

imental results are reported in Section 5 and Section 6

summarizes the existing contributions and anticipates future

work.

2. Related Works

Before proposing the optimized framework and meth-

ods, related work regarding salience detection [6] and multi-

layer light field display [46] is introduced in this section.

2.1. Salience Detection on Light Field

With vs. Without Learning. Recently, several stud-

ies have developed learning methods in saliency analysis

[53, 27, 21]. For example, Judd et al. [21] use the stan-

dard support vector machine (SVM) classifier to formulate

saliency detection as a binary classification problem. Li

et al. [27] propose a saliency detection framework using

dense and sparse coding representations as features, and in-

tegrate this framework via the Bayes formula. Multilayer

learning networks [53, 35] approaches also have been re-

searched to acquire the hierarchies of representations to de-

tect the salience objects. However, these approaches suffer

from parameter sensitivity and normally require large-scale

manually annotated data to train effective models.

State-of-the-art salience detection approaches for light

field, with the exception of Li et al. [25], use the image’s

selected foreground to build the dictionaries, and detect the

salience objects with a weighted sparse coding framework.

Most other works still use the scheme without machine

learning. A combined light field salience detection algo-

rithm, based on foreground, background and contrast cues,

is proposed in [26]. Zheng et al. [52] further propose a

deeper light field salience detection method for light field

by inducing the depth image into the optimization frame-

work. To avoid the parameter sensitivity and manual anno-

tation, this paper implements light field salience detection

by a framework without learning.

Foreground vs. Background Priors. Many saliency de-

tection schemes exploit contrast cues, i.e., salience objects

are expected to exhibit high foreground contrast within cer-

tain context [39]. Koch and Itti [19] use center-surround

foreground contrast of low level features to detect saliency.

More local methods to compute the foreground contrast

within a small neighborhood of pixels are proposed by us-

ing color difference [7], edge orientations [29], or curva-
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tures [40]. Global methods, considering statistics of the en-

tire image and rely on features such as power spectrum [16],

color histogram [9] and element distributions [36], are also

proposed for foreground contrast detection.

Although the center-surround foreground approaches are

proven highly effective, Wei et al. [44] suggest that back-

ground priors are equally important. In fact, one can elimi-

nate the background to significantly improve foreground de-

tection. Yang et al. [50] observe that connectivity is an im-

portant characteristic of background and use a graph-based

ranking scheme. Since most existing approaches rely on

color contrast, when the foreground and background have

similar color, these approaches can easily fail. Thus, our

approach resolves this issue by using a contrast enhanced

salience detection method on the light field based on se-

lected color contrast cues, depth contrast cues and back-

ground cues.

Intrinsic vs. Extrinsic cues. When detecting salience ob-

jects, a key step is to distinguish salience targets from dis-

tractors. Toward this end, some approaches propose to ex-

tract various cues only from the input image itself to pop-

out targets and suppress distractors (i.e., the intrinsic cues)

[17, 41, 34, 40]. However, other approaches argue that

targets and distractors may share some common visual at-

tributes and the intrinsic cues are often insufficient to distin-

guish them. Therefore, they incorporate extrinsic cues such

as user annotations [6], depth map [52] or statistical infor-

mation [24] of similar images to facilitate detecting salient

objects in the image.

This paper will focus on the salience detection on light

field, in which some important extrinsic cues already appear

within the all-focus image, such as depth image, re-focus

images and dense multi-view images. Thus, the proposed

approach could be listed within the same classification as

extrinsic cues.

2.2. Multilayer Display

Multi-layer display is a type of extension of normal liq-

uid crystal (LC) display which stacks multiple LC layers il-

luminated with a uniform backlight, as shown in Fig. 3. The

traditional additive volume method will show a 3D scene at

different depths to generate 3D display [5]. Further, Bell

et al. [4] proposed a two-layer 3D display system and dis-

cussed the implementation details like moiré reduction by

diffuser for this system. For light field display, a theoretical

simulation for multi-layer light field display is proposed in

[12], and its implementation is introduced in [13]. Com-

pressive display [46] is a kind of multi-layer light field dis-

play which has complete theoretical modeling and analysis,

as well as several prototype implementations, such as polar-

ization display [22] and tensor display [47].

In this paper, we will follow the light field modeling in

Figure 3. Polarization-based attenuation light field displays.

[47, 42, 43, 38] to introduce the proposed perceptually op-

timized compressive light field 3D display. The detailed

modeling will be introduced in the following subsection.

2.3. Light Field Modeling

The compressive display is used to depict a discrete light

field, which allows for optimal decomposition of a light

field into light-attenuating layers [45]. The modeling frame-

work for both glasses-free [47] and head-mounted stereo-

scope [18] could be considered as a fixed stack of N light-

attenuating layers illuminated by a uniform backlight.

As shown in Fig. 3, we demonstrate a three-layer attenu-

ation configuration. The reconstructed light field R for this

three-layer tensor display can be written as:

[L(1),L(2),L(3)] = L
(1)(λa)L

(2)(λb)L
(3)(λc), (1)

where L
(n)(λi) ∈ [0, 1] is the transmittance at the pixel λi

of layer n. The transmittances for the front, middle and

rear layers are given by L
(1)(λa), L

(2)(λb) and L
(3)(λc),

respectively, for a light field ray shown in the figure.

By generalizing Eq. (1), the optimal three-layer recon-

structed light field can be acquired by solving a constrained

optimization problem [22] as follows:

argmin
{0≤L(1),L(2),L(3)≤1}

1

2

∥∥∥T−W ◦ [L(1),L(2),L(3)]
∥∥∥
2

.

(2)

Here, ◦ is the product of a Hadamard (elementwise) ma-

trix, ≤ denotes the element-wise matrix inequality operator

and T denotes the target 3D light field to be reconstructed.

W is a sparse three-order tensor, only with 0/1 elements,

which controls the optimized view angle of reconstruction

light field [30].

Eq. (2) corresponds to non-negative matrix factorization.

Therefore, we can apply any non-negative matrix factoriza-

tion algorithm to its solution [31, 8]. However, after ap-

plying a Fourier transform into this light field expression,

Lanman, D., et al. [23] get the theoretical upper-bound
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depth of field (DoF) of this three-layer display, which is

twice separation layer distance. This means that during

the light field reconstruction, we have to map the original

camera-captured depth range to the limited multi-layer dis-

play depth range, where the former is much larger than the

latter [47, 13].

3. Contrast Enhanced Salience Detection

The pipeline of the proposed salience detection approach

for display optimization is shown in Fig. 2 and the detailed

salience detection algorithm is described in the following

subsections.

3.1. Preprocessing

The contrast-enhanced saliency is based on the light field

color, depth and focus cues on the super-pixel [3]. Here,

the super-pixels are segmented from the all-focus image Î .

The minimum preprocessing unit of the following analysis

is based on super-pixels. The total number of super-pixels

M is set to 300 following [52].

After segmenting the all-focus image to super-pixels, we

further try to select a best image with the highest color con-

trast as well as background cues. Here, we denote {Ii},

i = 1, ..., N as the re-focus images based on the Lytro cam-

era. Following that, we use (x, y) to index a traditional pixel

and p to index a super-pixel region.

We start by detecting the in-focus regions in each re-

focus image Ii and use them as the focusness prior. The

focus value F(x, y) is measured at pixel (x, y) based on the

focusness detection technique [37]. Thus, the focus value

of a super-pixel p can be computed from the average of all

pixels within the superpixel p:

F(p) =
∑

(x,y∈p)

F(x, y)

Zp

, (3)

where Zp is the total number of traditional pixels in super-

pixel p. Thus, a super-pixel level focusness map, F i, can

be generated for each re-focus image Ii. Furthermore, the

focus value of the whole image could be integrated to two

1D focusnesss distributions along the x and y axes as:

Dx =
1

α

h∑

y=1

F(x, y), Dy =
1

α

w∑

x=1

F(x, y). (4)

Next, we set out to find one re-focus image with the

highest background cues which could be used to detect the

non-salience region as well as show the high contrast with

salience region. For this purpose, we compute the back-

ground likelihood score BLS(Ii) based on each re-focus

image Ii by U-shaped filtering Dx and Dy:

BLS(Ii) = ρ·

[
w∑

x=1

Di
x(x) · U(x,w) +

h∑

y=1

Di
y(y) · U(y, h)

]
,

(5)

U(x,w) = (
1√

1 + ( x
α
)2

+
1√

1 + (w−x
α

)2
). (6)

Here, this filter has a 1D bandpass filtering function

along the axis, and w = 360 is equal to the width of test

images in the Lytro1 dataset, while h is the length and

α = 28 controls the bandwidth. ρ = exp(λ ∗ i/N), in

which λ = 0.2 is the weighting factor of a layer in terms

of depth, and N is the total number of slices in the focus

stacks. Then, I∗ is chosen from the focusness maps for its

highest BLS. While also let the re-focus image F∗ with the

highest BLS among focus stacks takes the place of all-focus

image used in traditional methods [52, 26] due to the high

color contrast cues in super-pixel level. Benefiting from the

focused foreground, it will provide a better performance for

the final saliency map than an all-focus image.

3.2. Contrast Enhanced Salient Segmentation

After completing the preprocessing work for super-pixel

segmentation that is focusness map generation chosen and

color image chosen, we integrate focusness background

cues, color contrast and depth contrast for generating the

final saliency result.

Background Cues. To enhance the saliency contrast, a

background probability Pb on the focusness map F∗ is cal-

culated through:

Pb(i) = 1− exp(−
Aval(pi)

2

2
· ‖C −Apos(pi)‖

2
), (7)

where Aval(pi) is the average value of super-pixel pi on the

focusness map F∗ and Apos(pi) defines normalized aver-

age coordinates of super-pixel pi. ‖C −Apos(pi)‖ defines

the L2-norm distance of measuring the spatial information

of super-pixels related to the image center C. Therefore,

regions that belong to the background have higher back-

ground probability Pb on F∗.

Contrast. Here, we use the similar method to calculate

the color contrast saliency MC and depth contrast saliency

MD with different inputs, but the same processing unit:

MC(i, j) = ‖Acol(Pi)−Acol(Pj)‖D(i, j), (8)
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MD(i, j) = ‖Adep(Pi)−Adep(Pj)‖D(i, j), (9)

where i, j = 1, ...,K, K is the total number of super-

pixels. Acol(pi) is the average color value of super-pixel pi
in LAB color space on a selected color re-focus image I∗

and Adep(pi) is the average depth value of pi on the depth

image.

D(i, j) is the spatial factor for controlling the pair-wise

distance of super-pixels and is given by:

D(i, j) = exp(−
‖Apos(pi)−Apos(pj)‖

2

2σ2
w

), (10)

where, Apos(pi) and Apos(pj) are the normalized average

coordinates of super-pixel pi and pj , separately. σw is spec-

ified as 0.67 throughout our experiments.

Combined Saliency Metric. Finally, we incorporate back-

ground probability into the contrast enhanced saliency as

follows:

M = βMD + (1− β)MC , (11)

Mcom = M ∗ Pb. (12)

Here, M is from the focussness background cues and S∗

is the weighted saliency based on color contrast saliency

and depth contrast saliency. β = 0.3.

Post-optimization. Like the state-of-the-art work [52], we

also applied saliency optimization algorithm [54] onto the

contrasted enhanced saliency map as post-optimization:

Sopt = OPT (Mcom). (13)

Here, when use the post-processing, the combined

salience map is used as a 2D image input for the post-

optimization, and the output is a 2D optimized salience

map. Experimental results in Supplementary Materi-

als show that the proposed algorithm can be better than

the-state-of-the-art by either using, or not using post-

processing.

4. Perceptually Optimized Light Field 3D Dis-

play via Salience Guided Depth Initializa-

tion

4.1. Salience Guided Depth Initialization

Different to the previous mentioned configurations [47,

13, 28, 18] with manually fixed initialization, the proposed

method will automatically determine the relative position of

Figure 4. Performance comparisons of ours vs. DLFS, LFS, WSC

by F-measure, MAE and AUC.

three layers in order to improve the performance of the 3D

display. The distance between each two layers is fixed to

DisL at 15 mm.

According to [2], assume the captured depth range is

RC , and the ideal displayed depth range is RD, thus RD

could be calculated as follows:

RD =
PSL

PSC

·RC , (14)

where the PSL is the pixel size of the LC screen of our

multi-layer light field display prototype, PSC is the micro-

lens size of the Lytro camera related to one light field pixel.

According to [10], assume the real displayed depth range

is RL, and the pixel size of prototype is PSL, so RL could

be calculated as follows:

RL =
2 ·DisL
PSL

. (15)

The performance of 3D display will surely be good if

RL ≥ RD. However, in general, RL < RD, therefore, part

of the image will be out of range of the real displayed depth

(RL) and resulting in performance decreasing because of

the missing key content of the image. That is, the saliency

region of the image, which contains the content of most in-

terest for human eyes, should be presented as much as pos-

sible in the real displayed depth range. The new constrained

optimization problem is shown as following:

Tdi = argmax
T ′

Sdis(T
′). (16)

Here, Sdis(T
′) is used to calculate the salience region

whose depth range could be initialized in 2 · DisL: that

is, substantially between the first layer and the rear layer.

Tdi is the depth-adjusted target light field. This is differ-

ent to the fixed depth initializations used in [47, 13, 28, 18],

which is shown in Fig. 1, separately, Tdi is the optimized

light field in which we try to keep the salience objects dis-

played in the actual displayed depth region as much as pos-

sible. For example, if the initialization center of the dis-

played light field is in the middle layer, the performance of
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Precision Recall F-measure MAE AUC

WSC 0.809866 0.670907 0.772923 0.145328 0.8261

LFS 0.810021 0.607887 0.752294 0.207197 0.9287

DLFS 0.827058 0.791206 0.818499 0.136345 0.9641

CESD 0.856693 0.802748 0.851966 0.097374 0.8977

CESD+DLFS 0.851779 0.812412 0.842359 0.104037 0.9640

Table 1. Evaluation results of ours vs. DLFS, LFS, WSC by Precision, Recall, F-measure, MAE and AUC.

the proposed display will be equated to three-layer tensor

display [47]; however, the optimization also can handle the

cases where the salience objects are not in the center of the

DoF of light field as shown in Fig. 2. Here, the Eq. (16) is

solved by Simulated Annealing (SA) algorithm [33].

4.2. Light field Reconstruction

After acquiring the perceptually optimized initialization

of target light field, we still consider the light field recon-

struction problem as a constrained optimization problem for

the following reason:

argmin
{0≤L(1),L(2),L(3)≤1}

1

2

∥∥∥Tdi −W ◦ [L(1),L(2),L(3)]
∥∥∥
2

,

(17)

where, the Tdi is the depth-adjusted target light field with

the optimized initialization. In this paper, three layered im-

ages are generated by least squares with linear constraints

and bounds (LSQLIN) [11] and its GPU speed-up version

based on the simultaneous algebraic reconstruction tech-

nique (SART) algorithm [22] is also released with support-

ing material.

5. Experimental Results

We compare our approach with state-of-the-art tech-

niques for both salience detection and layered 3D display

on a public light field dataset [26].

5.1. Salience Detection

Based on the ground truth (GT) released with the light

field dataset [26], we follow the canonical precision-recall

curve (PRC), F-measure, mean absolute error (MAE) and

area under the curve (AUC) methodologies to evaluate the

accuracy of the detected saliency. For details about these

evaluation methods we refer the reader to [52]. For objec-

tively showing the benefit of proposed contrast enhanced

approach, the parameters setting in our implementation is

the same as [52, 26], although the proposed approach is not

as sensitive to the fixed parameters. The proposed light field

saliency detection results are mainly compared with the al-

gorithms that also use light field as input, which are based

on Weighted Sparse Coding (WSC) [25], depth combined

contrast (DLFS) [52], and tailored Light Field Salience

(LFS) [26]. However, they are also compared with the algo-

rithms using an all-focus image as the input, which is based

on global-contrast (RC) [9], Low Rank Matrix Recovery

(LRMR) [36], Graph-Based Manifold Ranking (GBMR)

[50], focusness-based (UFO) [20] and Hierarchical Saliency

(HS) [49].

Table 1, Fig. 4 and Fig. 6 show the results of the

four comparison architectures. The PRC of our unified

approach achieves a state-of-the-art result, and the best

Precision, Recall, F-measure, and MAE results are shown

where the proposed approach is used on the public dataset.

CESD in Table 1 refers to our contrast enhanced saliency

detection method, and the difference between CESD and

CESD+DLFS is the focusness images generated from pre-

processing, where CESD+DLFS method directly exploits

the focusness results from DLFS.

Our approach can handle highly challenging cases such

as the ’Blue Bird’ scene in LFS where the deemed saliency

regions have a similar color/texture to the non-saliency re-

gions. Notice that both our precision and recall values are

higher than other methods, with favorable F-measure and

MAE in most cases. This indicates that our algorithm is ca-

pable of locating the most salient regions with a high confi-

dence. Fig. 5 shows that our technique also produces more

visually available results, e.g., it generates more complete

and accurate contours.

5.2. Light Field Display

Hardware Implementation: The hardware prototype was

built using three Asus VG248QE 24’ LCDs and two

NVIDIA Quadro graphic cards, which can demonstrate

1920 × 1080 resolution images or videos with a 144Hz re-

fresh rate.

The display prototype shown in Fig. 7 uses the three-

layer structure of Fig. 3. Following the structure of existing

prototypes, the front and middle polarizers are orthogonal,

and each polarizer has to be orthogonal to the next. Addi-

tionally, the distance between each pair of LCD screens is

15 mm.

Software Simulation: Under the Windows 10 operating
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Figure 5. Visual comparisons of different saliency detection algorithms vs. ours on a light field dataset.

Figure 6. Performance comparisons of ours vs. (a) DLFS, (b) WSC and (c) LFS. The left is the receiver operating characteristic (ROC)

curve with true positive rate (TPR) against the false positive rate (FPR) and the right is the precision recall (PR) curve.
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Figure 7. Hardware prototype of compressive light field display.

Figure 8. Software-generated layered images for different config-

urations: the first column is with configuration A, and second col-

umn is with configuration B, the third column is based on the con-

figuration C, and the fourth column is from the proposed method.

Note that the proposed method’s average sharpness is much better

than other configurations.

system, the software stimulation is implemented based on

the light field database [26] captured by a Lytro1 camera,

using an Intel CPU Core (3.4 GHz) PC with 32G RAM.

Initialized configuration and related parameters are: i) the

views, and of each light field content of this dataset is ex-

tracted from the raw data (*.LFP) with Lytro desktop soft-

ware [2] and related toolbox [1], ii) based on the Lytro cam-

era capture configuration, the optimized view angle is [-3,

+3] for both horizontal and vertical directions, iii) the time-

multiplexed modulation of light field reconstruction is not

used in the proposed prototype. Following the above pref-

erences, the average processing time of light field modeling

and optimizing steps in MATLAB is approximately 20 min-

utes. The layered pictures for each configuration are shown

in Fig. 8. Note that the simulated result of the proposed ini-

tialization optimization (IO) method is better than any other

fixed configuration for the salient object.

Figure 9. The frontal photograph of overall display performance

in different configurations with one content from Lytro1 dataset

[26]: here, (a) configuration A [47, 18] (b) configuration B [13],

(c) configuration C [28], (d) optimized with proposed salience de-

tection, (e) optimized with saliency ground truth, (f) the original

captured image.

5.3. System Performance

The practical performances of variable prototype config-

urations with different depth initialization are shown in Fig.

9. Although the visual effect of frontal photographs is lim-

ited by luminance and moiré effects, it can be found that our

approach provides a more distinct and natural scene than

anchor methods.

The proposed method has undergone comprehensive

subjective measurement by 12 subjects where the perfor-

mance of optimized depth initialization was viewed as the

best with 75% cases, which was found to match people vi-

sual perception better, at least 22%, than the other fixed

depth initializations, which only match the maximum 53%.

More experimental results and supplementary material can

be found in the Supplementary Materials.

6. Conclusion

This paper has proposed a salience-guided depth opti-

mization for multi-layer light field displays. The best depth

initialization is automatically chosen based on the contrast

enhanced salience detection approach and salience-guided

depth initialization framework. Experiments demonstrate

that the proposed method provides a promising perceptual

advantage. In the future, we plan to improve the light field

display by introducing a just noticeable differences algo-

rithm to the visual attributes of the optimization framework.
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