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Abstract

Every bit matters in the hardware design of quantized

neural networks. However, extremely-low-bit representa-

tion usually causes large accuracy drop. Thus, how to train

extremely-low-bit neural networks with high accuracy is of

central importance. Most existing network quantization ap-

proaches learn transformations (low-bit weights) as well as

encodings (low-bit activations) simultaneously. This tight

coupling makes the optimization problem difficult, and thus

prevents the network from learning optimal representations.

In this paper, we propose a simple yet effective Two-Step

Quantization (TSQ) framework, by decomposing the net-

work quantization problem into two steps: code learning

and transformation function learning based on the learned

codes. For the first step, we propose the sparse quantization

method for code learning. The second step can be formu-

lated as a non-linear least square regression problem with

low-bit constraints, which can be solved efficiently in an it-

erative manner. Extensive experiments on CIFAR-10 and

ILSVRC-12 datasets demonstrate that the proposed TSQ

is effective and outperforms the state-of-the-art by a large

margin. Especially, for 2-bit activation and ternary weight

quantization of AlexNet, the accuracy of our TSQ drops only

about 0.5 points compared with the full-precision counter-

part, outperforming current state-of-the-art by more than 5

points.

1. Introduction

Recently, deep neural networks (DNNs) have been

widely studied for a variety of applications including com-

puter vision [20, 25], speech recognition, natural language

processing and so on. By learning a hierarchical represen-

tation, DNNs have achieved state-of-the-art performance

among many of these tasks. However, the computational

complexity of DNNs is also increasing drastically. This
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presents a significant challenge to the network deployment

on resource limited devices, such as mobile phones and

tablets.

To make DNNs less resource-intensive, several ap-

proaches have been developed by the community, such as

network pruning [22, 10], low-rank approximation [7, 17,

18], architecture design [15, 12, 35], etc. A recent work

[9] shows that full-precision representations are not neces-

sary for networks to achieve high performance. The net-

work storage can be dramatically reduced if low-bit weights

are utilized. In [5, 4], it is also shown that, the internal rep-

resentations of deep neural networks can also be turned into

low-bit format. In this way, both the weights and activations

are quantized, and the expensive floating-point multiply-

accumulate operations (MACs) can be replaced by low-bit

multiply-accumulate operations, or even without multipli-

cations (in the case of binary or ternary quantization). Thus

both storage and computational complexity can be reduced

using low-bit quantized neural networks.

Low-bit representation can also benefit hardware accel-

erators like FPGAs and neural network oriented chips. Un-

der this circumstance, the bit-width is of vital importance,

i.e., lowering one bit usually means saving lots of hardware

resources as well as chip area. It also dramatically simpli-

fies the hardware design when using fewer bits. However,

the problem is that when extremely-low-bit representations

are utilized, the accuracy of the quantized neural network

drops a lot compared with the full-precision counterpart.

This is due to the noise introduced during the network quan-

tization stage, which makes the gradient descent method

hard to converge. The problem can be more severe when

both weights and activations are quantized using extremely-

low-bit representations. In this case, the quantized network

has to learn the optimal hidden layer encodings as well as

the transformation functions between adjacent layers simul-

taneously.

In this paper, we propose a Two-Step Quantization

(TSQ) framework for low-bit quantized neural networks:

code learning and transformation function learning based

4376



on the learned codes. Our motivation is to decouple the

weight quantization from activation quantization. In the

code learning step, the parameters of the transformation

functions are continuous, which makes the network more

stable to converge using stochastic gradient descent. In the

second step of transformation function learning, the codes

are already known, making the problem into a non-linear

least square regression problem with low-bit constraints.

The proposed framework allows some of the existing low-

bit quantization approaches to be placed in context. To ob-

tain higher accuracy, we further present new code learning

and transformation function learning methods.

For the code learning, we propose the sparse quantiza-

tion method. Network sparsity plays an important role in

network compression and acceleration. However, very few

works deal with activation sparsity. We find that activation

sparsity has a profound impact on the code learning stage

of quantized neural networks. Another benefit of sparse

quantization is that the increased sparsity makes the net-

work more efficient on dedicated hardware.

After the first step, we can assume that the learned codes

are optimal. Thus the objective of the second step is to learn

the transformation function from the codes of previous layer

to the codes of current layer. We propose a general method

to learn the transformation function for different bit-width.

The main contributions can be summarized as follows:

• We propose a Two-Step Quantization (TSQ) frame-

work for learning low-bit neural networks, which de-

composes the learning problem into two steps: code

learning and transformation function learning.

• For the low-bit code learning, we propose the sparse

quantization method, which outperforms previous ac-

tivation quantization methods. A novel general iter-

ative method is proposed to solve the transformation

function learning problem for different bit-width.

• Extensive experiments on ImageNet demonstrate that

our TSQ method achieves more than 5% higher top-

1 accuracy than current state-of-the-arts, and only has

about 0.5% top-1 accuracy drop compared with the

full-precision baseline.

2. Related Work

Network acceleration and compression have become a

hot topic in the deep learning community. Many great meth-

ods have been developed, such as low-rank matrix/tensor

approximation [7, 17, 18, 31, 33], network pruning [22, 10],

network approximation [11, 26, 40] and many others [3].

Most of these methods still utilize floating-point number

representations.

Recently, it is shown that full-precision is not neces-

sary during the training of deep neural networks [9]. Us-

ing low-bit representation of weights, the network storage

can be dramatically reduced, especially when extremely-

low-bit numbers are used, like binary/ternary weights. In

the work of [9], a 16-bit fixed-point number representa-

tion is used to train the network. In the work of [8], it is

shown that using 8-bit number representation can speed up

the parallel training of deep networks while maintaining the

performance. In [6] and [13], the authors show that deep

networks can be trained using binary weights, which may

even outperform the floating-point baseline in some cases.

The Ternary Weight Network (TWN) proposed in [24] is

among the first methods which can achieve good results

on large dataset like ImageNet [27]. Ternary weights are

also investigated in the work of [23, 39]. The Incremen-

tal Network Quantization (INQ) method proposed in [37]

trains networks using logarithmic weights, in an incremen-

tal manner. Trained Ternary Quantization proposed in [39]

learns both ternary values and ternary assignments. Fixed-

point Factorized Networks (FFN) proposed in [32] propose

to use fixed-point factorization to ternarize the weights of

networks. These methods can achieve comparable accu-

racy with full-precision counterparts on ImageNet, how-

ever, only the weights are quantized, leaving the activations

in floating-point format.

Besides weight quantization, activation quantization is

also widely investigated. By turning both weights and acti-

vations into low-bit format, the network computation can be

conducted using only fixed-point operations, which is more

efficient and resource saving, especially on dedicated hard-

ware. Binarized Neural Networks (BNN) proposed in [14]

achieves comparable accuracy on small dataset like CIFAR-

10. In the work of [24], another network named XNOR-net,

is proposed to binarize both weights and activations. The

XNOR-net is more accurate than BNN on large dataset like

ImageNet, however, the accuracy still drops by a big step.

The DOREFA-net proposed in [38] investigate the effect of

different bit-with for weights, activations as well as gradi-

ents. A more recent work [2] makes use of batch normal-

ization layer and presents the Half-wave Gaussian Quan-

tization (HWGQ) to quantize both weights and activations.

Compared with weight quantization, activation quantization

usually causes much higher accuracy drop. For the quanti-

zation of large networks such as AlexNet and VGG-16, the

accuracy drop of these methods can be more than 5 points,

or ever more than 10 points. Thus how to quantize both

weights and activations using extremely low-bit representa-

tion is still a challenging problem.

3. Two-Step Quantization

Considering a typical deep neural network of L layers,

given a set of training examples A0 with ground-truth la-

bels y and the loss function L, the training problem can be
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formulated as

minimize
{Wl}

L(ZL, y)

subject to Zl =WlAl−1

Al = ψ(Zl), for l = 1, 2, · · ·L

(1)

For convolutional layers, each row of Wl corresponds to

a convolutional kernel. The task of network low-bit quan-

tization is to turn all weights Wl and activations Al into

low-bit format, through two quantization functions Qw and

Qa:

minimize
{Wl}

L(ZL, y)

subject to Ŵl = Qw(Wl)

Zl = ŴlÂl−1

Al = ψ(Zl)

Âl = Qa(Al), for l = 1, 2, · · ·L

(2)

Here Qw and Qa are usually step functions, which are non-

differentiable and only have discrete outputs. The non-

differentiable problem can be approximated by Straight-

Through Estimator [1]. However, when both weights and

activations are quantized, the discrete outputs of Qw will

cause problems for the stochastic gradient descent (SGD)

procedure. The difficulty is that a tiny change of the weights

W (caused by one step of SGD) could not immediately

change weights Ŵ which are actually used during the for-

ward and backward computation. The slow reaction in Ŵ ,

coupled with the high variance gradient signal caused by

the Straight-Through estimation of Qa, will make the SGD

process hard to converge.

The motivation behind our approach is to decouple the

quantization of weights from the quantization of activa-

tions. We decompose the learning process of quantized neu-

ral networks into two steps: the code learning step and the

transformation function learning step. For the first step, all

weights are full-precision values and we use the proposed

sparse quantization method to quantize all activations into

low-bit format. After the first step, only the leaned codesAl

are kept while the learned weights are discarded, hence the

name of code learning. For the second step, we will learn

the transformation function from Al−1 to Al, with low-bit

constraints. We show that this optimization problem can be

solved by the proposed iterative method. It is also shown

that by a small modification, the transformation function

learning has the error correction ability by taking the quan-

tization error of previous layers into consideration. We will

discuss these two steps in details in section 3.1 and section

3.2 respectively.

3.1. Sparse Quantization for Code Learning

In the code learning step, all weights are of full-

precision, only activations are quantized. To obtain more

efficient codes, we present a novel sparse quantization

method.

Weights sparsity plays an important role in network com-

pression and acceleration. However, there are few works

deal with activation sparsity. One reason is that ReLU (Rec-

tified Linear Units) activation function can already result in

about 50% sparsity. However, we find that activation spar-

sity has a profound impact on the code learning of quantized

neural networks. In deep neural network, large activations

are usually more important than small activations, which is

the foundation of attention mechanism. By turning a portion

of the small positive activations into zeros, the quantization

function can pay more attention to large values. Another

benefit of sparse quantization is that the increased sparsity

makes the network more efficient on dedicated hardware.

Here we first give several previous quantization methods,

and then present our sparse quantization approach in detail.

A n-bit uniform quantizer maps the full-precision

activations into 2n discrete numbers in the set of

{0,∆, 2∆, · · · , (2n − 1)∆}, according to the following

function.

Q(x) =

{

qi x ∈ (ti, ti+1],
0 x ≤ 0

(3)

Here qi ∈ R
+ and qi+1−qi = ∆ for i = 1, · · · , 2n−1, and

ti ∈ R
+ defines the quantization intervals. The main prob-

lem is how to determine the step value ∆ and quantization

intervals defined by ti.

The Half-Wave Gaussian Quantizer (HWGQ) proposed

in [2] tries to alleviate this problem by resorting to batch

normalization [16]. After batch normalization, the output

distribution of each layer is close to Gaussian with zero

mean and unit variance. Thus the optimal step value and

quantization intervals for all layers are the same, which can

be determined by Lloyd’s algorithm by solving the follow-

ing optimization function

Q∗(x) = argmin
Q

Ex∼N (0,1),x>0[(Q(x)− x)2] (4)

In this paper, we explore the sparse quantization, where

instead of quantize the whole positive values after ReLU,

we explore to only quantize important values while set other

unimportant values to zeros. This idea had been studied in

network pruning [10], by turning unimportant weights to

zeros. Here we explore the sparsity of activations. Like

in [10], we assume big activations are more important than

small activations. Thus the sparsity is introduced by setting

all activations below a threshold to zeros. Formally, given a

sparse threshold ϵ, the quantization function becomes

Qϵ(x) =

{

q′i x ∈ (t′i, t
′
i+1],

0 x ≤ ϵ
(5)
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Accordingly, the step value and quantization intervals

can be determined by the following optimization function

Q∗
ϵ (x) = argmin

Qϵ

Ex∼N (0,1),x>ϵ[(Qϵ(x)− x)
2] (6)

Another problem of sparse quantization is how to deter-

mine the sparse threshold ϵ. Here we make use of the batch

normalization [16]. After batch normalization, the output

distribution of each layer is close to the standard normal

distribution. Thus, given a sparse ratio θ, the sparse thresh-

old ϵ can be decided by solving the following equation

Φ(ϵ) = P (x <= ϵ) = θ (7)

where Φ(x) is the cumulative distribution function of stan-

dard normal distribution.

Based on the above analysis we can find that the only

parameter in our sparse quantization is the sparse ratio θ
we want to achieve. Here for 2-bit activation quantization

of different sparse ratios ranging 50% to 75%, we give the

optimal sparse threshold ϵ using Eq.7 and the optimal step

value ∆ using Eq.6 in Table 1.

Table 1. The optimal thresholds and step values given different

sparse ratios for 2-bit sparse quantization.

θ 50% 56.25% 62.5% 68.75% 75%

ϵ 0.00 0.16 0.32 0.49 0.68

∆ 0.5388 0.5914 0.6487 0.7139 0.7889

3.2. The Transformation Function Learning

After the first step, we assume that the learned codes are

optimal. Thus the objective of the second step is to learn

the transformation function from the codes of previous layer

Âl−1 to the codes of current layer Âl (i.e., non-linear acti-

vation approximation). By denoting the codes of previous

layer Âl−1 and current layer Âl as X and Y , we can con-

vert the transformation function learning problem into the

following non-linear least square regression problem

minimize
Λ,Ŵ

∥ Y −Qϵ(ΛŴX) ∥2F

=minimize
{αi},{ŵT

i
}

∑

i

∥ yTi −Qϵ(αiŵ
T
i X) ∥22

(8)

where Ŵ is the low-bit weights to be learned. Note that

for simplicity, we discard the low-bit symbol •̂ for X and

Y , because it makes no difference whether they are full-

precision values or low-bit values. Like previous low-bit

quantization methods [21, 2], we introduce a floating-point

scaling factor αi for each convolutional kernel ŵi, which is

organized into a nonnegative diagonal matrix Λ. yTi and ŵT
i

denote the i-th row of Y and Ŵ .

To solve the above problem, we can alternatively solve

multiple subproblems as:

minimize
α,ŵ

∥ y −Qϵ(αX
T ŵ) ∥22 (9)

where the elements of ŵ are low-bit values.

The problem of Eq. 9 is challenging due to the discrete

function Qϵ and the low-bit constraints of ŵ. To solve this

problem, we introduce an auxiliary variable z and relax Eq 9

as:

minimize
α,ŵ,z

∥ y −Qϵ(z) ∥
2
2 +λ ∥ z − αXT ŵ ∥22 (10)

Here λ is a penalty parameter. The solution to Eq. 10 will

converge to the solution of Eq. 9 when λ→∞. The above

optimization problem can be solved in an alternating man-

ner, i.e., solve α and ŵ when z is fixed and vice versa.

Solving α and ŵ with z fixed. When z is fixed, the opti-

mization problem of 10 becomes to

minimize
α,ŵ

J(α, ŵ) =∥ z − αXT ŵ ∥22 (11)

By expanding Eq. 11, we have

J(α, ŵ) = zT z − 2αzTXT ŵ + α2ŵTXXT ŵ (12)

By setting ∂J/∂α = 0, the optimal value of α is given by

α∗ =
zTXT ŵ

ŵTXXT ŵ
(13)

Substituting α∗ in equation 12, we can get

ŵ∗ = argmax
ŵ

(zTXT ŵ)2

ŵTXXT ŵ
(14)

If ŵ is am-dimensional vector with n-bit values, the integer

program of Eq. 14 has 2nm feasible points, thus it is imprac-

tical to get the optimal solution using exhaustive search. We

choose to use an alternating method to obtain the approxi-

mate solution to the problem. During each iteration, we

only update one element of ŵ but fix all the other elements.

In this way, we only need to check m2n possibilities, where

the bit number n is usually quite small.

Solving z with α and ŵ fixed. When α and ŵ are fixed,

there is no coupling between the elements of the vector z, so

the optimization problem can be turned into solving many

one-dimensional problems as follows:

minimize
zi

(yi −Qϵ(zi))
2 + λ(zi − vi)

2
(15)
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where v = αXT ŵ is a known vector. This problem can be

solved in closed form. To further simplify this optimization

problem, we can relax Qϵ to Q̃ϵ as follows:

Q̃ϵ(x) =







M x > M,
x 0 < x ≤M,
0 x ≤ 0

(16)

where M = (2n − 1)∆ is the maximum low-bit number.

By this relaxation, the optimal solution to Eq. 15 can be

obtained by discussing zi ≤ 0, 0 < zi ≤ M and zi > M .

In this way, we can get

z
(0)
i = min(0, vi) (17)

z
(1)
i = min(M,max(0,

λvi + yi
1 + λ

) (18)

z
(2)
i = max(M, vi) (19)

Thus, the optimal zi is the one which minimizes Eq. 15.

Initialization of α and ŵ using Optimal Ternary

Weights Approximation (OTWA). During the transfor-

mation function learning step, the learnt weights are con-

strained to be low-bit values. We can find a good initial-

ization for ternary quantization (2-bit quantization), which

is adopted to evaluate our proposed method in the experi-

ments part. Here we utilize weights approximation to find

the initial values for α and ŵ, as follows

minimize
α,ŵ

∥ w − αŵ ∥
2
2

subject to α > 0

ŵ ∈ {−1, 0,+1}m.

(20)

where w is the learned full-precision weights during the

code learning step, and m is the dimension of w.

By expanding Eq 20, we can get the optimal solution

α∗ =
wT ŵ

ŵT ŵ

ŵ∗ = argmax
ŵ

(wT ŵ)2

ŵT ŵ

(21)

Note that ŵ ∈ {−1, 0,+1}m, thus ŵT ŵ equals to the

number of nonzeros in ŵ, and 0 ≤ ŵT ŵ ≤ m. Assuming

that ŵ has exactly r nonzeros, then the solution of minimiz-

ing equation 20 is given by

ŵj =

{

sign(wj) abs(wj) in top r of abs(w)
0 others

(22)

where sign is the sign function and abs is the absolute value

function. When r traverses from 0 to m, we can get the

global optimum ŵ∗ for equation 20. We summarize our pro-

posed ternary weight approximation method in algorithm 1.

Algorithm 1 OTWA weight approximation

Input: weight matrix W ∈ Rk×m

Output: Ŵ ∈ {+1, 0,−1}k×m

Output: k floating point scaling factors {αi}
k
i=1

1: J(r)← 0, for r = 1, · · · ,m
2: for i = 1, · · · , k do

3: v ← abs(wi)
4: sort v in decreasing order

5: for r = 1, · · · ,m do

6: s←
∑r

j=1 v(j)

7: J(r)← s2/r
8: end for

9: r∗ ← argmaxr J(r)
10: get ŵ∗

i according to equation 22

11: get α∗
i according to equation 21

12: end for

Asymmetric Transformation Function Learning. From

Eq. 8, we can see that the transformation function learn-

ing step can be conducted simultaneously for all layers.

There is no coupling between different layers. However, be-

cause of the quantization error during the function learning

step, when different layers are quantized independently, the

quantization error can be accumulated across layers. This

is a common problem for layer-wise weight compression

methods like [36, 34]. We can see that in our transforma-

tion function learning, this problem can be easily solved by

a small modification to the optimization problem of Eq. 8,

as follows:

minimize
Λ,Ŵ

∥ Y −Qϵ(ΛŴ X̃) ∥2F (23)

where X̃ represents the activations (codes) of previous layer

from the quantized network. In other word, the asymmet-

ric transformation function learning tries to learn the map-

ping from the approximate codes of previous layer (from

the quantized network) to the optimal codes of current layer

learned at the first step. Using this layer-wise quantization

scheme, the quantization error of all previous layers can be

considered during the quantization of current layer, thus

preventing quantization errors from accumulating across

layers.

4. Experiments

In this section, we evaluate our proposed two-step quan-

tization method against other fixed-point quantization meth-

ods on ImageNet [27] and CIFAR-10 [19] image classifica-

tion benchmarks. Experiments are conducted on two of the

mostly used CNN models, i.e., AlexNet [20] and VGG-16

[29].
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4.1. Implementation Details

For the experiments on ImageNet, training images are

first resized to 256 pixels at the smaller dimension. We ran-

domly crop a 224×224 (227×227 for AlexNet) image patch

from an image or its horizontal reflection. No other data

augmentation such as multi-scale is utilized. At test time,

only the central 224×224 crop is used for prediction. Since

our method relies on batch normalization, we add batch nor-

malization layer after each convolutional or fully-connected

layer. In all experiments, weight decay is set to 0.0005 and

the momentum is set to 0.9. We use polynomial learning

rate and the base learning rates are set to 0.05 and 0.1 for

AlexNet and VGG-16. When activations are quantized, the

iterations for training are 480K and 640K with a batchsize

of 256 for AlexNet and VGG-16 respectively. Just as previ-

ous works [21, 2], the first and last layers are not quantized.

To evaluate each part of our proposed method and to com-

pare our method with other state-of-the-art methods, we re-

port top-1 and top-5 classification accuracy on ImageNet.

4.2. Sparse Quantization Results

First, we want to verify the effectiveness of the proposed

sparse quantization method (i.e., low-bit activation quanti-

zation). Here we mainly compare our sparse quantization

(SQ) method with the HWGQ [2] method, which is the cur-

rent state-of-the-art for activation quantization. The results

on AlexNet are shown in Table 2. We report the results for

different activation sparsity ranging from 56.25% to 75%

(models denoted as SQ-i for i = 1 · · · 4) with parameters

shown in Table 1. Note that when the sparsity of our sparse

quantization is 50%, it will become the same as HWGQ.

Table 2. Two-bit activation quantization comparison. Our sparse

quantization method, denoted by SQ, is conducted under different

sparsity.

Model Sparsity (%) Top-1 (%) Top-5 (%)

AlexNet 50.00 58.5 81.5

HWGQ [2] 50.00 55.8 78.7

SQ-1 56.25 58.2 80.7

SQ-2 62.50 59.0 81.3

SQ-3 68.75 58.9 80.8

SQ-4 75.00 57.9 79.8

From Table 2, we can see that our sparse quantization

method can achieve much higher accuracy than HWGQ. For

the sparsity of 62.5%, our method only has a 0.2% top-5 ac-

curacy drop compared with the full-precision model. And

our sparse quantization method outperforms the HWGQ by

a large margin (3.2% top-1 accuracy and 2.6% top-5 accu-

racy). Even when the sparsity is 75%, our sparse quanti-

zation method still outperforms the HWGQ by 2.1% top-1

accuracy, with only half of the computation compared with

HWGQ.

Table 3. The accuracy of our two-bit activation and ternary weight

quantization models before and after fine-tuning. Results are re-

ported under different activation sparsity.

Model
Before Fine-tune After Fine-tune

Top-1 Top-5 Top-1 Top-5

TFL-SQ-1 52.7 76.6 - -

TFL-SQ-2 55.1 78.4 58.0 80.5

TFL-SQ-3 54.7 78.1 - -

TFL-SQ-4 54.3 77.4 56.7 79.0

Another finding from Table 2 is that, when the sparsity

rises from 50% to 62.5%, the accuracy will keep increasing.

This result verifies that larger values are more important

than smaller values. By dropping the smaller values, our

sparse quantization method can better approximation the

larger values, thus boosting the accuracy. However, when

the sparsity keeps increasing further, the accuracy will stop

increasing and begin to drop. This is because of the infor-

mation loss during the sparse quantization. At a very high

sparsity, most of activations become zeros and only little

useful information is left for quantization.

4.3. Transformation Function Learning Results

In this section, we thoroughly evaluate the proposed

transformation function learning method. Our experiments

are mainly conducted on AlexNet. Table 3 shows the Trans-

formation Function Learning (TFL) results of our method.

To fully evaluate the transformation function learning abil-

ity, results under different activation sparsity are reported.

Our models are denoted as TFL-SQ-i where i denotes the

index of sparsity, the same as in Table 2.

By comparing the results of Table 3 and Table 2, we can

conclude that our transformation function learning method

is very effective and only small accuracy drop is shown.

Note that even before fine-tuning, our method can achieve

much higher accuracy than other state-of-the-art methods

(Table 4). After fine-tuning, even when the activation spar-

sity is set to 75%, our proposed method (denoted by TFL-

SQ-4) still outperforms previous state-of-the-art by a large

margin.

Effeciency analysis for each part of our proposed trans-

formation function learning method. To further show

the effect of each part of our proposed method, we have

conducted extensive experiments based on the SQ-2 model.

The results are shown in Figure 1. We summarize the con-

trolled models used for comparison as follows:

• OTWA: Weight ternarization using OTWA;

• TFL-rand: Asymmetric transformation function

learning initialized by random ternary variables;
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Figure 1. Top-1 accuracy after each layer is quantized for different

transformation function learing settings. The results are conducted

based on the SQ-2 AlexNet mode without fune-tuning.

• TFL-sym: Symmetric transformation function learn-

ing, initialized by OTWA;

• TFL-asym: Asymmetric transformation function

learning, initialized by OTWA;

From Figure 1, we can see that our proposed OTWA

alone can achieve about 28.5% top-1 accuracy. Thus the

OTWA can serve as an initialization for our transforma-

tion function learning method. This is further confirmed

by comparing the results of random initialization (TFL-

rand) with that of initialization using OTWA (TFL-asym).

Even without error correction, i.e., when multi-layers are

processed independently, our method (TFL-sym) can still

achieve very good results. This shows the effectiveness

of our proposed transformation function learning method.

By using asymmetric learning, our method (TFL-asym) can

outperform the symmetric counterpart by about 1.3% top-1

accuracy.

4.4. Comparison with the state­of­the­art

In this section, we compare our proposed Two-Step

Quantization (TSQ) method with full-precision networks

as well as the current state-of-the-art low-bit quantization

methods. Table 4 and Table 5 show the classification accu-

racy of AlexNet and VGG-16 on ImageNet dataset. For the

VGG-16-BN model, we use a similar training strategies as

[28]. Note that the accuracy of our implemented VGG-16-

BN model in Table 5 is a bit lower than the original VGG-16

[29], which may be caused by fewer training iterations and

no further data augmentation.

From the results, it is easy to conclude that the accu-

racy of our quantized networks is very close to the accuracy

of the full-precision counterparts. Our two-step quantiza-

tion method achieves negligible accuracy drop compared

with the full-precision networks. For the top-1 accuracy

on AlexNet, our method (denoted by TSQ) outperforms the

best results by 5.3%. The gap to the full-precision model

is only 0.5%. The results on VGG-16 is similar, only 2.0%

top-1 accuracy drop is shown compared with the original

VGG-16 model [29]. These results show that our pro-

posed method can achieve comparable accuracy with full-

precision baselines, and dramatically outperforms current

state-of-the-art methods.

Table 4. Comparison with the state-of-the-art low-bit quantization

methods on AlexNet. The accuracy gap to the full-precision model

is also reported.

Model Top-1 Top-5 Top-1 gap Top-5 gap

AlexNet[2] 58.5 81.5 0 0

XNOR[24] 44.2 69.2 -12.4 -12.3

BNN[30] 46.6 71.1 -11.9 -10.4

DOREFA[38] 47.7 - -8.2 -

HWGQ[2] 52.7 76.3 -5.8 -5.2

TSQ (ours) 58.0 80.5 -0.5 -1.0

Table 5. Comparison between our quantized VGG-16 model and

the full-precison counterparts.

Model Top-1 Top-5 Top-1 gap Top-5 gap

VGG-16 [29] 71.1 89.9 0 0

VGG-16-BN 69.6 89.6 -1.5 -0.3

TSQ (ours) 69.1 89.2 -2.0 -0.7

4.5. Results on CIFAR­10

To compare with other methods, we have also conducted

experiments on the CIFAR-10 dataset [19]. We adopt

the same network architecture (VGG-small) and training

strategies as [2]. Table 6 shows the results on CIFAR-10.

From the results, we can see that our two-step quantiza-

tion method outperforms other quantization methods by a

large margin. Our TSQ method even outperforms the full-

precison model by a little bit, which may be resulted from

regularization ability of our low-bit quantization method.

Table 6. Comparison with the state-of-the-art low-bit quantization

methods on CIFAR-10. The bit-width for activations and weights

are given.

Activation Weights Method error (%)

Full Full VGG-Small 6.82

Full Binary BinaryConnect [6] 8.27

Full Ternary TWN [23] 7.44

Binary Binary BNN [14] 10.15

2-bit Binary HWGQ [2] 7.49

2-bit Ternary TSQ (ours) 6.51
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5. Conclusion

In this paper, we present a simple and effective net-

work quantization framework named Two-Step Quantiza-

tion (TSQ). Using TSQ, the network quantization problem

can be decomposed into two steps: the code learning step

and the transformation function step. For the code learning,

we propose the sparse quantization method to learn both

sparse and low-bit codes. The second step of our approach

can be formulated as a non-linear least square regression

problem with low-bit constraints, which can be solved ef-

ficiently in an iterative manner. The proposed Two-Step

Quantization method is shown to dramatically outperform

previous state-of-the-art low-bit quantization methods.
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