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Abstract

We introduce an extremely computation-efficient CNN

architecture named ShuffleNet, which is designed specially

for mobile devices with very limited computing power (e.g.,

10-150 MFLOPs). The new architecture utilizes two new

operations, pointwise group convolution and channel shuf-

fle, to greatly reduce computation cost while maintaining

accuracy. Experiments on ImageNet classification and MS

COCO object detection demonstrate the superior perfor-

mance of ShuffleNet over other structures, e.g. lower top-1

error (absolute 7.8%) than recent MobileNet [12] on Ima-

geNet classification task, under the computation budget of

40 MFLOPs. On an ARM-based mobile device, ShuffleNet

achieves ∼13× actual speedup over AlexNet while main-

taining comparable accuracy.

1. Introduction

Building deeper and larger convolutional neural net-

works (CNNs) is a primary trend for solving major visual

recognition tasks [22, 9, 34, 5, 29, 25]. The most accu-

rate CNNs usually have hundreds of layers and thousands

of channels [9, 35, 33, 41], thus requiring computation at

billions of FLOPs. This report examines the opposite ex-

treme: pursuing the best accuracy in very limited compu-

tational budgets at tens or hundreds of MFLOPs, focusing

on common mobile platforms such as drones, robots, and

smartphones. Note that many existing works [17, 23, 44, 43,

39, 28] focus on pruning, compressing, or low-bit represent-

ing a “basic” network architecture. Here we aim to explore

a highly efficient basic architecture specially designed for

our desired computing ranges.

We notice that state-of-the-art basic architectures such as

Xception [3] and ResNeXt [41] become less efficient in ex-

tremely small networks because of the costly dense 1 × 1
convolutions. We propose using pointwise group convolu-

* Equal contribution.

tions to reduce computation complexity of 1 × 1 convolu-

tions. To overcome the side effects brought by group con-

volutions, we come up with a novel channel shuffle opera-

tion to help the information flowing across feature channels.

Based on the two techniques, we build a highly efficient ar-

chitecture called ShuffleNet. Compared with popular struc-

tures like [31, 9, 41], for a given computation complexity

budget, our ShuffleNet allows more feature map channels,

which helps to encode more information and is especially

critical to the performance of very small networks.

We evaluate our models on the challenging ImageNet

classification [4, 30] and MS COCO object detection [24]

tasks. A series of controlled experiments shows the effec-

tiveness of our design principles and the better performance

over other structures. Compared with the state-of-the-art

architecture MobileNet [12], ShuffleNet achieves superior

performance by a significant margin, e.g. absolute 7.8%

lower ImageNet top-1 error at level of 40 MFLOPs.

We also examine the speedup on real hardware, i.e. an

off-the-shelf ARM-based computing core. The ShuffleNet

model achieves ∼13× actual speedup (theoretical speedup

is 18×) over AlexNet [22] while maintaining comparable

accuracy.

2. Related Work

Efficient Model Designs The last few years have seen

the success of deep neural networks in computer vision

tasks [22, 37, 29], in which model designs play an im-

portant role. The increasing needs of running high qual-

ity deep neural networks on embedded devices encour-

age the study on efficient model designs [8]. For ex-

ample, GoogLeNet [34] increases the depth of networks

with much lower complexity compared to simply stack-

ing convolution layers. SqueezeNet [14] reduces parame-

ters and computation significantly while maintaining accu-

racy. ResNet [9, 10] utilizes the efficient bottleneck struc-

ture to achieve impressive performance. SENet [13] in-

troduces an architectural unit that boosts performance at

slight computation cost. Concurrent with us, a very re-
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Figure 1. Channel shuffle with two stacked group convolutions. GConv stands for group convolution. a) two stacked convolution layers

with the same number of groups. Each output channel only relates to the input channels within the group. No cross talk; b) input and

output channels are fully related when GConv2 takes data from different groups after GConv1; c) an equivalent implementation to b) using

channel shuffle.

cent work [47] employs reinforcement learning and model

search to explore efficient model designs. The proposed

mobile NASNet model achieves comparable performance

with our counterpart ShuffleNet model (26.0% @ 564

MFLOPs vs. 26.3% @ 524 MFLOPs for ImageNet clas-

sification error). But [47] do not report results on extremely

tiny models (e.g. complexity less than 150 MFLOPs), nor

evaluate the actual inference time on mobile devices.

Group Convolution The concept of group convolution,

which was first introduced in AlexNet [22] for distributing

the model over two GPUs, has been well demonstrated its

effectiveness in ResNeXt [41] and DeepRoots [15]. Depth-

wise separable convolution proposed in Xception [3] gen-

eralizes the ideas of separable convolutions in Inception se-

ries [35, 33]. Recently, MobileNet [12] utilizes the depth-

wise separable convolutions and gains state-of-the-art re-

sults among lightweight models. Our work generalizes

group convolution and depthwise separable convolution in

a novel form.

Channel Shuffle Operation To the best of our knowl-

edge, the idea of channel shuffle operation is rarely men-

tioned in previous work on efficient model design, although

CNN library cuda-convnet [21] supports “random sparse

convolution” layer, which is equivalent to random channel

shuffle followed by a group convolutional layer. Such “ran-

dom shuffle” operation has different purpose and been sel-

dom exploited later. Very recently, another concurrent work

[42] also adopt this idea for a two-stage convolution. How-

ever, [42] did not specially investigate the effectiveness of

channel shuffle itself and its usage in tiny model design.

Model Acceleration This direction aims to accelerate in-

ference while preserving accuracy of a pre-trained model.

Pruning network connections [6, 7] or channels [39] re-

duces redundant connections in a pre-trained model while

maintaining performance. Quantization [32, 28, 40, 46, 45]

and factorization [23, 17, 19, 38] are proposed in litera-

ture to reduce redundancy in calculations to speed up in-

ference. Without modifying the parameters, optimized con-

volution algorithms implemented by FFT [26, 36] and other

methods [2] decrease time consumption in practice. Distill-

ing [11] transfers knowledge from large models into small

ones, which makes training small models easier.

3. Approach

3.1. Channel Shuffle for Group Convolutions

Modern convolutional neural networks [31, 34, 35, 33,

9, 10] usually consist of repeated building blocks with the

same structure. Among them, state-of-the-art networks

such as Xception [3] and ResNeXt [41] introduce efficient

depthwise separable convolutions or group convolutions

into the building blocks to strike an excellent trade-off

between representation capability and computational cost.

However, we notice that both designs do not fully take the

1 × 1 convolutions (also called pointwise convolutions in

[12]) into account, which require considerable complex-

ity. For example, in ResNeXt [41] only 3 × 3 layers are

equipped with group convolutions. As a result, for each

residual unit in ResNeXt the pointwise convolutions occupy

93.4% multiplication-adds (cardinality = 32 as suggested in

[41]). In tiny networks, expensive pointwise convolutions

result in limited number of channels to meet the complexity

constraint, which might significantly damage the accuracy.

To address the issue, a straightforward solution is to ap-
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Figure 2. ShuffleNet Units. a) bottleneck unit [9] with depthwise convolution (DWConv) [3, 12]; b) ShuffleNet unit with pointwise group

convolution (GConv) and channel shuffle; c) ShuffleNet unit with stride = 2.

ply channel sparse connections, for example group convo-

lutions, also on 1 × 1 layers. By ensuring that each con-

volution operates only on the corresponding input channel

group, group convolution significantly reduces computation

cost. However, if multiple group convolutions stack to-

gether, there is one side effect: outputs from a certain chan-

nel are only derived from a small fraction of input channels.

Fig 1 (a) illustrates a situation of two stacked group convo-

lution layers. It is clear that outputs from a certain group

only relate to the inputs within the group. This property

blocks information flow between channel groups and weak-

ens representation.

If we allow group convolution to obtain input data from

different groups (as shown in Fig 1 (b)), the input and out-

put channels will be fully related. Specifically, for the fea-

ture map generated from the previous group layer, we can

first divide the channels in each group into several sub-

groups, then feed each group in the next layer with differ-

ent subgroups. This can be efficiently and elegantly im-

plemented by a channel shuffle operation (Fig 1 (c)): sup-

pose a convolutional layer with g groups whose output has

g × n channels; we first reshape the output channel dimen-

sion into (g, n), transposing and then flattening it back as

the input of next layer. Note that the operation still takes

effect even if the two convolutions have different numbers

of groups. Moreover, channel shuffle is also differentiable,

which means it can be embedded into network structures for

end-to-end training.

Channel shuffle operation makes it possible to build

more powerful structures with multiple group convolutional

layers. In the next subsection we will introduce an efficient

network unit with channel shuffle and group convolution.

3.2. ShuffleNet Unit

Taking advantage of the channel shuffle operation, we

propose a novel ShuffleNet unit specially designed for small

networks. We start from the design principle of bottleneck

unit [9] in Fig 2 (a). It is a residual block. In its residual

branch, for the 3 × 3 layer, we apply a computational eco-

nomical 3 × 3 depthwise convolution [3] on the bottleneck

feature map. Then, we replace the first 1 × 1 layer with

pointwise group convolution followed by a channel shuffle

operation, to form a ShuffleNet unit, as shown in Fig 2 (b).

The purpose of the second pointwise group convolution is

to recover the channel dimension to match the shortcut path.

For simplicity, we do not apply an extra channel shuffle op-

eration after the second pointwise layer as it results in com-

parable scores. The usage of batch normalization (BN) [16]

and nonlinearity is similar to [9, 41], except that we do not

use ReLU after depthwise convolution as suggested by [3].

As for the case where ShuffleNet is applied with stride, we

simply make two modifications (see Fig 2 (c)): (i) add a

3 × 3 average pooling on the shortcut path; (ii) replace the

element-wise addition with channel concatenation, which

makes it easy to enlarge channel dimension with little extra

computation cost.

Thanks to pointwise group convolution with channel

shuffle, all components in ShuffleNet unit can be com-

puted efficiently. Compared with ResNet [9] (bottleneck

design) and ResNeXt [41], our structure has less complex-

ity under the same settings. For example, given the input

size c × h × w and the bottleneck channels m, ResNet

unit requires hw(2cm + 9m2) FLOPs and ResNeXt has

hw(2cm + 9m2/g) FLOPs, while our ShuffleNet unit re-

quires only hw(2cm/g + 9m) FLOPs, where g means the
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Layer Output size KSize Stride Repeat Output channels (g groups)

g = 1 g = 2 g = 3 g = 4 g = 8

Image 224× 224 3 3 3 3 3

Conv1 112× 112 3× 3 2 1 24 24 24 24 24

MaxPool 56× 56 3× 3 2

Stage2 28× 28 2 1 144 200 240 272 384

28× 28 1 3 144 200 240 272 384

Stage3 14× 14 2 1 288 400 480 544 768

14× 14 1 7 288 400 480 544 768

Stage4 7× 7 2 1 576 800 960 1088 1536

7× 7 1 3 576 800 960 1088 1536

GlobalPool 1× 1 7× 7
FC 1000 1000 1000 1000 1000

Complexity 143M 140M 137M 133M 137M

Table 1. ShuffleNet architecture. The complexity is evaluated with FLOPs, i.e. the number of floating-point multiplication-adds. Note that

for Stage 2, we do not apply group convolution on the first pointwise layer because the number of input channels is relatively small.

Model Complexity Classification error (%)

(MFLOPs) g = 1 g = 2 g = 3 g = 4 g = 8

ShuffleNet 1× 140 33.6 32.7 32.6 32.8 32.4

ShuffleNet 0.5× 38 45.1 44.4 43.2 41.6 42.3

ShuffleNet 0.25× 13 57.1 56.8 55.0 54.2 52.7

Table 2. Classification error vs. number of groups g (smaller number represents better performance)

number of groups for convolutions. In other words, given

a computational budget, ShuffleNet can use wider feature

maps. We find this is critical for small networks, as tiny

networks usually have an insufficient number of channels

to process the information.

In addition, in ShuffleNet depthwise convolution only

performs on bottleneck feature maps. Even though depth-

wise convolution usually has very low theoretical complex-

ity, we find it difficult to efficiently implement on low-

power mobile devices, which may result from a worse com-

putation/memory access ratio compared with other dense

operations. Such drawback is also referred in [3], which has

a runtime library based on TensorFlow [1]. In ShuffleNet

units, we intentionally use depthwise convolution only on

bottleneck in order to prevent overhead as much as possi-

ble.

3.3. Network Architecture

Built on ShuffleNet units, we present the overall Shuf-

fleNet architecture in Table 1. The proposed network is

mainly composed of a stack of ShuffleNet units grouped

into three stages. The first building block in each stage is ap-

plied with stride = 2. Other hyper-parameters within a stage

stay the same, and for the next stage the output channels are

doubled. Similar to [9], we set the number of bottleneck

channels to 1/4 of the output channels for each ShuffleNet

unit. Our intent is to provide a reference design as simple

as possible, although we find that further hyper-parameter

tunning might generate better results.

In ShuffleNet units, group number g controls the connec-

tion sparsity of pointwise convolutions. Table 1 explores

different group numbers and we adapt the output chan-

nels to ensure overall computation cost roughly unchanged

(∼140 MFLOPs). Obviously, larger group numbers result

in more output channels (thus more convolutional filters) for

a given complexity constraint, which helps to encode more

information, though it might also lead to degradation for an

individual convolutional filter due to limited corresponding

input channels. In Sec 4.1.1 we will study the impact of this

number subject to different computational constrains.

To customize the network to a desired complexity, we

can simply apply a scale factor s on the number of chan-

nels. For example, we denote the networks in Table 1 as

”ShuffleNet 1×”, then ”ShuffleNet s×” means scaling the

number of filters in ShuffleNet 1× by s times thus overall

complexity will be roughly s2 times of ShuffleNet 1×.

4. Experiments

We mainly evaluate our models on the ImageNet 2012

classification dataset [30, 4]. We follow most of the train-

ing settings and hyper-parameters used in [41], with two

exceptions: (i) we set the weight decay to 4e-5 instead of
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Model Cls err. (%, no shuffle) Cls err. (%, shuffle) ∆ err. (%)

ShuffleNet 1x (g = 3) 34.5 32.6 1.9

ShuffleNet 1x (g = 8) 37.6 32.4 5.2

ShuffleNet 0.5x (g = 3) 45.7 43.2 2.5

ShuffleNet 0.5x (g = 8) 48.1 42.3 5.8

ShuffleNet 0.25x (g = 3) 56.3 55.0 1.3

ShuffleNet 0.25x (g = 8) 56.5 52.7 3.8

Table 3. ShuffleNet with/without channel shuffle (smaller number represents better performance)

1e-4 and use linear-decay learning rate policy (decreased

from 0.5 to 0); (ii) we use slightly less aggressive scale aug-

mentation for data preprocessing. Similar modifications are

also referenced in [12] because such small networks usu-

ally suffer from underfitting rather than overfitting. It takes

1 or 2 days to train a model for 3×105 iterations on 4 GPUs,

whose batch size is set to 1024. To benchmark, we compare

single crop top-1 performance on ImageNet validation set,

i.e. cropping 224×224 center view from 256× input image

and evaluating classification accuracy. We use exactly the

same settings for all models to ensure fair comparisons.

4.1. Ablation Study

The core idea of ShuffleNet lies in pointwise group con-

volution and channel shuffle operation. In this subsection

we evaluate them respectively.

4.1.1 Pointwise Group Convolutions

To evaluate the importance of pointwise group convolu-

tions, we compare ShuffleNet models of the same com-

plexity whose numbers of groups range from 1 to 8. If

the group number equals 1, no pointwise group convolu-

tion is involved and then the ShuffleNet unit becomes an

”Xception-like” [3] structure. For better understanding, we

also scale the width of the networks to 3 different complex-

ities and compare their classification performance respec-

tively. Results are shown in Table 2.

From the results, we see that models with group convo-

lutions (g > 1) consistently perform better than the coun-

terparts without pointwise group convolutions (g = 1).

Smaller models tend to benefit more from groups. For ex-

ample, for ShuffleNet 1× the best entry (g = 8) is 1.2%

better than the counterpart, while for ShuffleNet 0.5× and

0.25× the gaps become 3.5% and 4.4% respectively. Note

that group convolution allows more feature map channels

for a given complexity constraint, so we hypothesize that

the performance gain comes from wider feature maps which

help to encode more information. In addition, a smaller

network involves thinner feature maps, meaning it benefits

more from enlarged feature maps.

Table 2 also shows that for some models (e.g. Shuf-

fleNet 0.5×) when group numbers become relatively large

(e.g. g = 8), the classification score saturates or even

drops. With an increase in group number (thus wider fea-

ture maps), input channels for each convolutional filter be-

come fewer, which may harm representation capability. In-

terestingly, we also notice that for smaller models such as

ShuffleNet 0.25× larger group numbers tend to better re-

sults consistently, which suggests wider feature maps bring

more benefits for smaller models.

4.1.2 Channel Shuffle vs. No Shuffle

The purpose of shuffle operation is to enable cross-group

information flow for multiple group convolution layers. Ta-

ble 3 compares the performance of ShuffleNet structures

(group number is set to 3 or 8 for instance) with/without

channel shuffle. The evaluations are performed under three

different scales of complexity. It is clear that channel shuf-

fle consistently boosts classification scores for different set-

tings. Especially, when group number is relatively large

(e.g. g = 8), models with channel shuffle outperform the

counterparts by a significant margin, which shows the im-

portance of cross-group information interchange.

4.2. Comparison with Other Structure Units

Recent leading convolutional units in VGG [31],

ResNet [9], GoogleNet [34], ResNeXt [41] and Xcep-

tion [3] have pursued state-of-the-art results with large mod-

els (e.g. ≥ 1GFLOPs), but do not fully explore low-

complexity conditions. In this section we survey a variety

of building blocks and make comparisons with ShuffleNet

under the same complexity constraint.

For fair comparison, we use the overall network architec-

ture as shown in Table 1. We replace the ShuffleNet units

in Stage 2-4 with other structures, then adapt the number of

channels to ensure the complexity remains unchanged. The

structures we explored include:

• VGG-like. Following the design principle of VGG

net [31], we use a two-layer 3×3 convolutions as the

basic building block. Different from [31], we add a

Batch Normalization layer [16] after each of the con-

volutions to make end-to-end training easier.
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Complexity (MFLOPs) VGG-like ResNet Xception-like ResNeXt ShuffleNet (ours)

140 50.7 37.3 33.6 33.3 32.4 (1×, g = 8)

38 - 48.8 45.1 46.0 41.6 (0.5×, g = 4)

13 - 63.7 57.1 65.2 52.7 (0.25×, g = 8)

Table 4. Classification error vs. various structures (%, smaller number represents better performance). We do not report VGG-like structure

on smaller networks because the accuracy is significantly worse.

Model Complexity (MFLOPs) Cls err. (%) ∆ err. (%)

1.0 MobileNet-224 569 29.4 -

ShuffleNet 2× (g = 3) 524 26.3 3.1

ShuffleNet 2× (with SE[13], g = 3) 527 24.7 4.7

0.75 MobileNet-224 325 31.6 -

ShuffleNet 1.5× (g = 3) 292 28.5 3.1

0.5 MobileNet-224 149 36.3 -

ShuffleNet 1× (g = 8) 140 32.4 3.9

0.25 MobileNet-224 41 49.4 -

ShuffleNet 0.5× (g = 4) 38 41.6 7.8

ShuffleNet 0.5× (shallow, g = 3) 40 42.8 6.6

Table 5. ShuffleNet vs. MobileNet [12] on ImageNet Classification

• ResNet. We adopt the ”bottleneck” design in our ex-

periment, which has been demonstrated more efficient

in [9] . Same as [9], the bottleneck ratio1 is also 1 : 4.

• Xception-like. The original structure proposed in [3]

involves fancy designs or hyper-parameters for differ-

ent stages, which we find difficult for fair comparison

on small models. Instead, we remove the pointwise

group convolutions and channel shuffle operation from

ShuffleNet (also equivalent to ShuffleNet with g = 1).

The derived structure shares the same idea of “depth-

wise separable convolution” as in [3], which is called

an Xception-like structure here.

• ResNeXt. We use the settings of cardinality = 16 and

bottleneck ratio = 1 : 2 as suggested in [41]. We also

explore other settings, e.g. bottleneck ratio = 1 : 4,

and get similar results.

We use exactly the same settings to train these models.

Results are shown in Table 4. Our ShuffleNet models out-

perform most others by a significant margin under different

complexities. Interestingly, we find an empirical relation-

ship between feature map channels and classification accu-

racy. For example, under the complexity of 38 MFLOPs,

output channels of Stage 4 (see Table 1) for VGG-like,

ResNet, ResNeXt, Xception-like, ShuffleNet models are 50,

192, 192, 288, 576 respectively, which is consistent with

1In the bottleneck-like units (like ResNet, ResNeXt or ShuffleNet) bot-

tleneck ratio implies the ratio of bottleneck channels to output channels.

For example, bottleneck ratio = 1 : 4 means the output feature map is 4

times the width of the bottleneck feature map.

the increase of accuracy. Since the efficient design of Shuf-

fleNet, we can use more channels for a given computation

budget, thus usually resulting in better performance.

Note that the above comparisons do not include

GoogleNet or Inception series [34, 35, 33]. We find it non-

trivial to generate such Inception structures to small net-

works because the original design of Inception module in-

volves too many hyper-parameters. As a reference, the first

GoogleNet version [34] has 31.3% top-1 error at the cost of

1.5 GFLOPs (See Table 6). More sophisticated Inception

versions [35, 33] are more accurate, however, involve sig-

nificantly increased complexity. Recently, Kim et al. pro-

pose a lightweight network structure named PVANET [20]

which adopts Inception units. Our reimplemented PVANET

(with 224×224 input size) has 29.7% classification error

with a computation complexity of 557 MFLOPs, while our

ShuffleNet 2x model (g = 3) gets 26.3% with 524 MFLOPs

(see Table 6).

4.3. Comparison with MobileNets and Other
Frameworks

Recently Howard et al. have proposed MobileNets [12]

which mainly focus on efficient network architecture for

mobile devices. MobileNet takes the idea of depthwise sep-

arable convolution from [3] and achieves state-of-the-art

results on small models.

Table 5 compares classification scores under a variety of

complexity levels. It is clear that our ShuffleNet models are

superior to MobileNet for all the complexities. Though our

ShuffleNet network is specially designed for small models

(< 150 MFLOPs), we find it is still better than MobileNet
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Model Cls err. (%) Complexity (MFLOPs)

VGG-16 [31] 28.5 15300

ShuffleNet 2× (g = 3) 26.3 524

GoogleNet [34]* 31.3 1500

ShuffleNet 1× (g = 8) 32.4 140

AlexNet [22] 42.8 720

SqueezeNet [14] 42.5 833

ShuffleNet 0.5× (g = 4) 41.6 38

Table 6. Complexity comparison. *Implemented by BVLC (https://github.com/BVLC/caffe/tree/master/models/bvlc googlenet)

Model mAP [.5, .95] (300× image) mAP [.5, .95] (600× image)

ShuffleNet 2× (g = 3) 18.7% 25.0%

ShuffleNet 1× (g = 3) 14.5% 19.8%

1.0 MobileNet-224 [12] 16.4% 19.8%

1.0 MobileNet-224 (our impl.) 14.9% 19.3%

Table 7. Object detection results on MS COCO (larger numbers represents better performance). For MobileNets we compare two results:

1) COCO detection scores reported by [12]; 2) finetuning from our reimplemented MobileNets, whose training and finetuning settings are

exactly the same as that for ShuffleNets.

Model Cls err. (%) FLOPs 224× 224 480× 640 720× 1280

ShuffleNet 0.5× (g = 3) 43.2 38M 15.2ms 87.4ms 260.1ms

ShuffleNet 1× (g = 3) 32.6 140M 37.8ms 222.2ms 684.5ms

ShuffleNet 2× (g = 3) 26.3 524M 108.8ms 617.0ms 1857.6ms

AlexNet [22] 42.8 720M 184.0ms 1156.7ms 3633.9ms

1.0 MobileNet-224 [12] 29.4 569M 110.0ms 612.0ms 1879.2ms

Table 8. Actual inference time on mobile device (smaller number represents better performance). The platform is based on a single

Qualcomm Snapdragon 820 processor. All results are evaluated with single thread.

for higher computation cost, e.g. 3.1% more accurate than

MobileNet 1× at the cost of 500 MFLOPs. For smaller

networks (∼40 MFLOPs) ShuffleNet surpasses MobileNet

by 7.8%. Note that our ShuffleNet architecture contains 50

layers while MobileNet only has 28 layers. For better un-

derstanding, we also try ShuffleNet on a 26-layer architec-

ture by removing half of the blocks in Stage 2-4 (see ”Shuf-

fleNet 0.5× shallow (g = 3)” in Table 5). Results show that

the shallower model is still significantly better than the cor-

responding MobileNet, which implies that the effectiveness

of ShuffleNet mainly results from its efficient structure, not

the depth.

Table 6 compares our ShuffleNet with a few popular

models. Results show that with similar accuracy ShuffleNet

is much more efficient than others. For example, Shuf-

fleNet 0.5× is theoretically 18× faster than AlexNet [22]

with comparable classification score. We will evaluate the

actual running time in Sec 4.5.

It is also worth noting that the simple architecture de-

sign makes it easy to equip ShuffeNets with the latest ad-

vances such as [13, 27]. For example, in [13] the authors

propose Squeeze-and-Excitation (SE) blocks which achieve

state-of-the-art results on large ImageNet models. We find

SE modules also take effect in combination with the back-

bone ShuffleNets, for instance, boosting the top-1 error of

ShuffleNet 2× to 24.7% (shown in Table 5). Interestingly,

though negligible increase of theoretical complexity, we

find ShuffleNets with SE modules are usually 25 ∼ 40%
slower than the “raw” ShuffleNets on mobile devices, which

implies that actual speedup evaluation is critical on low-cost

architecture design. In Sec 4.5 we will make further discus-

sion.

4.4. Generalization Ability

To evaluate the generalization ability for transfer learn-

ing, we test our ShuffleNet model on the task of MS COCO

object detection [24]. We adopt Faster-RCNN [29] as the

detection framework and use the publicly released Caffe

code [29, 18] for training with default settings. Similar to

[12], the models are trained on the COCO train+val dataset

excluding 5000 minival images and we conduct testing on

the minival set. Table 7 shows the comparison of results

trained and evaluated on two input resolutions. Comparing

ShuffleNet 2× with MobileNet whose complexity are com-
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parable (524 vs. 569 MFLOPs), our ShuffleNet 2× sur-

passes MobileNet by a significant margin on both resolu-

tions; our ShuffleNet 1× also achieves comparable results

with MobileNet on 600× resolution, but has ∼4× com-

plexity reduction. We conjecture that this significant gain

is partly due to ShuffleNet’s simple design of architecture

without bells and whistles.

4.5. Actual Speedup Evaluation

Finally, we evaluate the actual inference speed of Shuf-

fleNet models on a mobile device with an ARM platform.

Though ShuffleNets with larger group numbers (e.g. g = 4
or g = 8) usually have better performance, we find it less

efficient in our current implementation. Empirically g = 3
usually has a proper trade-off between accuracy and actual

inference time. As shown in Table 8, three input resolutions

are exploited for the test. Due to memory access and other

overheads, we find every 4× theoretical complexity reduc-

tion usually results in ∼2.6× actual speedup in our im-

plementation. Nevertheless, compared with AlexNet [22]

our ShuffleNet 0.5× model still achieves ∼13× actual

speedup under comparable classification accuracy (the the-

oretical speedup is 18×), which is much faster than previ-

ous AlexNet-level models or speedup approaches such as

[14, 17, 23, 43, 44, 39].
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