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Abstract

Objects for detection usually have distinct character-

istics in different sub-regions and different aspect ratios.

However, in prevalent two-stage object detection methods,

Region-of-Interest (RoI) features are extracted by RoI pool-

ing with little emphasis on these translation-variant feature

components. We present feature selective networks to refor-

m the feature representations of RoIs by exploiting their dis-

parities among sub-regions and aspect ratios. Our network

produces the sub-region attention bank and aspect ratio at-

tention bank for the whole image. The RoI-based sub-region

attention map and aspect ratio attention map are selectively

pooled from the banks, and then used to refine the original

RoI features for RoI classification. Equipped with a light-

weight detection subnetwork, our network gets a consistent

boost in detection performance based on general ConvNet

backbones (ResNet-101, GoogLeNet and VGG-16). With-

out bells and whistles, our detectors equipped with ResNet-

101 achieve more than 3% mAP improvement compared to

counterparts on PASCAL VOC 2007, PASCAL VOC 2012

and MS COCO datasets.

1. Introduction

Recent years have witnessed the rapid advancement of

deep neural networks, which yields large performance im-

provements on image classification and detection tasks.

ConvNets [19, 36, 37, 17] designed for image classification

have realized impressive representations of image features,

outperforming traditional handcrafted features [7, 27]. Ob-

ject detectors adopting these deep ConvNets improve accu-

racy significantly on various detection benchmarks [9, 24].

R-CNN [15] firstly uses deep ConvNet to extract proposal

region features by initializing parameters from a pre-trained

ImageNet [33] classification model. Fast R-CNN [14] de-

velops a Region-of-Interest(RoI) pooling layer to extrac-

t RoI features from the convolutional feature maps of the

∗This work was done during an internship at Microsoft Research Asia.
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Figure 1. We generate sub-region attention map and aspect ratio

attention map for each RoI. Specifically, for the same spatial po-

sition (the red point) inside different sub-regions (center in RoIA,

top-center in RoIB), the sub-region attention map gives different

feature attentions. For the RoIs of different aspect ratios, the as-

pect ratio attention map also produces distinct feature attentions.

entire image. After that, Faster R-CNN [31] introduces re-

gion proposal network (RPN) for generating accurate RoI

proposals and sharing computation with detection subnet-

work. Although one-stage object detection frameworks

[30, 25, 23] have been proposed recently, most of state-

of-the-art object detectors adopt two-stage framework com-

posed of a proposal generator and a region classifier. Before

RoI classification, RoI features are extracted with the fol-

lowing strategy: firstly generate whole image feature maps

by ConvNets, and then pool the RoI features.

RoI features matter, as object detection relies on the clas-

sification and regression of RoI bounding boxes. Therefore,

aside from the progress on deep ConvNets, research has fo-

cused on trying to generate powerful and informative RoI

features to boost detection accuracy. To involve multi-scale

features, HyperNet [18] and FPN [22] produce RoI features

by utilizing hierarchical feature maps from different depth-

s of ConvNets. MR-CNN [12] and GBD-net [40] attempt

to build a richer region-wise feature representation inside
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        (a) Faster R-CNN                         (b) R-FCN                              (c) Ours  

Figure 2. Visualizations of object class “motobike” from the

trained models on PASCAL VOC [9] using DeepDraw [29].

or around the RoI area. All these works adopt the classical

RoI pooling layer, which divides RoIs into pooling bins and

max-pools the corresponding spatial extent on convolution-

al feature map into fixed-length RoI features.

RoI features originating from convolutional feature map

are high-dimensional (e.g., 2048-d in ResNet-101). To

model complex recognition patterns with high-dimensional

features, heavy region classification networks are essential,

leading to large-scale parameters and time consuming infer-

ence. Some might question whether RoI features aiming at

region classification and regression actually need so many

channels. In general, most of RoIs have already covered a

considerable portion of objects thanks to accurate proposal

generation [38, 13, 41, 20, 11]. This means that it is pos-

sible to highlight the discriminative feature components out

of deep features by RoI feature re-extraction.

Moreover, RoI features pooled by classical RoI pooling

are translation-invariant. Convolutional neural networks

share weights spatially over all positions on feature map-

s, forming the translation-invariant feature representation-

s of the whole image. These translation-invariant features

are insensitive to detection tasks that focus more on how

to precisely localize objects. Notice that objects usually

have distinct spatial characteristics in different sub-regions

that draw on different feature representations. For exam-

ple, boundary parts of an object may need more features

describing edges and contours for localization, while the

center parts favor texture features for classification. Addi-

tionally, objects from various categories or viewpoints may

also keep varying aspect ratios of ground truth boxes. How-

ever, in classical RoI pooling, RoI features are extracted in-

dependently for different sub-regions and aspect ratios: fea-

tures of different sub-regions are pooled on all channels of

convolutional feature map, with little emphasis on location-

related components and aspect ratio preference.

Based on the above observations, we propose feature se-

lective networks, which introduce dimension reduction and

region-wise feature attention. In our network, RoI features

are extracted with respect to the sub-region variation and

aspect ratio preference. Benefitting from intense dimension

reduction, we replace the multiple high-capacity convolu-

tional or fully connected (fc) layers in traditional region

classifier by only one low-capacity fc layer.

Figure 1 shows a toy example of our feature selective

network. Our network produces RoI feature representations

with translation-variant components based on the detailed

sub-region and aspect ratio attention. The channel number

Cs (e.g., 40) of RoI features in our network is much small-

er than the channel number C of the original convolutional

feature map.

Figure 2 shows the DeepDraw visualizations from the

trained models of Faster R-CNN, R-FCN [5] and our net-

work. We can observe that our model well maintains struc-

tural characteristics and preserves the distinct spatial depic-

tion of objects.

The effectiveness of our method is shown through ex-

periments on PASCAL VOC and MS COCO [24]. Our

network gets a consistent boost in detection performance

based on general ConvNet backbones (ResNet-101 [17],

GoogLeNet [37] and VGG-16 [36]).

Our contributions can be summarized into three compo-

nents:

• Our network generates region-orientated attention

maps and creates an informative translation-variant

representation of RoI features. Without elaborate en-

hancements, our detector equipped with ResNet-101

achieves more than 3% mAP improvement compared

to Faster R-CNN and R-FCN counterparts.

• A heavy detection subnetwork with multiple high-

capacity fc layers or convolutional layers is simplified

to a single low-capacity fc layer, which largely reduces

parameter size and speeds up inference, especially for

ResNet and GoogLeNet backbones.

• Our network is generic and gets a consistent boost

based on different ConvNet backbones (ResNet-101,

GoogLeNet and VGG-16).

2. Related Work

Traditional Handcrafted Feature Extraction. De-

formable Parts Models (DPMs) [10, 1, 8] dominated object

detection for years before CNN sprang up. DPM mainly

adopts traditional handcrafted features upon all partitioned

blocks of candidate boxes with latent SVM classifiers.

Convolutional Feature Extraction. After the success of

using deep neural networks for image classification [33],

a research stream based on CNNs (OverFeat [34], R-

CNN [15]) shows significant improvements in detection ac-

curacy. These methods use convolutional layers to extract

features from each region proposal. To further speed up,

SPP-Net [16] and Fast R-CNN [14] firstly extract region-

independent feature maps at the full-image level, and then

pool region-wise features via spatial extents of proposals.
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Figure 3. Architecture of our feature selective network. (1) Generate the convolutional feature map of the entire image by ConvNet and

produce RoIs by RPN. (2) RoI Feature Re-Extraction: Reduce the channel number of feature map from C to Cs (e.g., C = 2048,

Cs = 40) and perform RoI pooling to get the compacted RoI features. (3) Region-Wise Attention Generation: Produce NsrCs-d

sub-region attention bank and NarCs-d aspect ratio attention bank according to RoI sub-region division (Nsr = 3 × 3) and aspect ratio

division (Nar = 3), respectively. Then given an RoI, selectively pool the sub-region attention map and aspect ratio attention map referring

its detailed sub-region and aspect ratio information (visualized as different colors in the figure, the pooling size is 7 × 7). (4) Generate

the final selected RoI features by merging the attention maps with the compacted RoI features. (5) Feed the selected RoI features into a

low-capacity detection subnetwork for RoI classification and regression.

Region-Wise Feature Aggregation Networks. To im-

prove detection accuracy, several methods try to aggregate

more effective region-wise features. MR-CNN [12] de-

velops multiple region adaption modules to pool features

from a candidate box’s multi-regions. HyperNet [18] in-

tegrates hierarchical feature maps together to generate hy-

per RoI features. Similarly, MS-CNN [3] employs multi-

scale layers for accurate proposal generation and classifi-

cation. SDP [39] performs cascaded RoI pooling from d-

ifferent layers followed by corresponding RoI classifiers.

ION [2] exploits information both inside and outside RoIs

along with four-directional IRNN represented contextual in-

formation. GBD-Net [40] addresses a gated bi-directional

CNN to leverage features from multiple support regions.

Region-Based Fully Convolutional Networks. After that,

R-FCN [5] and Deformable R-FCN [6] encode sub-region

information in the detection framework by constructing a

set of position-sensitive score maps. Instead of adopting a

detection subnetwork, R-FCN computes the classification

scores of sub-regions with a position-sensitive pooling lay-

er and then averages them into the final RoI scores. R-FCN

sufficiently performs multiple regression strategies for each

sub-region, but fails to combine information of differen-

t sub-regions together. Figure 2 shows that, R-FCN well

maintains partial characteristics but has a hard time keeping

global structural information of objects.

Inspired by R-FCN, our feature selective network ex-

ploits sub-region information by generating sub-region at-

tention maps for selecting RoI features. Along with as-

pect ratio attention maps, these translation-variant attention

maps empower RoI features to form operative feature rep-

resentations for objects.

3. Feature Selective Network

3.1. General Architecture

Our goal is to extract effective RoI features from

translation-invariant convolutional feature maps. To

achieve this goal, we adopt the popular two-stage object

detection framework that consists of a proposal generator

and a region classifier. Figure 3 shows an overview of our

network architecture. Our network firstly forwards an in-

put image through ConvNet and produces the convolutional

feature map of the entire image. After that, the Region Pro-
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posal Network (RPN) [31] is grafted for generating candi-

date RoIs by anchor box classification and regression. Giv-

en the feature map and RoIs, we focus on the design of RoI

feature extractor.

Our RoI feature extractor consists of RoI feature re-

extraction and region-wise attention generation. Before

region-wise attention generation, we adopt a 1 × 1 convo-

lutional layer to reduce the channel number to Cs and pool

the compacted RoI features. Each RoI is assumed to be

divided into Nsr sub-regions for customized sub-region at-

tention map extraction. According to sub-region division

(Nsr = 3 × 3 demonstrated in Figure 3), we generate an

NsrCs -d sub-region attention bank for the entire image by

a group of designed shifted convolutional layers. Likewise,

we classify RoIs of different aspect ratios into Nar cate-

gories (Nar = 3 demonstrated in Figure 3) and then gener-

ate an NarCs-d aspect ratio attention bank.

Once provided the detailed information of an RoI, two

designed selective RoI pooling layers max-pool the active

attention maps from particular channel ranges in the sub-

region attention bank and the aspect ratio attention bank,

respectively. We aggregate the sub-region attention map

Msr and aspect ratio attention map Mar together into the

translation-variant attention map by element-wise addition.

Finally, we merge the attention map with the compacted RoI

features by element-wise product to get the selected RoI

features.

f̂i = fi · (Msri +Mari)

where i = 1, ..., N , and N is the number of RoIs. For i-th

RoI, fi is the compacted RoI features, and f̂i is the selected

RoI features. Msri and Mari correspond to its sub-region

and aspect ratio attention maps.

A subsequent low-capacity detection subnetwork output-

s the RoI classification score and class-agnostic box regres-

sion offsets. With efficient translation-variant RoI features,

our network achieves state-of-the-art detection performance

while maintaining a small parameter number and fast infer-

ence speed.

3.2. Dimension Reduction

Traditional object detectors employ ImageNet pre-

trained classification backbones to extract region-

independent features, followed by region-wise MLPs

for RoI classification. The classical RoI pooling layer that

acts as an RoI feature extractor generates fixed-length RoI

features, whose channel number is huge without dimension

reduction. Compared to the prevalent object detectors, our

network re-extracts RoI features with a noticeably smaller

channel number. We adopt a 1 × 1 convolutional layer to

reduce the channel number of feature map from C to Cs

and max-pool the RoI portion spatially into the original

compacted RoI features. These compacted RoI features

(i, j)

shifted convs

     - 

     -                       

Figure 4. Illustration of sub-region attention bank’s generation.

are expected to be optimized by later translation-variant

attention maps.

3.3. Attention Banks

In order to develop translation-variant feature selection,

we predict attention banks, which store all possible atten-

tion maps of spatial points when they are located in different

sub-regions or RoIs of different aspect ratios.

3.3.1 Sub-Region Attention Bank

Objects for detection usually exhibit distinct spatial charac-

teristics in different sub-regions of an RoI (boundary, inner

texture, surrounding context, etc.). However, features of

these sub-regions are extracted position-independently by

RoI pooling in most existing object detection methods. To

address this issue, we generate a sub-region attention bank.

In the sub-region attention bank, the attention vector at each

position comprises of position-dependent components asso-

ciated with its possible locations in RoI sub-regions.

The sub-region attention bank’s generation process is il-

lustrated in Figure 4. An RoI denoted as G is divided into

Nsr = 3 × 3 sub-regions, represented by {Gk}1≤k≤Nsr

.

The feature vector at the (i, j)-th spatial position of con-

volutional feature map is denoted as Fi,j with C channels.

The active sub-region attention at (i, j) are obtained by,

wk
sr(i, j) = Φk(Fi,j)

wk
sr(i, j) is the active attention vector with Cs channels as-

suming that the position (i, j) is located in the spatial extent

of k-th sub-region Gk of an RoI. Φk represents the feature

attention extractor for Gk, which is implemented in the for-

m of the k-th shifted convolutional layer. The parameters of
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Φk are learned by backpropagation. The sub-region atten-

tion bank Wsr at the position (i, j) is a catenation of active

feature attentions {wk
sr(i, j)}1≤k≤Nsr

. Hence, the total size

of sub-region attention bank is H × W × NsrCs. H and

W are the spatial sizes of the original convolutional feature

map. The total channel number of sub-region attention bank

is NsrCs.

On the original convolutional feature map, every spatial

position shares the same representations encoded in C chan-

nels. Instead, in the sub-region attention bank, every spatial

position has a set of customized attention values containing

sub-region details. For the spatial position (i, j), channel-

s ranging from (k − 1)Cs + 1 to kCs indicate the specific

feature attentions when (i, j) is located in the spatial extent

of the k-th sub-region of an RoI.

For a concrete example, when setting the selective chan-

nel number to 40, we generate an attention bank with a total

of 360 channels. Each set of 40 channels for a spatial posi-

tion serves as the active attention values when the position is

inside an RoI’s sub-regions of top-left, top-center, top-right,

..., bottom-center and bottom-right, respectively. Intuitive-

ly, in the following feature-selective RoI pooling layer, each

feature map point inside an RoI will correspond to a group

of 40 channels in the sub-region attention bank, according

to the detailed relative position.

Shifted Convolution. We design a group of shifted convo-

lutional layers on the convolutional feature map of the entire

image to produce the sub-region aware attention bank. The

shifted convolutions are special cases of deformable con-

volutions in [6]. Different from deformable convolution,

shifted convolution keeps the same 2D offsets for differen-

t spatial positions on feature map. As shown in Figure 4,

the 2D offsets of shifted convolutional layers are fixed to

(1, 1), (1, 0), (1,−1), ..., (−1,−1), respectively. The shift

directions are aligned with the directions that the corre-

sponding sub-regions towards the RoI center. The convo-

lution kernel is fixed to 3× 3.

3.3.2 Aspect Ratio Attention Bank

Sub-region attention bank explores the potentials of posi-

tion information inside RoIs. Apart from sub-regions, our

network also takes into account aspect ratio information. In

practice objects of different categories usually carry differ-

ent aspect ratios. Besides objects difference, aspect ratio

information may also reflect the viewpoint or pose of an

object. For instance, there are large differences in aspec-

t ratio between pedestrians and sitting people. Therefore,

aspect ratio information should also be considered in RoI

feature extraction. However, the classical RoI pooling layer

generates a fixed spatial size (e.g., 7×7) feature representa-

tion for all RoIs, thereby ignoring the aspect ratio difference

between them.

(i, j)

1×1 conv

     - 
     - 

       

                      

Figure 5. Illustration of aspect ratio attention bank’s generation.

To remedy this issue, we produce the aspect ratio atten-

tion bank to utilize the aspect ratio information. In parallel

with sub-region attention bank, a 1× 1 convolutional layer

is placed on the convolutional feature map to get the aspect

ratio aware components of each spatial position. The gen-

eration process is shown in Figure 5. We group RoIs of

different aspect ratios into Nar categories (Nar is set to 3

in Figure 5: ratio < 0.75, ratio > 1.3 and others). wk
ar with

Cs channels is derived from Fi,j , inferring the active fea-

ture attention if the position (i, j) is located in the RoI cat-

egorized to the k-th RoI set Ωk. The aspect ratio attention

bank War at (i, j) is a catenation of active feature attentions

{wk
ar(i, j)}1≤k≤Nar

.

3.4. Attention Maps

In our feature selective network, attention banks are pro-

duced to reveal the particular and distinct characteristics

of different sub-regions and aspect ratios. Once candidate

RoIs are provided by RPN, we perform selective RoI pool-

ing layers to dedicate the sub-region and aspect ratio detail-

s to translation-variant attention maps. Our selective RoI

pooling layer leverages max-pooling to map an RoI’s spa-

tial extent on attention banks into a fixed-length attention

vector of h × w × Cs (e.g., 7 × 7 × 40). h and w are the

pooling sizes, and Cs is the selective channel number.

Selective RoI Pooling. Specifically, in an RoI window,

(m,n)-th pooling bin has a correspondence with indexes

ksr (1 ≤ k ≤ Nsr) and kar (1 ≤ k ≤ Nar) for sub-

region attention bank and aspect ratio attention bank, re-

spectively. For the sub-region attention bank, index ksr de-

notes that most area of the pooling bin belong to the spa-

tial rectangular Gksr
of the ksr-th sub-region. Generally,

bin(1, 1) ∈ G1, ...,bin(m,n) ∈ Gksr
, ...,bin(h,w) ∈ GNsr

.

For the aspect ratio bank, index kar denotes that the RoI is

a member of kar-th aspect ratio set Ωkar
. Consequently,

h× w pooling bins share the same kar. Given ksr and kar,
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we max-pool the attention values from particular channel

lists of the spatial positions inside each pooling bin.

Msr(m,n, c) = max
(i,j)∈bin(m,n)

Wsr(i, j, c+ (ksr − 1)Cs)

Mar(m,n, c) = max
(i,j)∈bin(m,n)

War(i, j, c+ (kar − 1)Cs)

where Msr(m,n, c) and Mar(m,n, c) respectively stand

for the c-th channel of the (m,n)-th pooling bin for sub-

region attention map and aspect ratio attention map (1 ≤
m ≤ h, 1 ≤ n ≤ w, 1 ≤ c ≤ Cs). According to the in-

dexes ksr and kar, the particular channel lists range from

1 + (ksr − 1)Cs to ksrCs in the sub-region attention bank

Wsr and 1+ (kar − 1)Cs to karCs in the aspect ratio atten-

tion bank War, separately.

Hence, each pooling bin of the RoI selects a distinc-

tive Cs-d sub-region dependent attention map. RoIs of d-

ifferent aspect ratios also select a particular Cs-d aspect

ratio aware attention map. So far, we produce two atten-

tion maps with fixed-length of h × w × Cs as the repre-

sentations of sub-region and aspect ratio disparities. We

merge the two maps to get the translation-variant attention

map by element-wise addition. After weighting the original

dimension-reduced RoI features, we feed the selected RoI

features into a lightweight detection subnetwork to get the

classification and regression outputs.

During backpropagation, the selective RoI pooling layer

follows the chain rule and propagates the gradients from

attention maps to the specific position in attention banks,

according to the aforementioned correspondence.

3.5. Detection Subnetwork

In general, the detection subnetworks of two-stage ob-

ject detectors are high-capacity or deep. The high-capacity

ones are originated from AlexNet and VGG, which have t-

wo 4096-d fc layers designed for image classification. For

detectors adopting superior fully convolutional classifica-

tion backbones (e.g., ResNet, GoogLeNet), a deep and con-

volutional detection subnetwork is necessary [32].

Enabled by concise and informative RoI feature re-

extraction, we simplify our detection subnetwork to a single

low-capacity (e.g., 500-d) fc layer, followed by a (cls+1)-d

fc layer to get RoI classification scores and a 4-d fc lay-

er to output class-agnostic bounding box regression offset-

s. Our detection subnetwork has a much smaller parameter

size than the classical RoI classifier. At the same time, this

simple design overcomes the drawback of costing inference

time when the detection subnetwork has a deep network ar-

chitecture.

4. Experiments

Our feature selective network is a generic and effective

method of extracting RoI features for two-stage object de-

method sub-region? aspect ratio? mAP(%)

Faster R-CNN 78.8

R-FCN [5] 79.5

Ours(a) X 82.2

Ours(b) X 81.0

Ours(c) X X 82.9

Table 1. Detection results on VOC 2007 test set using ResNet-101.

The training set is VOC 07+12 trainval.

tectors. In the subsequent experiments, we attach our net-

work to commonly used ConvNet backbones: ResNet-101,

GoogLeNet and VGG-16.

4.1. Experimental Setup

ConvNet Backbones. Original ResNet-101 and

GoogLeNet, designed for image classification, are

fully convolutional and have a stride of 32 pixels on the

last convolutional layers. We follow the modification in

NoC [32]: reducing the stride from 32 to 16 by changing

the last stride operation from 2 to 1 and applying the

“hole algorithm” [26, 4](“Algorithme à trous” [28]). We

then attach our network to the last convolutional layers of

ConvNet backbones.

Proposal Subnetwork. For region proposal generation, we

use RPN to generate 300 proposals per image, and then per-

form all ablation experiments on fixed proposals obtained

from the RPN of three ConvNets, respectively.

Detection Subnetwork. We feed the RoI feature into one

added fc layer for feature reorganization, followed by a

(cls+1)-d fc layer and a 4-d fc layer to get outputs. The

dimension of added fc layer is 500-d, or changed to 100-d

if RoI features only have one channel. We use softmax loss

and smooth L1 loss defined in Fast R-CNN [14] for back-

propagation [21].

Training Details. We start from ImageNet pre-trained

models of each ConvNet, and label an RoI as foreground

when its Intersection over Union (IoU) overlap with a

ground truth box is at least 0.5. Other RoIs are labeled as

background. During the training process, we construct each

minibatch from two images with 256 RoIs and allocate 25%

of them to the foreground. Image or its horizontal flip are

resized to a single scale that its shorter side has 600 pixels.

Testing Details. We test all images on single scale with

shorter side 600 pixels, and adopt non-maximum suppres-

sion (NMS) with an IoU threshold of 0.3, then evaluate the

results on the test benchmarks: PASCAL VOC 2007 test,

VOC 2012 test, and MS COCO val2015 sets.

4.2. Compared to baselines

ResNet-101. We implement our algorithm with ResNet-

101 on three settings. We divide RoIs into 3×3 sub-regions

and three aspect ratio groups (ratio < 0.75, ratio > 1.3 and
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method Network sub- aspect mAP

region? ratio? (%)

Faster R-CNN GoogLeNet 74.8

Ours(a) GoogLeNet X 76.4

Ours(b) GoogLeNet X 75.6

Ours(c) GoogLeNet X X 76.8

Faster R-CNN VGG-16 73.2

Ours(a) VGG-16 X 73.9

Ours(b) VGG-16 X 73.6

Ours(c) VGG-16 X X 74.3

Table 2. Detection results on VOC 2007 test set using GoogLeNet

and VGG-16. The training set is VOC 07+12 trainval.

others). We generate attention banks by convolutional lay-

ers after res5c, and then select 40 channels for each pool-

ing bin during feature-selective RoI pooling layers. To fa-

cilitate comparison, Ours(a) only uses sub-region attention

map, Ours(b) only applies aspect ratio attention map, and

Ours(c) combines sub-region attention map and aspect ra-

tio attention map together. Table 1 shows the VOC 2007

test results of the reimplemented Faster R-CNN, R-FCN

and our network using ResNet-101. R-FCN [5] with O-

HEM [35] achieves 79.5% mAP. By contrast, Ours(a) with

only sub-region information improves the baselines by 2.7

points. With the assistance of aspect ratio information, we

further gain 82.9% mAP, outperforming the baselines over 3

points. These results verify the effectiveness of the region-

wise attention maps generated by our feature selective net-

works.

GoogLeNet and VGG-16. We conduct more experiments

on GoogLeNet and VGG-16 with the same settings as in

ResNet-101. We attach our network to the last convolution-

al layers: inception5b and conv5 3, then extract 7× 7× 40-

d features for each RoI. To reimplement Faster R-CNN

with GoogLeNet, we insert an RoI pooling layer after in-

ception4e and employ later convolutional layers as detec-

tion subnetwork. Table 2 shows the VOC 2007 test re-

sults on GoogLeNet and VGG-16. Faster R-CNN with

GoogLeNet achieves 74.8% mAP. In comparison, our net-

work achieves 76.8%, 2.0 points higher than the baseline.

For the VGG-16 network, our method also yields a slight

improvement. Notice that, Faster R-CNN inherits the two

high-capacity 4096-d fc layers from VGG-16, thus has a

much larger model size than our detector. The experiments

on GoogLeNet and VGG-16 indicate that the feature selec-

tive module is generic and robust to prevalent ConvNets.

The ranges of performance improvements reflect the feature

representation potential of each ConvNet, and our feature s-

elective modules exploit the potentials to some extent.

Deformable ResNet-101. Here we evaluate our algorith-

m on MS COCO test-dev set and compare the results with

method backbone AP AP@0.5

R-FCN [6] ResNet-101 30.8 52.6

Deformable Deformable 34.5 55.0

R-FCN [6] ResNet-101

Ours ResNet-101 34.8 55.2

Ours Deformable 35.6 55.9

ResNet-101

Table 3. Detection results on MS COCO test-dev set. The training

set is COCO train 2015 + COCO val 2015.

method AP@0.5 AP APs APm AP l

Faster R-CNN 48.4 27.2 6.6 28.6 45.0

R-FCN 48.9 27.6 8.9 30.5 42.0

Ours 54.0 33.6 17.8 35.4 46.5

Table 4. Detection results on the MS COCO val 2015 set using

ResNet-101. The training set is COCO train 2015.

method # params inference speed mAP

(sec/img) (%)

Faster R-CNN 40.7M 0.31 78.7

R-FCN 44.0M 0.12 79.5

Ours (1x1 conv) 42.6M 0.19 82.3

Table 5. Comparisons in parameter number, inference speed and

detection accuracy on VOC 2007 test set using ResNet-101. The

training set is VOC 07+12 trainval.

the state-of-the-art Deformable R-FCN [6]. The results in

Table 3 show that, our network outperforms Deformable R-

FCN by 0.3% AP when adopting ResNet-101. After adding

deformable convolutions to ConvNet, our network further

achieves 35.6% AP. That is to say, our feature selective

module is also applicable for deformable ConvNets.

4.3. MS COCO Results

We perform experiments on the challenging MS COCO

dataset that has 80k train images and 40k val images. Since

COCO has more complicated object categories, we make a

modification that selectively pool 80 channels for each RoI.

For the detection subnetwork, we repurpose the dimension

of the fc layer into 800-d. Table 4 shows that our network

achieves a better performance (54.0% / 33.6%) compared to

Faster R-CNN [17] (48.4% / 27.2%) and R-FCN [5] (48.9%

/ 27.6%) baselines. Our feature selective network far sur-

passes the baseline methods on small size object detection.

4.4. Parameter Number and Inference Speed

Table 5 shows the overall comparisons in parameter

number, inference speed and the performance. Here our

network adopts 1 × 1 convolution as the trade-off between

performance and model complexity when generating sub-

region attention map. The selective channel number is set
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feature channel RoI classifier mAP(%)

res4b22 1024 res5a, 5b, 5c, fc21 78.7

res5c 2048 fc4096, fc4096, fc21 78.8

res5c 2048 fc500, fc21 78.4

res5c 40 fc500, fc21 79.5

Table 6. Detection results on VOC 2007 test set using Faster R-

CNN with ResNet-101. The training set is VOC 07+12 trainval.

to 40. We record the inference speeds on a Titan X GPU.

Our network gains a better performance while maintaining

a smaller parameter number compared to R-FCN. On the

other hand, the deep detection subnetwork leads to signifi-

cant per-RoI computation cost for Faster R-CNN. With the

simplified detection subnetwork, our network has a higher

inference speed than Faster R-CNN.

5. Ablation studies

5.1. Dimension Reduction

Before region attention map generation, our feature se-

lective network adopts a 1×1 convolutional layer to reduce

the channel number of convolutional feature map and RoI-

pools the original compacted RoI features. Here we perform

the ablation experiments on the role of dimension reduction.

We reimplement Faster R-CNN with ResNet-101 using the

two settings in [32]: one uses res4b22’s output as RoI fea-

ture and employ conv5 block as detection network, the other

one adds two 4096-d fc layer as RoI classifier.

Table 6 shows that, with a simplified detection subnet-

work, dimension reduction achieves 79.5% mAP on VOC

2007 test set, which is a 0.7% performance improvemen-

t than the baseline. This indicates that a lightweight RoI

classifier with compacted RoI features may receive a better

detection result.

5.2. Selective Channel Number

Our feature selective network ensures a promising detec-

tion accuracy with a small channel number of RoI features.

Here we investigate on the role of selective channel number

Cs. We follow the same settings as before but change the

selective channel number from 100 to 1 and report the re-

sults. Table 7 shows that, enabled by sub-region and aspect

ratio attention maps, our networks have similar results when

the selective channel number Cs varies from 20 to 100. 20

channels seem to be enough for RoI feature representation.

Surprisingly, even reduced to one channel, the re-extracted

RoI feature with a fixed-length of 49 still performs well.

5.3. Shifted Convolution

Our feature selective network adopts shifted convolu-

tion operation when generating sub-region attention bank.

channel number Cs 100 40 20 5 1

mAP(%) 82.9 82.9 82.5 80.5 79.4

Table 7. Detection results on VOC 2007 test set using ResNet-101

with different selective channel numbers. The training set is VOC

07+12 trainval.

conv kernel shifted ? shift direction mAP(%)

1× 1 - 82.3

3× 3 - 82.6

3× 3 X center 82.9

3× 3 X outside 82.5

3× 3 X random 82.5

Table 8. Detection results on VOC 2007 test set using ResNet-101

with different convolution settings. The training set is VOC 07+12

trainval.

The shifted convolution enables different feature extrac-

tion ways when a feature map point is inside different sub-

regions. Here we investigate on the influence of shifted con-

volution operation. We adopt 1× 1 and 3× 3 standard con-

volution when generating sub-region attention bank. The

results in table 8 shows that, 3× 3 convolution yields 0.3%

mAP gain than 1 × 1 benefitting from the increase of pa-

rameters. When equipped with shifted convolution, our net-

work further achieves a 0.3% mAP gain. The shift direc-

tion is towards the assumed RoI’s center. If we change the

shift direction to the opposite or random, evolving more fea-

tures outside the RoI, the shifted convolution could hardly

achieve better results than standard convolution. These re-

sults indicate that when extracting sub-region feature atten-

tions for RoI, the feature information inside an object may

play a more important role.

6. Conclusion

We propose feature selective networks to distill effective

RoI features from convolutional feature maps. By generat-

ing attention banks, we exploit the translation-variant po-

tential of RoI feature representations. Based on the detailed

sub-region and aspect ratio information, distinctive atten-

tion maps are selected for each RoI and used to refine the

original compacted RoI features. With a surprisingly small

channel number 1-d for RoI features, our feature selective

network ensures a state-of-the-art detection accuracy. With

a proper selective channel number, our networks further

achieve general improvements equipped with the prevalent

ConvNet backbones (ResNet-101, GoogLeNet and VGG-

16). Our method offers a general and efficient module to

dedicate RoI preference to object detection networks.
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