
Subset Replay based Continual Learning for Scalable Improvement of

Autonomous Systems

Pratik Prabhanjan Brahma

Electronics Research Laboratory

Volkswagen Group of America

pratik.brahma@vw.com

Adrienne Othon

Electronics Research Laboratory

Volkswagen Group of America

adrienne.othon@vw.com

Abstract

While machine learning techniques have come a long

way in showing astounding performance on various vision

problems, the conventional way of training is not applica-

ble for learning from a sequence of new data or tasks. For

most real life applications like perception for autonomous

vehicles, multiple stages of data collection are necessary to

improve the performance of machine learning models over

time. The newer observations may have a different distribu-

tion than the older ones and thus a simply fine-tuned model

often overfits while forgetting the knowledge from past ex-

periences. Recently, few lifelong or continual learning ap-

proaches have shown promising results towards overcom-

ing this problem of catastrophic forgetting. In this work,

we show that carefully choosing a small subset of the older

data with the objective of promoting representativeness and

diversity can also help in learning continuously. For large

scale cloud based training, this can help in significantly re-

ducing the amount of storage required along with lessening

the computation and time for each retraining session.

1. Introduction

Recent advances in machine learning have shown

tremendous improvements in solving various computer vi-

sion problems. Deep learning has stood out to be the state-

of-the-art for object classification [15], activity recognition

[3] [23], semantic segmentation [25] [20] and depth estima-

tion [18] [4]. Machine learning, and especially deep learn-

ing, is thus expected to massively influence the production

process of perception systems for autonomous vehicles of

the present and the future. However, when these models are

fine-tuned with new data, a substantial degradation is seen

on the performance with the original data. This process is

known as catastrophic forgetting [22].

One has to store and repeatedly train with all the data

simultaneously in order to ensure reliable performance on

Figure 1. Overview of continual learning for autonomous driving

modules using a scalable subset memory on top of sequentially

arriving new data

both newer and older scenarios. This sort of joint training

causes a lot of scalability issues in regards to storage and

computation. Data collected through driving can often be

huge given that the output of the various sensors like cam-

eras, lidar and radar as well as internal signals from CAN

bus and other measurement units can easily be of the or-

der of hundreds of megabytes per second. The observations

are also not equally informative. It is difficult to come up

with either a one-time dataset or modeling that can cover

all possible driving situations that an autonomous vehicle

may encounter. Driving rules, traffic behavior and weather

conditions change from one place to another and over time.

So, it will be necessary to continuously collect such new

instances as they are encountered in order for the existing

systems to adapt accordingly. Thus, there is a need for the

perception modules to learn continuously and reliably from

new data in a scalable manner but without compromising

on the knowledge obtained from previous training. Figure

1 presents our proposed flow of continuously improving the

autonomous and advanced driver assistance (ADAS) sys-

tems over time. Once a session of training is complete, a

carefully chosen subset of the training data belonging to

the current session is added to the common memory. The

testing phase comprises of a data collection campaign that

records novel or edge case scenarios that is supposedly not

seen during previous training. This new data along with the

replay of the subset memory is used during the training of

future sessions.

1179

Humans perform a good job in learning of new tasks over

their entire lifetime while maintaining a decent performance

on already known tasks. During the past few years, sev-

eral algorithms have been suggested to meet the demands of

lifelong or continual learning for typical machine learning

models like neural nets. The problem of catastrophic for-

getting was discussed in further details in [9] and dropout

training was proposed to cure it to some extent. In [13],

the authors computed the diagonal of the Fisher informa-

tion matrix as an indicator of the importance of each par-

ticular weight parameter corresponding to a given task and

used that to form a Elastic Weight Consolidation (EWC)

regularization loss. This is inspired from the neuroscien-

tific hypothesis of synaptic consolidation whereby knowl-

edge about how to perform a previously seen task is en-

coded in a set of neural synapses which are rendered less

plastic and therefore are more stable over time. On the other

hand, less-forgetting learning (LFL) [12] applies a regular-

ization condition to make the intermediate layer features

of the retrained neural network closer to that extracted by

the older network. For supervised classification problems,

Learning without Forgetting (LWF) [16] is a technique to

add knowledge distillation loss to the overall loss function

as a way to preserve the knowledge regarding the previous

state of the neural network. There have also been some re-

cent work on memorization and replay techniques for pre-

serving continuity in deep learning models. For example,

Gradient Episodic Memory (GEM)[21] used the gradients

with respect to randomly memorized subsets of exemplars

from previous tasks to calculate the appropriate gradient

update while learning continually. Generative replay (GR)

[26] tried to teach generative adversarial networks or GANs

[8] to learn and generate examples corresponding to each

previous task. On a similar note, [29] used autoencoders to

do lifelong learning.

An important aspect of all the replay techniques is that

the replayed memory is assumed to be well representative of

the data belonging to that particular task or data distribution.

Choosing the right subset has been a critical function for

other associated problems like document or video summa-

rization [7] and active learning. For example, [2] chose the

samples from a pool of unlabeled dataset that correspond to

highest entropy values on a model’s prediction. Submodu-

lar sampling on speech data was shown in [30] to outper-

form random as well as entropy sampling. Similarly, [11]

showed the application of submodular sampling for video

summarization. In the context of incremental learning for

specifically learning from data belonging to new classes,

[24] had proposed a herding approach to choose a subset of

exemplars that causes the average feature vector over all se-

lected samples to best approximate the average feature vec-

tor over all training examples. In this paper, we present a

general framework for designing submodular functions to

select representative as well as diverse subsets of training

data. We show how this can help mitigate the problem of

catastrophic forgetting without being bottle-necked by stor-

age and computation constraints. Following the introduc-

tion, Section 2 illustrates the problem set up for continual

learning. In Section 3, submodularity is shown as a gen-

eral framework for subset selection and various examples

of functions are laid out. Experimental results and com-

parison with some of the contemporary continual learning

algorithms are presented in Section 4. Finally, Section 5

provides the conclusion of our work.

2. Problem Formulation

Unlike the conventional setting of supervised training,

continual learning attempts at learning when data is fetched

in sequential chunks enumerated by sessions. In a super-

vised setting for the ith session, the objective of a conven-

tional machine learning model is to learn a mapping fi,
parametrized by Θi, from the input Xi to Yi. The set of

classes or categories contained in each session can be dif-

ferent from each other. The total number of unique classes

seen across all sessions is given by C. Let us define Xi→j

to be the concatenation of all training data from session i
to j in chronological sequence where i < j. We also have

similar notations for Yi→j and Θi→j to denote a list of con-

catenated output labels and weights respectively. If each

session is treated independently, fi is taught by minimizing

a loss function as

Θ∗
i = argminΘi

ℓ(Θi,Xi,Yi). (1)

The loss is estimated by empirical risk mini-

mization (ERM) where one tries to minimize
1

|Xi|

∑

xa,ya∈Xi,Yi
ℓ(Θ, xa, ya). This holds good under

the assumption where (xa, ya) is treated as an independent

and identically distributed (IID) sample from the entire

data distribution. However, this doesn’t hold good in the

case where data is observed in a sequence of sessions with

varying distributions.

In case of classification problems, ℓ can be the categori-

cal cross-entropy (CCE) whereas it can be the mean squared

error (MSE) for regression problems. For learning in a con-

tinuous fashion, we would ideally like Θ∗
i ,that is obtained

right after being trained with data from the ith session, to

also retain the knowledge obtained from observing the train-

ing data X1→i−1. Joint training is done when Θ∗
i is taught

from training with X1→i and Y1→i together. It can be con-

sidered to be the upper bound for all approaches. Contin-

ual learning methods like EWC, LWF and LFL assume that

they have no access to the previous training data X1→i−1

and thus apply a regularization to the loss function while

training on the current session

1180

Θ∗
i = argminΘi

ℓ(Θi,Xi,Yi) + λR(Θi,Θ1→i−1,Xi).
(2)

In the context of EWC, the model weights Θ1→i−1 along

with their corresponding Fisher Information coefficients are

stored for each session. LWF stores the final layer soft-

max activations of the current session’s input data by doing

a feed forward pass through the previously trained model.

Methods like GEM memorize a randomly chosen subset to

compute the gradient update during new sessions whereas

GR stores the weights of session-specific GAN neural nets.

Let Mi denote the maximum hard disk or cloud memory

allocated for each ith session. If we plan on only storing

a subset of size b from the session’s training data, then it

should fall well within the Mi memory constraint. The ob-

jective of subset memory selection is to retain the accuracy

on the scenarios belonging to the past training when a model

is retrained on the new session. Since we do not know what

type of data shall be encountered in the future sessions, we

cannot use (Xi, Yi) to choose an optimal subset for ses-

sions 1 to i−1. The next section details certain strategies to

solve for the subset selection in a robust and cost effective

manner.

3. Subset Selection Strategy

3.1. Submodularity

Submodularity is a property of set functions. A set func-

tion f : 2V → R returns a real value f(S) for any subset

S ⊆ V . A function f is submodular [14] if for every subset

A and B in V , we have

f(A) + f(B) ≥ f(A ∪B) + f(A ∩B). (3)

An equivalent definition is that given arbitrary sets T and

U such that T ⊆ U ⊆ V and element e which is present

in V but not in T or U , a set function f is considered to be

submodular if it satisfies the diminishing returns property

f(T ∪ {e})− f(T) ≥ f(U ∪ {e})− f(U). (4)

The latter definition just means that the advantage gained

by adding an item {e} to a bigger set U is less as compared

to adding the same item to T which is a subset of U .

Maximizing submodular functions is an NP-hard prob-

lem. But a major advantage of rephrasing the optimization

problem of subset selection as a submodular function maxi-

mization is that powerful guarantees exist for linear time ap-

proximation algorithms. For example, even a simple greedy

algorithm can solve the problem with a worst case approxi-

mation factor of (1−e−1) [14]. It is usually even better than

that. This is very attractive because the quality of the solu-

tion does not depend on the size of the dataset and hence

these algorithms are often scalable to bigger datasets.

3.2. Submodular functions for subset selection

Various clustering algorithms, like k-medoids, can be

connected to submodular optimization. For example, the

aim of k-medoids is to minimize the sum of pairwise dis-

tances or dissimilarities d(., .) between cluster centers and

elements of the entire dataset V . The k-medoids loss is de-

fined as

L(S) =
1

|V |

∑

e∈V

minv∈Sd(e, v) (5)

where S is the set containing all the medoids. This can be

converted into a submodular optimization problem [6] by

introducing an exemplar element e0 as

f(S) = L(e0)− L(S ∪ {e0}). (6)

Maximizing the now submodular function above is the same

as optimizing the k-medoids loss. A similar yet popular ex-

ample of submodular functions is called the facility location

problem. Given a set of locations V = {1, 2, ..N}, the ob-

jective is to open facilities in some of them in order to serve

a collection of m customers. Opening a facility at location

j provides a value denoted by Mi,j to customer i. If each

customer i is served by the nearest facility which is given by

the facility with maximum value, then the total value given

to all customers by a subset S of locations is

f(S) =

M
∑

i=1

maxj∈SMi,j . (7)

If Mi,j ≥ 0, then the function is monotone submodular.

Other examples of submodular functions can also be en-

tropy f(S) = −
∑

P (XS)log2(P (XS)) and similarly mu-

tual information.

A computational constraint in the pairwise similarity (or

distance) graph based submodular formulations mentioned

above is that one needs to calculate and store an O(N2)
matrix where N is the number of training examples. This

becomes tough when N is in the order of millions or more.

Submodular functions can also be defined over representa-

tional features of the given input. A feature based submod-

ular function can be given as

f(S) =
∑

u∈U

g(mu(S)) (8)

where g(.) is a non-negative monotone non-decreasing con-

cave function, u is a particular feature in a set of features

U and mu(S) =
∑

j∈S mu(j) is its non-negative score for

a particular feature u over a given subset S. As proved in

[28], the sum of concave functions over modular functions

(functions that hold the equality in (1)) is a submodular

function itself. In [30], the authors used this for large scale

speech text subset selection. They used term frequency

1181

inverse document frequency (TF-IDF) value as their non-

negative score for each training datum. Over multiple itera-

tions, a greedy algorithm tries to scan over the entire set of

features and pick that particular element e which maximizes

the conditional gain from its current submodular value. For

every iteration t,

e∗t = argmaxet∈V−St−1
(f(St−1 ∪ e)− f(St−1)). (9)

While dealing with images and videos, deep learning has

been largely successful in coming up with feature extractors

which perform way better for learning tasks as compared to

hand crafted features. The intermediate layer output of a

deep neural network with rectified linear unit (ReLU) acti-

vation can be approximated as a non-negative score substi-

tute that also contains class conditional information. Let’s

assume that we are extracting features from the lth layer of

a neural network that has d neurons with ReLU activation.

For every input data Xj , the intermediate feature output hj

is a d−dimensional vector containing only non-zero enti-

ties. For a dataset containing N observations, we have a

feature matrix H ∈ R
N×d. Let ak denote the fraction of

times when the neuron k is activated (or nonzero) in the

feature matrix. Similar to the computation of TF-IDF, we

calculate ik = |log(1
(ak+δ))| where δ is a very small number

to avoid division by zero in cases where a particular neuron

is never activated. Here, ik is an indication of how common

a neural activation is. When multiplied with the actual fea-

ture output, it tries to diminishes the weight on commonly

occurring neural activations as compared to increasing the

importance of rarely occurring ones. For every data point i,
we normalize the actual feature value hi

k for every neuron

by multiplying it with ik as

tik = hi
k × ik (10)

For every feature or neural activation k, we then compute

the modular score for a given subset S as

mk(S) =
∑

i∈S

tik. (11)

One can also come up with other designs for the scoring

function as long as the non-negative modularity is main-

tained. The square root function is used as the concave

non-decreasing function g(.) and iterative greedy selection

is used to fill the subset till the budget is reached. The over-

all submodular function is

f(S) =
d

∑

k=1

√

mk(S). (12)

3.3. Coverage with Diversity

Maximizing any of the aforementioned submodular

functions helps in promoting coverage or relevance of the

subset with respect to the whole dataset. In addition to that,

a diversity reward can also be included in order to achieve

less redundancy among the samples chosen. This has been

successfully used in video summarization [11] where the

focus is to come up with a succinct yet informative sum-

mary of otherwise long videos. One such diversity reward

function [17] can be designed as

D(S) =
K
∑

j=1

√

|S ∩ Pj | (13)

where Pj refers to partitions of the original set V into K
separate clusters. It is up to a designer on how to do the

partitioning. The diversity reward D(S) is added to f(S)
with a weight multiplier to ensure diversity while maximiz-

ing coverage.

The diversity constraint can also be put by dividing the

set into partitions and maximizing a submodular function

on each of it separately. The subsets obtained from each

of the partition are then concatenated to form the final sub-

set. Given a total budget of b for the subset memory, we are

bound by the constraint |S ∩ Pj | = b/K. This makes sure

that all the K partitions are equally represented in the final

subset. This also helps in solving for each partition in par-

allel and easy to implement in a distributed setting. It is a

designer’s choice on how to come up with partitions of the

data. Through experiments, we show how this can help us

in choosing a representative yet diverse subset for enabling

continual learning on sequentially incoming data.

4. Experiments

4.1. Learning of new Sessions

MNIST permutation [13] is a popular benchmark for

showcasing the ability of continual machine learning algo-

rithms. In each session, the image pixels of the handwritten

digits are shuffled as per a randomly generated but fixed per-

mutation pattern. The permutation patterns for each session

are independent of each other. We start with the original

MNIST handwritten digits in the first and keep shuffling

over subsequent sessions. In order to have a fair compar-

ison, we closely followed the setting that was laid out in

[21] to compare different types of subset replay algorithms

along with some standard stand alone continual learning

techniques like EWC and GEM. We used a multi-layer neu-

ral network with two hidden layers of 100 neurons each.

ReLU and softmax are used for hidden and output layers

respectively. Each session was trained with 1000 examples

belonging to 10 categories. The batch size was fixed to be

10 and all the algorithms were run for 300 number of gradi-

ent update iterations during each session. For all the subset

replay experiments, the budget b per session was taken to

be 100. The size of the memory in GEM was also taken to

1182

(a) (b)

Figure 2. (a) Comparing different subset replay methods, and (b) Comparing submodular replay with other continual learning methods on

the MNIST permutation task

be 100 to have a fair comparison. We ran the experiments

for seven sessions in total. The accuracy on the original test

MNIST handwritten digits, which is also the test data for

Session 1, over various sessions is plotted in Figure 2. The

model drastically forgets over time on fine-tuning with the

new data only. The plot shows the advantage of performing

a diversity (based on classes) encouraged submodular (k-

medoids) selection over other forms of subset replays. Soft-

max uncertainty [2] chooses the subset of samples which

correspond to maximum entropy values on their softmax

output. But such subsets perhaps led to higher over-fitting

of the model to boundary located data points. On compar-

ing with state-of-the-art continual learning algorithms, we

found out that both GEM and submodular subset replay had

very similar performance with the same budget. However,

GEM took more time to train as it has an extra gradient pro-

jection step that a simple subset replay does not.

4.2. Improving Continual Learning Methods

GEM uses a randomly chosen memory for each ses-

sion. Also, EWC uses the sample expectation to estimate

the Fisher diagonal. We propose that an informative mem-

ory management technique like submodular subset can add

value to these stand alone continual learning algorithms too.

Only two new sessions were chosen for this experiment but

more iterations of gradient updates were conducted during

each session. For the subset selection, the submodular func-

tion corresponding to the k-medoids optimization was se-

lected along with class conditional diversity constraint on

the budget. Figure 3 shows that adding a subset replay helps

improve the performance of EWC. The plot only shows the

results over two new sessions only but the advantage seems

to grow in prominence over time.

Figure 3. Improving performance of standalone continual learning

technique like EWC by adding a submodular subset replay

4.3. Generative replay vs Subset replay

Although the subset memory is expected to grow linearly

with respect to the number of sessions, storing actual sensor

measurements like images and LIDAR point clouds is still

more expensive than just storing a generative model that

can learn to spit out likely representations that was seen in

each session. This idea has been described in [26] where the

authors created generator models, using Wasserstein GAN

[10], with the data from each session. For every new ses-

sion, each of the older generators will be used to fetch data

of the older sessions and this will be combined with the

training data of the current session to retrain the machine

learning model. Figure 4 compares the performance of gen-

erative replay as compared to the submodular subset replay.

Here, the first session contained all the MNIST handwrit-

ten digits corresponding to digits 0 and 1 and the second

1183

Figure 4. Comparing accuracy on digits belonging to the first ses-

sion (0 and 1) by using generative replay and subset replay while

retraining with newer digits (2 and 3)

session consisted of digits 2 and 3 only. We now trained a

WGAN to generate digits belonging to digits 0 and 1 and

used it for the generative replay. We selected the budget b
in a manner that the overall hard disk memory M occupied

by the subset and the generator model is exactly the same.

Subset replay was able to perform better than generative re-

play as can be seen in Figure 4. On looking at the generated

samples, we hypothesize that the GAN was only able to dis-

cover limited number of modes or styles in the data. But the

diversity encouraged submodular selection was able to pick

some of the isolated data points that may not necessarily be-

long to a mode in the data distribution and thus led to better

continuity in learning.

4.4. Learning of Novel Categories

Method Accuracy on Class 1 to 40

EWC 92.9%(−4.5)
LWF 86.3%(−11.1)
Random Replay 94.4% (-3.0)

Random Balanced Replay 96.2%(−1.2)
Submodular Diverse Replay 96.9%(−0.5)
Joint Training 97.4%

Table 1. Test accuracy on images belonging to the original session

after retraining on a new session containing only three new classes

of traffic signs. Bracket value indicates deviation from joint train-

ing as upper bound.

Traffic sign recognition is a common task in the intelli-

gent systems for a vehicle’s perception. The set of traffic

signs may change over time and differ from place to place.

In the event of collected data containing new categories, a

machine learning classification model has to be retrained to

cover the increased label space. Continual or lifelong learn-

ing can play a major role in aiding this process in a tempo-

rally scalable manner. The distribution of the occurrence of

traffic signs is often skewed as some signs are more com-

mon as compared to others. In order to replicate this sce-

nario, we used the German Traffic Sign Recognition dataset

[27]. It has 43 categories of traffic signs training images in

total. The dataset has an unbalanced class distribution.

We divided the dataset into two sessions. Session 1

contained all the signs belonging to the first forty traffic

signs while Session 2 contained only the last three. This is

done to mimic the situation in which novel categories of

objects were recorded during a data collection campaign

and an existing perception model is then asked to update

itself. In Table 1, we compared the performance of various

continual learning techniques in remembering the perfor-

mance on the older categories while learning the novel

traffic signs seen in the second session. We used a ConvNet

(Conv0-Conv1-MaxPool0-Conv2-Conv3-MaxPool1-Drop0-

Conv4-Conv5-MaxPool2-Drop1-Flat-FC-Drop2-SoftMax)

as the architecture for the classification model. The feature

based submodular optimization was done on the features

extracted after the last pooling layer. For the subset replay

algorithms, the budget b was taken to be 200. Since Session

1 contained 38369 images in total, it is therefore a data

reduction to almost 0.5%.

Figure 5. Variation of accuracy by changing the subset budget

On this task, submodular subset selection outclassed all

the other techniques that included stand alone continual

learning algorithms like EWC and LWF. It is worth point-

ing out here that the storage requirement for EWC is only

for the previous model weights and corresponding Fisher

coefficients. For LWF, it is the previous model and corre-

sponding softmax activations on the new input. This is still

less as compared to storing a subset of the original dataset.

Thus, we took the actual hard disk space M occupied by

these information stored in the h5 format (Keras with Ten-

sorflow backend was used for the experiments) and used

1184

Figure 6. Top view design of the construction zone based corner

case for lane keeping. Left lane is closed for construction and the

lane markings are partially erased to show merging of two lanes

that to decide the value for the subset memory budget b such

that the overall storage consumption is same for all tech-

niques compared in the current experimental setting. Figure

5 shows the performance of the subset replay algorithms by

varying the budget hyperparameter. As the budget size in-

creases, the difference in performance between random and

submodular decreases and it tends to converge towards the

performance obtained by joint training. Thus, submodu-

lar selection has the most impact when we are heavily con-

strained by the budget.

4.5. Learning from Corner Cases

We simulated an anomaly or a corner case situation us-

ing the Unity development platform. In this case, the task

chosen was automatic lane keeping for which we did imita-

tion learning with a deep convolutional architecture similar

to NVIDIA’s model[1] to take images as input and produce

steering angles for a controller. The regression model was

trained end to end from images to steering angles. This was

largely inspired by the behavior cloning project in Udacity.

The first session depicts a suburban highway with uninter-

rupted lane markings throughout the entire route. During

the training data collection, the car was driven in a lane cen-

tered manner at a near constant speed without performing

any lane changes. We refer to this as the normal session.

A corner case is when the model that was trained on

the normal case is expected to fail or when a testing driver

disengages from autonomous mode to take manual control.

A construction zone was designed where cones and traffic

signs indicate the closure of left lane. Vehicles on the left

lane should merge smoothly into the right lane and those

on the right should keep following their lanes. For the con-

struction zone, the broken white lane markings are erased

by applying patchy road-colored textures on top. This is

described from a top view mode in Figure 6. We now col-

lect data for just that one instance (daytime) where a human

driver disengages and manually tries to perform the appro-

priate merging into the right lane. This session is referred

to as the correction session as shown in Figure 8. Figure

7 shows the images collected during the training phase of

the normal session. The normal dataset consists of differ-

ent types of lane curvatures under various types of environ-

ments (for example- solar glare, shadows, evening time).

The number of recorded images in correction session is less

than 2% of that of the normal session. This is a common sit-

uation as anomalous cases are rare and are available in few

specific settings only.

To avoid overfitting, we augmented our novel data into

various modes. There has been quite a bit of research

progress [5] [19] in the area of conditional image genera-

tion. Specifically for our experiments, we used CycleGAN

[31] which is a two sided GAN based approach to take an

image from one domain (sunny day for example) to convert

it to another domain (evening or foggy conditions) such that

it is indistinguishable to a discriminator trained on the tar-

get domain. The data belonging to the correction session

was collected during daytime only. We trained a CycleGAN

on the original normal dataset using unpaired images corre-

sponding to each tuple of weather modes. Figure 9 shows

how the CycleGAN [31] performed in taking a collected

image from the actual daytime correction dataset and gen-

erated its fake evening time counterpart. We then used the

normal session with the generated images in addition to the

selected subset to train our combined model.

Here, we compare the performance of a lane keep-

ing model with two simple statistical measures, (A)

d =Number of undesirable events, and (B) psm = Prob-

ability of occurrence of non-smooth behavior. Undesirable

events may refer to disengagements, unnecessary drifting

out of the current lane or getting too close to collision ob-

jects like cones. On experimenting with a number of test

drives, we assign either a high H or low L probability

of such disengagements based on a threshold. Assuming

the roads to be smooth curves which can be approximated

by a piece-wise linear functions, we expect the time series

of steering angles in the autonomous mode also to exhibit

piece-wise linear behavior. For a short given window of

time, a shaky motion or temporally fluctuating steering an-

gles would lead to a higher residual error when we do a

linear fitting and will constitute as a non-smooth behavior.

Each test drive is divided into small non-overlapping win-

dows of time T each and the residual error is computed

on performing line fitting with the steering angles corre-

sponding to that window. If the error is beyond a particular

threshold, we consider that as an occurrence of non-smooth

behavior. The fraction of such windows over multiple test

drives gives us an estimate of the measure psm. For our

1185

(a) (b) (c)

Figure 7. Front view images belonging to the normal session

(a) (b) (c)

Figure 8. Front view images belonging to the correction session

Figure 9. Using conditional GANs for data augmentation of one-

shot corner case recording into other modes

experiments, we took T to be half a second which corre-

sponds to 15 consecutive steering angles since our sampling

frequency is 30. To test the importance of appropriate sub-

set sampling, we compared the measures d and psm for the

situations corresponding to both normal N and correction

C sessions. The output range of steering angles was divided

into disjoint bins in order to perform feature based submod-

ular selection on each of them separately to promote both

coverage and diversity. As can be seen from Table 2, sub-

modular replay does outperform random subset replay in

terms of both metrics. Here, ’previous’ refers to model that

was trained using the normal session only.

Method pNsm pCsm dN dC

Previous 0.14 0.45 L H
Random 0.27 0.35 H L
Submodular 0.19 0.34 L L

Table 2. Statistical measures d and psm for models trained under

different settings.

5. Conclusion

For each acquaintance or event, we tend to remember

only a few particularly interesting instances while being

able to learn from new ones as we encounter throughout or

life. The same intuition was used to come up with a subset

replay method to help autonomous systems perform con-

tinual learning. We presented a general framework where

a user can customize submodular functions and diversity

constraints of his or her own choice. We were able to get

better results than just using randomly selected subset or

other contemporary continual learning algorithms. An in-

triguing topic that needs further work is to find out what

size of subset memory is enough to ensure that there is no

degradation of performance while learning over future ses-

sions. This may also play a role in training of GANs to

generate more representative samples and can lead to bet-

ter generative replay. This work can help in scaling up the

software improvement life-cycle of autonomous perception

modules.

References

[1] M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner,

B. Flepp, P. Goyal, L. D. Jackel, M. Monfort, U. Muller,

J. Zhang, et al. End to end learning for self-driving cars.

arXiv preprint arXiv:1604.07316, 2016.

[2] J. Chen, A. Schein, L. Ungar, and M. Palmer. An empirical

study of the behavior of active learning for word sense dis-

ambiguation. In Proceedings of the main conference on Hu-

man Language Technology Conference of the North Amer-

ican Chapter of the Association of Computational Linguis-

tics, pages 120–127. Association for Computational Linguis-

tics, 2006.

1186

[3] J. Donahue, L. Anne Hendricks, S. Guadarrama,

M. Rohrbach, S. Venugopalan, K. Saenko, and T. Dar-

rell. Long-term recurrent convolutional networks for visual

recognition and description. In Proceedings of the IEEE

conference on computer vision and pattern recognition,

pages 2625–2634, 2015.

[4] D. Eigen, C. Puhrsch, and R. Fergus. Depth map prediction

from a single image using a multi-scale deep network. In

Advances in neural information processing systems, pages

2366–2374, 2014.

[5] L. A. Gatys, A. S. Ecker, and M. Bethge. Image style transfer

using convolutional neural networks. In Computer Vision

and Pattern Recognition (CVPR), 2016 IEEE Conference on,

pages 2414–2423. IEEE, 2016.

[6] R. Gomes and A. Krause. Budgeted nonparametric learning

from data streams. In Proceedings of the 27th International

Conference on International Conference on Machine Learn-

ing, pages 391–398. Omnipress, 2010.

[7] B. Gong, W.-L. Chao, K. Grauman, and F. Sha. Diverse

sequential subset selection for supervised video summariza-

tion. In Advances in Neural Information Processing Systems,

pages 2069–2077, 2014.

[8] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu,

D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio. Gen-

erative adversarial nets. In Advances in neural information

processing systems, pages 2672–2680, 2014.

[9] I. J. Goodfellow, M. Mirza, D. Xiao, A. Courville, and

Y. Bengio. An empirical investigation of catastrophic for-

getting in gradient-based neural networks. arXiv preprint

arXiv:1312.6211, 2013.

[10] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and

A. C. Courville. Improved training of wasserstein gans. In

Advances in Neural Information Processing Systems, pages

5769–5779, 2017.

[11] M. Gygli, H. Grabner, and L. Van Gool. Video summariza-

tion by learning submodular mixtures of objectives. In Pro-

ceedings CVPR 2015, pages 3090–3098, 2015.

[12] H. Jung, J. Ju, M. Jung, and J. Kim. Less-forgetting learning

in deep neural networks. arXiv preprint arXiv:1607.00122,

2016.

[13] J. Kirkpatrick, R. Pascanu, N. Rabinowitz, J. Veness, G. Des-

jardins, A. A. Rusu, K. Milan, J. Quan, T. Ramalho,

A. Grabska-Barwinska, et al. Overcoming catastrophic for-

getting in neural networks. Proceedings of the National

Academy of Sciences, 114(13):3521–3526, 2017.

[14] A. Krause and D. Golovin. Submodular function maximiza-

tion.

[15] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet

classification with deep convolutional neural networks. In

Advances in neural information processing systems, pages

1097–1105, 2012.

[16] Z. Li and D. Hoiem. Learning without forgetting. IEEE

Transactions on Pattern Analysis and Machine Intelligence,

2017.

[17] H. Lin and J. Bilmes. A class of submodular functions for

document summarization. In Proceedings of the 49th Annual

Meeting of the Association for Computational Linguistics:

Human Language Technologies-Volume 1, pages 510–520.

Association for Computational Linguistics, 2011.

[18] F. Liu, C. Shen, and G. Lin. Deep convolutional neural fields

for depth estimation from a single image. In Proceedings

of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 5162–5170, 2015.

[19] M.-Y. Liu, T. Breuel, and J. Kautz. Unsupervised image-to-

image translation networks. In Advances in Neural Informa-

tion Processing Systems, pages 700–708, 2017.

[20] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional

networks for semantic segmentation. In Proceedings of the

IEEE conference on computer vision and pattern recogni-

tion, pages 3431–3440, 2015.

[21] D. Lopez-Paz et al. Gradient episodic memory for contin-

ual learning. In Advances in Neural Information Processing

Systems, pages 6470–6479, 2017.

[22] M. McCloskey and N. J. Cohen. Catastrophic interference

in connectionist networks: The sequential learning problem.

In Psychology of learning and motivation, volume 24, pages

109–165. Elsevier, 1989.

[23] F. J. Ordóñez and D. Roggen. Deep convolutional and lstm

recurrent neural networks for multimodal wearable activity

recognition. Sensors, 16(1):115, 2016.

[24] S.-A. Rebuffi, A. Kolesnikov, G. Sperl, and C. H. Lampert.

icarl: Incremental classifier and representation learning. In

Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 2001–2010, 2017.

[25] O. Ronneberger, P. Fischer, and T. Brox. U-net: Convo-

lutional networks for biomedical image segmentation. In

International Conference on Medical image computing and

computer-assisted intervention, pages 234–241. Springer,

2015.

[26] H. Shin, J. K. Lee, J. Kim, and J. Kim. Continual learning

with deep generative replay. In Advances in Neural Informa-

tion Processing Systems, pages 2994–3003, 2017.

[27] J. Stallkamp, M. Schlipsing, J. Salmen, and C. Igel. Man vs.

computer: Benchmarking machine learning algorithms for

traffic sign recognition. Neural Networks, (0):–, 2012.

[28] P. Stobbe and A. Krause. Efficient minimization of decom-

posable submodular functions. In Advances in Neural Infor-

mation Processing Systems, pages 2208–2216, 2010.

[29] A. R. Triki, R. Aljundi, M. B. Blaschko, and T. Tuyte-

laars. Encoder based lifelong learning. arXiv preprint

arXiv:1704.01920, 2017.

[30] K. Wei, Y. Liu, K. Kirchhoff, C. Bartels, and J. Bilmes. Sub-

modular subset selection for large-scale speech training data.

In Acoustics, Speech and Signal Processing (ICASSP), 2014

IEEE International Conference on, pages 3311–3315. IEEE,

2014.

[31] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros. Unpaired image-

to-image translation using cycle-consistent adversarial net-

works. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 2223–2232, 2017.

1187

