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Abstract

Most existing methods of semantic segmentation still suf-

fer from two aspects of challenges: intra-class inconsis-

tency and inter-class indistinction. To tackle these two prob-

lems, we propose a Discriminative Feature Network (DFN),

which contains two sub-networks: Smooth Network and

Border Network. Specifically, to handle the intra-class in-

consistency problem, we specially design a Smooth Network

with Channel Attention Block and global average pooling

to select the more discriminative features. Furthermore, we

propose a Border Network to make the bilateral features of

boundary distinguishable with deep semantic boundary su-

pervision. Based on our proposed DFN, we achieve state-

of-the-art performance 86.2% mean IOU on PASCAL VOC

2012 and 80.3% mean IOU on Cityscapes dataset.

1. Introduction

Semantic segmentation is a fundamental technique for

numerous computer vision applications like scene under-

standing, human parsing and autonomous driving. With

the recent development of the convolutional neural network,

especially the Fully Convolutional Network (FCN) [27], a

lot of great work such as [40, 6, 19, 30] have obtained

promising results on the benchmarks. However, the features

learned by these methods are usually not discriminative to

differentiate 1) the patches which share the same seman-

tic label but different appearances, named intra-class incon-

sistency as shown in the first row of Figure 1; 2) the two

adjacent patches which have different semantic labels but

with similar appearances, named inter-class indistinction as

shown in the second row of Figure 1.

To address these two challenges, we rethink the seman-

tic segmentation task from a more macroscopic point of

view. In this way, we regard the semantic segmentation as

∗Corresponding author.

Figure 1. Hard examples in semantic segmentation. The second

column is the output of FCN based model. The third column is the

output of our proposed approach. In the first row, the left bottom

corner of the cow is recognized as a horse. This is the Intra-class

Inconsistency problem. In the second row, the computer case has

the similar blue light and black shell with the computer screen,

which is hard to distinguish. This is the Inter-class Indistinction

problem.

a task to assign a consistent semantic label to a category of

things, rather than to each single pixel. From a macroscopic

perspective, regarding each category of pixels as a whole,

inherently considers both intra-class consistency and inter-

class variation. It means that the task demands discrimina-

tive features. To this end, we present a novel Discriminative

Feature Network (DFN) to learn the feature representation

which considers both the “intra-class consistency” and the

“inter-class distinction”.

Our DFN involves two components: Smooth Network

and Border Network, as Figure 2 illustrates. The Smooth

Network is designed to address the intra-class inconsistency

issue. To learn a robust feature representation for intra-class

consistency, we usually consider two crucial factors. On

the one hand, we need multi-scale and global context fea-

tures to encode the local and global information. For ex-

ample, the small white patch only in Figure 1(a) usually
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cannot predict the correct category due to the lack of suffi-

cient context information. On the other hand, as multi-scale

context is introduced, for a certain scale of thing, the fea-

tures have different extent of discrimination, some of which

may predict a false label. Therefore, it is necessary to se-

lect the discriminative and effective features. Motivated by

these two aspects, our Smooth Network is presented based

on the U-shape [30, 19, 31, 11, 36] structure to capture

the multi-scale context information, with the global aver-

age pooling [21, 24, 40, 6] to capture the global context.

Also, we propose a Channel Attention Block (CAB), which

utilizes the high-level features to guide the selection of low-

level features stage-by-stage.

Border Network, on the other hand, tries to differentiate

the adjacent patches with similar appearances but different

semantic labels. Most of the existing approaches [24, 40,

6, 30] consider the semantic segmentation task as a dense

recognition problem, which usually ignores explicitly mod-

eling the inter-class relationship. Consider the example in

Figure 1(d), if more and more global context is integrated

into the classificiation process, the computer case next to

the monitor can be easily misclassified as a monitor due to

the similar appearance. Thus, it is significant to explicitly

involve the semantic boundary to guide the learning of the

features. It can amplify the variation of features on both

sides. In our Border Network, we integrate semantic bound-

ary loss during the training process to learn the discrimina-

tive features to enlarge the “inter-class distinction”.

In summary, there are four contributions in our paper:

• We rethink the semantic segmentation task from a new

macroscopic point of view. We regard the semantic

segmentation as a task to assign a consistent semantic

label to one category of things, not just at the pixel

level.

• We propose a Discriminative Feature Network to si-

multaneously address the “intra-class consistency” and

“inter-class variation” issues. Experiments on PAS-

CAL VOC 2012 and Cityscapes datasets validate the

effectiveness of our proposed algorithm.

• We present a Smooth Network to enhance the intra-

class consistency with the global context and the Chan-

nel Attention Block.

• We design a bottom-up Border Network with deep su-

pervision to enlarge the variation of features on both

sides of the semantic boundary. This can also refine

the semantic boundary of prediction.

2. Related Work

Recently, lots of approaches based on FCN have

achieved high performance on different benchmarks [42, 9,

8]. Most of them are still constrained by intra-class incon-

sistency and inter-class indistinction issues.

Encoder-Decoder: The FCN model has inherently en-

coded different levels of feature. Naturally, some methods

integrate them to refine the final prediction. This branch of

methods mainly consider how to recover the reduced spa-

tial information caused by consecutive pooling operator or

convolution with stride. For example, SegNet [1] utilizes

the saved pool indices to recover the reduced spatial in-

formation. U-net [31] uses the skip connection, while the

Global Convolutional Network [30] adapts the large kernel

size. Besides, LRR [11] adds the Laplacian Pyramid Re-

construction network, while RefineNet [19] utilizes multi-

path refinement network. However, this type of architecture

ignores the global context. In addition, most methods of

this type are just summed up the features of adjacent stages

without consideration of their diverse representation. This

leads to some inconsistent results.

Global Context: Some modern methods have proven the

effectiveness of global average pooling. ParseNet [24]

firstly applies global average pooling in the semantic seg-

mentation task. Then PSPNet [40] and Deeplab v3 [6] re-

spectively extend it to the Spatial Pyramid Pooling [13] and

Atrous Spatial Pyramid Pooling [5], resulting in great per-

formance in different benchmarks. However, to take advan-

tage of the pyramid pooling module sufficiently, these two

methods adopt the base feature network to 8 times down-

sample with atrous convolution [5, 38], which is time-

consuming and memory intensive.

Attention Module: Attention is helpful to focus on what

we want. Recently, the attention module becomes increas-

ingly a powerful tool for deep neural networks [28, 33, 16,

3]. The method in [7] pays attention to different scale infor-

mation. In this work, we utilize channel attention to select

the features similar to SENet [16].

Semantic Boundary Detection: Boundary detection is a

fundamental challenge in computer vision. There are lots of

specific methods proposed for the task of boundary detec-

tion [39, 36, 37, 25]. Most of these methods straightly con-

catenate the different level of features to extract the bound-

ary. However, in this work, our goal is to obtain the features

with inter-class distinction as much as possible with accu-

rate boundary supervision. Therefore, we design a bottom-

up structure to optimize the features on each stage.

3. Method

In this section, we first detailedly introduce our proposed

Discriminative Feature Network containing Smooth Net-

work and Border Network. Then, we elaborate how these

two networks specifically handle the intra-class consistency

issue and the inter-class distinction issue. Finally, we de-

scribe the complete encoder-decoder network architecture,

Discriminative Feature Network.
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Figure 2. An overview of the Discriminative Feature Network. (a) Network Architecture. (b) Components of the Refinement Residual

Block (RRB). (c) Components of the Channel Attention Block (CAB). The red and blue lines represent the upsample and downsample

operators, respectively. The green line can not change the size of feature maps, just a path of information passing.

3.1. Smooth network

In the task of semantic segmentation, most of modern

methods consider it as a dense prediction issue. However,

the prediction sometimes has incorrect results in some parts,

especially the parts of large regions and complex scenes,

which is named intra-class inconsistency issue.

The intra-class inconsistency problem is mainly due to

the lack of context. Therefore, we introduce the global con-

text with global average pooling [24, 21, 40, 6]. However,

global context just has the high semantic information, which

is not helpful for recovering the spatial information. Con-

sequently, we further need the multi-scale receptive view

and context to refine the spatial information, as most mod-

ern approaches [40, 6, 30] do. Nevertheless, there exists

a problem that the different scales of receptive views pro-

duce the features with different extents of discrimination,

leading to inconsistent results. Therefore, we need to select

more discriminative features to predict the unified semantic

label of one certain category.

In our proposed network, we use ResNet [14] as a base

recognition model. This model can be divided into five

stages according to the size of the feature maps. According

to our observation, the different stages have different recog-

nition abilities resulting in diverse consistency manifesta-

tion. In the lower stage, the network encodes finer spatial

information, however, it has poor semantic consistency be-

cause of its small receptive view and without the guidance

of spatial context. While in the high stage, it has strong

semantic consistency due to large receptive view, however,

the prediction is spatially coarse. Overall, the lower stage

makes more accurate spatial predictions, while the higher

stage gives more accurate semantic predictions. Based on

this observation, to combine their advantages, we propose

a Smooth Network to utilize the high stage’s consistency to

guide the low stage for the optimal prediction.

We observe that in the current prevalent semantic

segmentation architecture, there are mainly two styles.

The first one is “Backbone-Style”, such as PSPNet [40],

Deeplab v3 [6]. It embeds different scale context infor-

mation to improve the consistency of network with the

Pyramid Spatial Pooling module [13] or Atrous Spatial

Pyramid Pooling module [5]. The other one is “Encoder-

Decoder-Style”, like RefineNet [19], Global Convolutional

Network [30]. This style of network utilizes the inherent

multi-scale context of different stage, but it lacks the global

context which has the strongest consistency. In addition,

when the network combines the features of adjacent stages,

it just sums up these features by channel. This operation

ignores the diverse consistency in different stages. To rem-

edy the defect, we first embed a global average pooling

layer [24] to extend the U-shape architecture [27, 36] to a V-

shape architecture. With the global average pooling layer,

we introduce the strongest consistency constraint into the

network as a guidance. Furthermore, to enhance consis-

tency, we design a Channel Attention Block, as shown in

Figure 2(c). This design combines the features of adjacent

stages to compute a channel attention vector 3(b). The fea-
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(a) Channel Attention Block

(b) Attention Vector

Figure 3. Schematic diagram of Channel Attention Block. In (a),

the yellow block represents the feature of low stage, while the red

one represents high stage. We concatenate the features of adjacent

stages to compute a weight vector, which re-weights the feature

maps of low stage. The hotter color represents the high weight

value. In (b), it is the real attention value vector from the stage-

4 channel attention block. The deeper blue represents the higher

weight value.

tures of high stage provide a strong consistency guidance,

while the features of low stage give the different discrim-

ination information of features. In this way, the channel

attention vector can select the discriminative features.

Channel attention block: Our Channel Attention Block

(CAB) is designed to change the weights of the features on

each stage to enhance the consistency, as illustrated in Fig-

ure 3. In the FCN architecture, the convolution operator

outputs a score map, which gives the probability of each

class at each pixel. In Equation 1, the final score at score

map is just summed over all channels of feature maps.

yk = F (x;w) =
D
∑

i=1,j=1

wi,jxi,j (1)

where x is the output feature of network. w represents the

convolution kernel. And k ∈ {1, 2, . . . ,K}. K is the num-

ber of channels. D is the set of pixel positions.

δi(yk) =
exp(yk)

∑K

j=1
exp(yj)

(2)

where δ is the prediction probability. y is the output of net-

work.

As shown in Equation 1 and Equation 2, the final pre-

dicted label is the category with highest probability. There-

fore, we assume that the prediction result is y0 of a certain

patch, while its true label is y1. Consequently, we can intro-

duce a parameter α to change the highest probability value

from y0 to y1, as Equation 3 shows.

ȳ = αy =







α1

...

αK






·







y1
...

yK






=







α1w1

...

αKwK






×







x1

...

xK






(3)

where ȳ is the new prediction of network and α =
Sigmoid(x;w)

Based on the above formulation of the Channel Atten-

tion Block (CAB), we can explore its practical significance.

In Equation 1, it implicitly indicates that the weights of dif-

ferent channels are equal. However, as mentioned in Sec-

tion 1, the features in different stages have different degrees

of discrimination, which results in different consistency of

prediction. In order to obtain the intra-class consistent pre-

diction, we should extract the discriminative features and

inhibit the indiscriminative features. Therefore, in Equa-

tion 3, the α value applies on the feature maps x, which

represents the feature selection with CAB. With this design,

we can make the network to obtain discriminative features

stage-wise to make the prediction intra-class consistent.

Refinement residual block: The feature maps of each

stage in feature network all go through the Refinement

Residual Block, schematically depicted in Figure 2(b). The

first component of the block is a 1 × 1 convolution layer.

We use it to unify the number of channels to 512. Mean-

while, it can combine the information across all channels.

Then the following is a basic residual block, which can re-

fine the feature map. Furthermore, this block can strengthen

the recognition ability of each stage, inspired from the ar-

chitecture of ResNet [14, 15].

3.2. Border network

In the semantic segmentation task, the prediction is con-

fused with the different categories with similar appearances,

especially when they are adjacent spatially. Therefore, we

need to amplify the distinction of features. With this moti-

vation, we adopt a semantic boundary to guide the feature

learning. To extract the accurate semantic boundary, we ap-

ply the explicit supervision of semantic boundary, which

makes the network learn a feature with strong inter-class

distinctive ability. Therefore, we propose a Border Net-

work to enlarge the inter-class distinction of features. It

directly learns a semantic boundary with an explicit seman-

tic boundary supervision, similar to a semantic boundary

detection task. This makes the features on both sides of se-

mantic boundary distinguishable.

As stated in Section 3.1, the feature network has differ-

ent stages. The low stage features have more detailed infor-

mation, while the high stage features have higher semantic

information. In our work, we need semantic boundary with

more semantic meanings. Therefore, we design a bottom-

up Border Network. This network can simultaneously get
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accurate edge information from low stage and obtain se-

mantic information from high stage, which eliminates some

original edges lack of semantic information. In this way,

the semantic information of high stage can refine the de-

tailed edge information from low stage stage-wise. The

supervisory signal of the network is obtained from the se-

mantic segmentation’s groundtruth with a traditional image

processing method, such as Canny [2].

To remedy the imbalance of the positive and negative

samples, we use focal loss [22] to supervise the output of

the Border Network, as shown in Equation 4. We adjust the

parameters α and γ of focal loss for better performance.

FL(pk) = −(1− pk)
γ log pk (4)

where pk is the estimated probability for class k, k ∈
{1, 2, . . . ,K}. And K is the maximum value of class la-

bel.

The Border Network mainly focuses on the semantic

boundary which separates the classes on two sides of the

boundary. For extracting accurate semantic boundary, the

features on both sides will become more distinguishable.

This exactly reaches our goal to make the features with

inter-class distinction as much as possible.

3.3. Network Architecture

With Smooth Network and Border Network, we propose

our Discriminative Feature Network for semantic segmen-

tation as illustrated in Figure 2 (a).

We use pre-trained ResNet [14] as a base network. In

the Smooth Network, we add the global average pooling

layer on the top of the network to get the strongest consis-

tency. Then we utilize the channel attention block to change

the weights of channels to further enhance the consistency.

Meanwhile, in the Border Network, with the explicit seman-

tic boundary supervision, the network obtains accurate se-

mantic boundary and makes the bilateral features more dis-

tinct. With the support of both sub-networks, the intra-class

features become more consistent, while the inter-class ones

grow more distinct.

For explicit feature refinement, we use deep supervision

to get better performance and make the network easier to

optimize. In the Smooth Network, we use the softmax loss

to supervise the each stage’s upsampled output excluding

the global average pooling layer, while we use the focal loss

to supervise the outputs of Border Network. Finally, we use

a parameter λ to balance the segmentation loss ℓs and the

boundary loss ℓb, as Equation 7 shows.

ℓs = SoftmaxLoss(y;w) (5)

ℓb = FocalLoss(y;w) (6)

L = ℓs + λ ℓb (7)

4. Experimental Results

We evaluate our approach on two public datasets: PAS-

CAL VOC 2012 [9] and Cityscapes [8]. We first introduce

the datasets and report the implementation details. Then we

evaluate each component of the proposed method, and ana-

lyze the results in detail. Finally, we present the comparison

results with other state-of-the-art methods.

PASCAL VOC 2012: The PASCAL VOC 2012 is a well-

known semantic segmentation benchmark which contains

20 object classes and one background, involving 1,464 im-

ages for training, 14,449 images for validation and 1,456

images for testing. The original dataset is augmented by

the Semantic Boundaries Dataset [12], resulting in 10,582

images for training.

Cityscapes: The Cityscapes is a large semantic segmen-

tation dataset of urban street scene in car perspective. The

dataset contains 30 classes, of which 19 classes are consid-

ered for training and evaluation. There are 2,979 images

for training, 500 images for validation and 1,525 images for

testing, which are all fine annotated. And there are another

19,998 images with coarse annotation. The images all have

a high resolution of 2,048×1,024.

4.1. Implementation details

Our proposed network is based on the ResNet-101 pre-

trained on ImageNet [32]. And we use the FCN4 [27, 36]

as our base segmentation framework.

Training: We train the network using mini-batch stochas-

tic gradient descent (SGD) [17] with batch size 32, momen-

tum 0.9 and weight decay 0.0001. Inspired by [5, 24], we

use the “poly” learning rate policy where the learning rate

is multiplied by
(

1− iter
max iter

)power
with power 0.9 and

initial learning rate 4e−3. As for the λ, we finally use the

value of 0.1 after a series of comparison experiments. For

measuring the performance of our proposed network, we

use the mean pixel intersection-over-union (mean IOU) as

the metric.

Data augmentation: We use mean subtraction and ran-

dom horizontal flip in training for both PASCAL VOC 2012

and Cityscapes. In addition, we find it is crucial to randomly

scale the input images, which improves the performance ob-

viously. We use 5 scales {0.5, 0.75, 1, 1.5, 1.75} on both

datasets.

4.2. Ablation study

In this subsection, we will step-wise decompose our ap-

proach to reveal the effect of each component. In the fol-

lowing experiments, we evaluate all comparisons on PAS-

CAL VOC 2012 dataset [9]. And we report the comparison

results in PASCAL VOC 2012 dataset [9] and Cityscapes

dataset [8].
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Figure 4. Results of Smooth Network on PASCAL VOC 2012

dataset.

Table 1. The performance of ResNet-101 with and without random

scale augmentation.

Method Random Scale Mean IOU(%)

Res-101 69.26

Res-101
√

72.86

4.2.1 Smooth network

We use the ResNet-101 as our base feature network, and

directly upsample the ouput. First, we evaluate the perfor-

mance of the base ResNet-101, as shown in Table 1. Then

we extend the base network to FCN4 structure [27, 36] with

our proposed Refinement Residual Block (RRB), which im-

proves the performance from 72.86% to 76.65%, as Table 2

shows. We visualize the effect of the Smooth Network. Fig-

ure 4 presents some examples of semantic segmentation re-

sults. Obviously, our Smooth Network can effectively make

the prediction more consistent.

Ablation for global pooling: We need the features with

strong consistency. Thus based our observation in Sec-

tion 3, we add the global average pooling on the top of the

network. As shown in Table 2, the global average pooling

introduces the strongest consistency to guide other stages.

This improves the performance from 76.65% to 78.20%,

which is an obvious improvement.

Ablation for deep supervision: To refine the hierarchical

features, we use deep supervision. We add the softmax loss

on each stage excluding the global average pooling layer.

As shown in Table 2, this further improves the performance

by almost 0.4%.

Ablation for channel attention block: Based on the

aforementioned architecture, we add the Channel Atten-

tion Block (CAB). It utilizes the high stage to guide the

Figure 5. Results of Border Network on PASCAL VOC 2012

dataset. The boundary on prediction is refined by the Border Net-

work.

Table 2. Detailed performance comparison of our proposed

Smooth Network. RRB: refinement residual block. GP: global

pooling branch. CAB: channel attention block. DS: deep supervi-

sion.

Method Mean IOU(%)

Res-101 72.86

Res-101+RRB 76.65

Res-101+RRB+GP 78.20

Res-101+RRB+GP+CAB 79.31

Res-101+RRB+DS 77.08

Res-101+RRB+GP+DS 78.51

Res-101+RRB+GP+CAB+DS 79.54

low stage with a channel attention vector to enhance con-

sistency, which improves the performance from 78.51% to

79.54% over evaluation, as Table 2 shows.

4.2.2 Border network

While the Smooth Network pays attention to the intra-class

consistency, the Border Network focuses on the inter-class

indistinction. Due to the accurate boundary supervisory sig-

nal, the network amplifies the distinction of bilateral feature

to extract the semantic boundary. Then we integrate the

Border Network into the Smooth Network. This improves

the performance from 79.54% to 79.67%, as shown in Ta-

ble 3. The Border Network optimizes the semantic bound-

ary, which is a comparably small part of the whole image,

so this design makes a minor improvement. We visualize

the effect of Border Network, as shown in Figure 5. In ad-

dition, Figure 6 shows the predicted semantic boundary of

Border Network. We can obviously observe that the Border

Network can focus on the semantic boundary preferably.
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Figure 6. The boundary prediction of Border Network on PASCAL

VOC 2012 dataset. The third column is the semantic boundary

extracted from GroundTruth by Canny operator. The last column

is the prediction results of Border Network.

Table 3. Combining the Border Network and Smooth Network as

Discriminative Feature Network. SN: Smooth Network. BN: Bor-

der Network. MS Flip: Adding multi-scale inputs and left-right

flipped inputs.

Method Mean IOU(%)

Res-101+SN 79.54

Res-101+SN+BN 79.67

Res-101+SN+MS Flip 79.90

Res-101+SN+BN+MS Flip 80.01

4.2.3 Discriminative Feature network

With the Discriminative Feature Network (DFN), we con-

duct experiments about the balance parameter of the com-

bined loss. Then we present the final results on PASCAL

VOC 2012 and Cityscapes datasets.

Balance of both losses: The balance weight between

the losses of two networks is crucial. To further ana-

lyze the effect of these two networks, we conduct experi-

ments for different balance value. We test five values of

{0.05, 0.1, 0.5, 0.75, 1}. As shown in Figure 8, with the

same setting, our method achieves the highest performance

with the value of 0.1.

Stage-wise refinement: It is worth noting that both

Smooth Network and Border Network use the stage-wise

mechanism. The Smooth Network utilizes a top-down

stage-wise manner to transmit the context information from

high stage to low stage, to ensure the inter-class consistency.

On the other hand, the Border Network uses a bottom-up

stage-wise manner to refine the semantic boundary with the

edge information in the lower stage. With the bidirectional

Figure 7. Example results of DFN in the stage-wise refinement

process on PASCAL VOC 2012 dataset. The first column is the

original image and groundtruth. The last is the refinement process

of two networks. The segmentation prediction in lower stage is

more spatial coarse, and the higher is finer. While the boundary

prediction in lower stage contains more edges not belong to se-

mantic boundary, the semantic boundary in higher stage is more

pure.

Figure 8. Results of DFN with different λ value on PASCAL VOC

2012 dataset.

stage-wise mechanism, the Smooth Network and Border

Network respectively refine the segmentation and bound-

ary prediction, as shown in Figure 7. The gradually accu-

rate predictions validate the effectiveness of the stage-wise

mechanism.

Performance evaluation on PASCAL VOC 2012: In

evaluation, we apply the multi-scale inputs (with scales

{0.5, 0.75, 1.0, 1.5, 1.75}) and also horizontally flip the in-
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Table 4. Validation strategy on PASCAL VOC 2012 dataset.

MS Flip: Multi-scale and flip evaluation.

Method train data MS Flip Mean IOU(%)

DFN 79.67

DFN
√

80.46

DFN
√ √

80.60

Table 5. Performance on PASCAL VOC 2012 test set. Methods

pre-trained on MS-COCO are marked with +.

Method Mean IOU(%)

FCN [27] 62.2

Zoom-out [29] 69.6

ParseNet [24] 69.8

Deeplab v2-CRF [5] 71.6

DPN [26] 74.1

Piecewise [20] 75.3

LRR-CRF [11] 75.9

PSPNet [40] 82.6

Ours 82.7

DLC+ [18] 82.7

DUC+ [34] 83.1

GCN+ [30] 83.6

RefineNet+ [19] 84.2

ResNet-38+ [35] 84.9

PSPNet+ [40] 85.4

Deeplab v3+ [6] 85.7

Ours+ 86.2

puts to further improve the performance. In addition, since

the PASCAL VOC 2012 dataset provides higher quality of

annotation than the augmented datasets [12], we further

fine-tune our model on PASCAL VOC 2012 train set for

evaluation on validation set. More performance details are

listed in Table 4. And then for evaluation on test set, we use

the PASCAL VOC 2012 trainval set to further fine-tune our

proposed method. In the end, our proposed approach re-

spectively achieves performance of 82.7% and 86.2% with

and without MS-COCO [23] fine-tuning, as shown in Ta-

ble 5. Note that, we do not use Dense-CRF [4] post-

processing for our method.

Performance evaluation on Cityscapes: We also evalu-

ate our approach on the Cityscapes dataset [8]. In training,

our crop size of image is 800×800. We observe that for the

high resolution of image the large crop size is useful. The

test performance results are specifically reported in Table 6.

We visualize the results of our approach on the Cityscapes

dataset, as shown in Figure 9.

Figure 9. Example results of DFN on Cityscapes dataset.

Table 6. Performance on Cityscapes test set. The “-” indicates that

the method do not present this result in its paper.

Method
Mean IOU(%)

w/o coarse w/ coarse

CRF-RNN [41] 62.5 -

FCN [27] 65.3 -

DPN [26] 66.8 59.1

LRR [11] 69.7 71.8

Deeplab v2-CRF [5] 70.4 -

Piecewise [20] 71.6 -

RefineNet [19] 73.6 -

SegModel [10] 78.5 79.2

DUC [34] 77.6 80.1

PSPNet [40] 78.4 80.2

Ours 79.3 80.3

5. Conclusion

We redefine the semantic segmentation from a macro-

scopic view of point, regarding it as a task to assign a

consistent semantic label to one category of objects, rather

than to each single pixel. Inherently, this task requires the

intra-class consistency and inter-class distinction. Aiming

to consider both sides, we propose a Discriminative Fea-

ture Network, which contains two sub-networks: Smooth

Network and Border Network. With the bidirectional stage-

wise mechanism, our approach can capture the discrimina-

tive features for semantic segmentation. Our experimental

results show that the proposed approach can significantly

improve the performance on the PASCAL VOC 2012 and

Cityscapes benchmarks.
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