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Abstract

Personalized knowledge about body shape has numerous

applications in fashion and clothing, as well as in health

monitoring. Whole body 3D scanning presents a relatively

simple mechanism for individuals to obtain this information

about themselves without needing much knowledge of an-

thropometry. With current implementations however, scan-

ning devices are large, complex and expensive. In order to

make such systems as accessible and widespread as pos-

sible, it is necessary to simplify the process and reduce

their hardware requirements. Deep learning models have

emerged as the leading method of tackling visual tasks, in-

cluding various aspects of 3D reconstruction. In this paper

we demonstrate that by leveraging deep learning it is pos-

sible to create very simple whole body scanners that only

require a single input depth map to operate. We show that

our presented model is able to produce whole body point

clouds with an accuracy of 5.19 mm.

1. Introduction

Anthropomorphic body shape is complex and is com-

prised of many components not easily characterized or mea-

sured. Body measurements are very important in the cloth-

ing and fashion industries, especially with the rise of online

shopping where customers cannot easily try on items before

purchase. This issue is especially prominent in footwear,

where fit is closely tied to performance and comfort. Works

towards a virtual change room hope to address these prob-

lems [33], such that a person can more conveniently try on

items of clothing. With clothing, how well the items fit a

person can increase their comfort as well as confidence and

social well being [14]. This can be especially true for more

expensive items such as suits and dresses, where a tailor is

often employed to ensure a correct fit.

Generally with anthropomorphic measurements, the task

of measuring is complex and requires some skill to perform

accurately [10]. These difficulties in measurements can be

avoided through the use of 3D scanning. Scanning can cap-

ture the complete 3D structure of an object or person with-

out the need for the machine or operator to necessarily be

an expert at how to take every measurement. Scanning also

has the benefit that all possible measurements are captured,

rather than only measurements at specific points [27].

Beyond clothing, understanding body measurements and

shape can provide details about general health and fitness.

In recent years, products such as Naked1 and ShapeScale2

have begun to be released with the intention of capturing 3D

information about a person, and calculating various mea-

sures such as body fat percentage and muscle gains. The

technologies can then be used to monitor how your body

changes overtime, and offer detailed fitness tracking.

Depth map cameras and RGBD cameras, such as the

XBox Kinect or Intel Realsense, have become increasingly

popular in 3D scanning in recent years, and have even made

their way onto mobile phones such as the iPhone X. These

cameras are often favored over other forms of 3D imag-

ing due to their ability to capture fast and accurate depth

maps, even on textureless surfaces. In traditional 3D scan-

ning methods, fully scanning an object typically requires ei-

ther a moving camera or a camera array. This is because the

3D reconstruction algorithm needs to capture information

from every aspect of an object in order to have knowledge

of the overall shape. When scanning a non static object

such as a person, neither of these solutions is ideal. With

a moving camera the scanning process can take substantial

time, which can allow for the person to move and break the

scan [15]. In the case of a camera array, a fairly large appa-

ratus is required, and in order to capture overlapping infor-

mation for use in triangulation algorithms, cameras cannot

be spaced out too sparsely, thus requiring many cameras in

the array. With the camera array, both the size and num-

ber of cameras required makes this solution expensive and

impractical in most circumstances.

Many of the described limitations of 3D scanning tech-

niques have to do with the need to capture every aspect of

an object. While this requirement may seem reasonable,

1naked.fit
2shapescale.com
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in humans we tend to be able to overcome this by leverag-

ing our knowledge and experience from interacting with the

world. For us, we have the ability to form complete men-

tal models of objects seen from only limited perspectives.

In experiments, this has been shown by our ability to per-

form ”mental rotation”, were we are able to imagine unseen

views of objects [28].

In more recent years, deep learning models have be-

come the dominant method in many number of visual tasks.

Among these growing fields, is the use of learning models

for shape completion. In shape completion the goal is to

produce a completed shape (typically of an object) given

a limited representation. The inputs in shape completion

tasks are typically either sparse surfaces [7, 26, 32] or lim-

ited viewpoints [6, 26, 29, 30, 31, 34, 35].

We apply a shape completion method to the task of full

body scanning. We use a deep learning model to com-

plete a point cloud scan when provided only a single input

depth map image. With this method, whole body scanners

can be made substantially less expensive and less complex.

Our method of point cloud completion has previously been

demonstrated to work in the application of 3D foot scan-

ning [18]. Here we further demonstrate the flexibility of this

method by applying it to the application of full body scan-

ning, and show that it can produce high quality completed

point clouds for objects as large as whole bodies.

Our method represents the shape of objects being

scanned without any explicit parameterization. This method

of shape learning has various advantages over parameter-

ized techniques [8, 9], primarily that it does not require that

extensive work be done to develop object specific shape pa-

rameters for each new object class to be scanned. In this

way, our method can more easily be adapted to numerous

scanning uses. This flexibility is especially important in an-

thropomorphic shape, where shape is complex and difficult

to measure [10].

2. Previous Works

RGBD cameras have become very popular in applica-

tions ranging from human computer interfaces, to robotics

as well as 3D scanning. These cameras are able to pro-

vide fast and accurate 3D information through a depth map

which is typically produced using an infrared structured

light or time of flight system. In 3D scanning, one of the

more widely used algorithms is Kinect Fusion [21], which

uses the video from an RGBD camera to produce a 3D mesh

of an object or scene. The main drawbacks to this sys-

tem and similar moving camera algorithms, are that they

take a long time to move through the necessary viewpoints.

Systems have also been developed that use multiple RGBD

cameras to scan people [5, 15] for avatar creation, however

they have their own limitations. With these systems, a large

apparatus is required, as well as special calibrations that re-

quire the system to be carefully controlled. Due to the way

that RGBD cameras project a pattern to determine depth,

multiple cameras cannot operate viewing the same surfaces

simultaneously without creating artifacts [15], thus further

complicating these systems.

One approach to capturing shape information from a lim-

ited input has been to parameterize the objects shape, and

develop algorithms that can predict the full set of parame-

ters from a reduced set. This technique has previously been

applied to foot modeling, where a 3D foot could be recon-

structed from as few as 4 input parameters [19] or a profile

and plantar outline [20]. In the case of whole body model-

ing, a number of works have developed methods of param-

eterizing body scans [4, 16, 23, 25, 42]. In these models,

the shape components from dense body scans are converted

into a more sparse set of surface points. Techniques such

as principal component analysis can be used on the reduced

set of points to further compress the number of parameters

describing whole body shape. Parameterized body models

provide a shape prior that can be useful in various tasks in-

cluding estimating body shape under clothing [24, 36, 39] or

obtaining a full 3D representation of a person from limited

scans [2, 3, 37]. Similarly, learning models can be trained

to determine mappings between limited inputs such as im-

ages, to a set of parameters that can then be used to recon-

struct a whole body by deforming a template model [8, 9].

The main drawback to these techniques is that they are de-

pendent on a detailed parameter set for the object being

scanned. In other words, these methods cannot learn shape

from an arbitrary set of object models or scans, and cannot

easily be adapted across applications.

In shape completion, a common technique is to repre-

sent shape using 3D voxels, and to apply deep learning with

3D convolutions to determine the missing aspects of the

object. This technique can be combined with regular 2D

convolutional neural networks to process input images di-

rectly [6, 31, 34], or by operating directly on an incomplete

voxel representation [7, 26, 29, 32, 35]. In either case how-

ever, the computational complexity of the 3D convolutional

operations tends to limit the reconstruction resolution. In

most works, the full object shape is represented within a

323 or 643 space. While this is acceptable for understand-

ing the structure of an object, in the case of 3D scanning

where we require accurate measurements of shape, the cur-

rently achievable resolutions are not sufficient, especially at

the scale of an entire human body.

Another approach to shape completion is to represent

shape in 2D images, and structure the problem as one of

view synthesis. In view synthesis, the goal is synthesize

a novel view of an object or scene given an input of one

or more images. This topic has been explored greatly

as a learning problem for use with color images, where

techniques such as appearance flow [22, 41] and adver-
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Figure 1. Depth map input and output configuration. Red: points

from the input depth map, Blue: points from the output depth map.

sarial networks [40] have been able to synthesize realis-

tic views. In order to represent and extract shape, depth

map views can be synthesized and used to form object point

clouds [17, 18, 30]. Since these techniques operate on 2D

images, they are able to easily take advantage of convolu-

tional deep learning models, and allow for high resolution

reconstructions with relatively low computational costs.

We follow a deep learning view synthesis approach to

allow for whole body scanning from a single input depth

map. This method is similar to that used for 3D foot scan-

ning [18], with updates to allow for practical whole body

scanning. Unlike typical view synthesis methods, we re-

strict our input to be from the front or back of the person,

and take advantage of body shape to synthesize the remain-

ing half of the person from the inverse view point. In this

method, we are able to create complete point cloud scans

from a single input depth map with flexibility in the exact

camera pose.

3. Methods

In order to produce a completed point cloud scan from

only a single input depth map, we leverage the ideas of deep

learning view synthesis. Our technique is similar to that

used previously for foot scanning [18], with some applica-

tion specific differences. Given the popularity and availabil-

ity of RGBD cameras, we structure our problem to take as

input the depth map image of the front or back side of a

person. Since this input depth map already contains nearly

half the points required by our scan, we do not put effort

into synthesizing information already on this surface. In our

Figure 2. Depth camera pose configuration.

method, we only attempt to synthesize points that would be

visible from the view on the direct opposite side from the in-

put. The human body along this axis contains minimal self

occlusions, allowing for points from these two views to be

sufficient to form a complete point cloud. In order to sim-

plify the algorithm even further, we synthesize the points on

the opposite side of the body from the same camera pose as

the input depth map. In this way the input and output depth

maps are automatically aligned, without the need to know

the exact pose the initial image was taken from. Figure 1

outlines how our input and output views are used to form a

complete scan.

We restrict our input images to be taken from the front or

back of the person, but we do not specify a specific camera

pose defining this. We instead allow for the input viewpoint

to be anywhere within a range of distances and angles in

azimuth, elevation and roll as shown in Figure 2. By doing

this, we do not require that the single camera scanning ap-

paratus need to be calibrated specifically, or even mounted

in any very precise way. This allows for more flexibility

in how the system is laid out, and removes requirements of

rigid mounting to maintain calibrations long term.

3.1. Dataset

We train a deep learning model to perform our view syn-

thesis task using the MPII Human Shape [23] body models

which are based on the CAESAR database [27]. Sample

meshes from MPII Human Shape are shown in Figure 3.

All mesh models are in the same standing posture, and con-

tain 6449 vertex points with 12894 faces. We separate the

4301 body models into 80% for training and 20% for test-
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Figure 3. Sample mesh body models from MPII Human

Shape [23].

Table 1. Camera pose parameter ranges for the input depth map.

Pose Parameter Value Range Step

Radius (m) 2.9 to 3.2 0.075

Azimuth (deg) 60 to 120 or 240 to 300 1

Elevation (deg) -10 to 10 1

Roll (deg) -2.4 to 2.4 0.2

ing. We use the Panda3D3 game engine to render depth map

images at a resolution of 256x256 from the range of camera

poses described in Table 1. We found that depth maps of at

least this resolution are required to properly represent finer

components of the body such as the hands and feet.

3.2. Implementation Details

Our basic network architecture is similar to that used

for foot scanning [18], with additional strided convolutional

and deconvolutional [38] layers due to our higher image res-

olution, as well as the addition of batch normalization [12].

Our network takes in a single depth map which is passed

through a set of convolutional layers followed by a set of

fully connected layers, and then a set of deconvolutional

layers to synthesizes an output depth map. Our network ar-

chitecture is shown in Figure 4. We implemented our deep

network in Tensorflow [1] on a Linux machine running an

Nvidia GTX 1070 GPU. We used the Adam optimizer [13]

with a mini batch size of 64 and a learning rate of 0.0001.

The loss function was the mean L1 difference between the

synthesized depth map and the ground truth pixels.

Complete point clouds are reconstructed by reprojecting

both the input and output depth maps using the camera pa-

rameters of the scanning camera. Since the output depth

3panda3d.org

Figure 4. Network architecture.

map is synthesized from the same camera pose as the input,

no extrinsic camera parameters are needed to form the over-

all point cloud. Our point clouds are additionally cleaned of

outliers by 3D cropping and MATLAB’s pcdenoise func-

tion.

4. Results

For each of the 860 whole body objects in our test set, we

render 64 random input-output image pairs with the same

camera pose parameters used in training. We trained our

deep network for 1,000,000 iterations, at which point we

were able to achieve a depth map L1 loss of 0.0062 on the

test set. Depth map samples from our network are shown

in Figure 5, along with their error distributions. As can

be seen, the synthesized depth maps appear to match the

ground truths very closely. Looking at the error distribu-

tion, we see that the majority of error comes from the points

along the outline of the body shape. It seems as though in

these regions, the network becomes unsure whether or not

these pixels belong on the object surface or belong as part of

the background. Generally these points will be filtered out

in post-processing, however for certain features such as the

feet where few points already exist, losing points to filtering

can cause a larger impact on the reconstruction.
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Figure 5. Synthesized depth map results. First row: input depth map, Second row: ground truth depth map, Third row: synthesized depth

map, Fourth row: synthesized depth map error distribution.

4.1. Point Cloud Results

In order to quantitatively evaluate the point clouds pro-

duced by our method, we utilize a metric that has previ-

ously been used in foot scanning works [17, 18]. The metric

is a two directional euclidean distance metric from a syn-

thesized point cloud to a ground truth point cloud, where

nearest neighbor is used as an approximation for point cor-

respondence. The error esyn,i for each point psyn,i in the

synthesized point cloud is determined by its euclidean dis-

tance to the nearest point in the ground truth point cloud

pgt,j .

esyn,i = minj‖psyn,i − pgt,j‖2. (1)

The error egt,j for each point pgt,j in the ground truth

point cloud is similarly determined by its euclidean distance

to the nearest point psyn,i in the synthesized point cloud.

egt,j = mini‖pgt,j − psyn,i‖2 (2)

These measures are normalized by the number of points

in each point cloud, and then averaged together to calculate

the overall point cloud error.

etotal =

1

N

∑
i esyn,i +

1

M

∑
j egt,j

2
(3)

where N and M are the total number of points in the synthe-

sized and ground truth point clouds respectively, and etotal

is the total error for a point cloud compared to the ground

truth.

Our error metric is calculated in these two directions, as

it is necessary to ensure that the synthesized point cloud

does not only fit a subset of the ground truth points and con-

tain no points for the remainder. In a case such as this, far

away ground truth regions would not be nearest neighbours,

and would be ignored in the synthesized to ground truth

point cloud error. Similarly, if the synthesized points fit the

ground truth very closely but also contains additional high

error points, these points would be ignored in the ground

truth to synthesized point cloud error.

Using this measure, we found that our method was able

to achieve an accuracy of 5.19 mm, with a standard devia-

tion of 1.36 mm on the test set. Samples of the point clouds

synthesized by our method are shown in Figure 6. As can be

seen, the point cloud reconstructions match the ground truth

shapes very closely for the majority of the bodys surface.

Interestingly, finer details such as facial features are barely

reconstructed when synthesized. These features have min-

imal impact in applications such as virtual change rooms,

but may be a problem for other uses.

The synthesized point clouds can be observed to be more

noisy around the seam between the two point clouds. This

relates back to the error distribution seen in Figure 5, where

the outline points are the least reliable. It can also be seen

that a small gap does exist along the seam in some cases as

well. This has to do both with the issue previously men-
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Figure 6. Completed point cloud results. Point clouds shown are reconstructions of the same depth maps in Figure 5. First row: ground

truth, Second row: synthesized point cloud. Red: input depth map points, Blue: synthesized/ground truth depth map points.

tioned as well as the fact that these surfaces are perpendicu-

lar to the camera viewpoint, and thus neither depth map can

capture points on this surface. Despite this gap however, the

two point clouds are aligned correctly, and thus when com-

bined still accurately represents body shape and should be

sufficient for tasks of virtual try on and health monitoring.

If required, 3D scanning post processing techniques exist

that can be used to fill in the gaps [5].

5. Discussions and Conclusions

We have shown that our deep learning method can

achieve accurate whole body scanning from a single input

depth map. Our network was trained strictly from body

shapes, and given no explicit shape parameters. We found

that our network was able to produce point clouds with ac-

curacies of 5.19 mm. At the scale of a whole human body,

this error of only a few millimeters is rather minimal. In

some applications where clothing is fitted more precisely,

such as with gloves or shoes, additional scans at a closer dis-

tance or higher resolution may be required, but for general

clothing, this accuracy would be sufficient in most cases.

It is important to acknowledge that our training and

evaluations were conducted using MPII human shape data,

which are still only approximate models of a true body scan.

These body models are excellent for use in demonstrating

the concept of our method and suggesting its reconstruction

capabilities, however these results may differ slightly if ap-

plied to real world data. In order to apply our method on

real world data, training on such data would most likely be

necessary, either from scratch or as a fine tuning step.

We have also restricted the body pose to a standing pos-

ture. Our method should be flexible enough to handle more

poses if trained for such cases, provided that those poses

do not extensively self occlude. Perhaps shape deforma-

tions such as those used in 3D shape tracking [11] could

be used to handle varying body poses, however it would re-

quire some modifications to operate from only a single input

view.

Our method of whole body scanning overcomes many of

the complications and limitations of more traditional scan-

ning methods. Only a single depth map camera is required,

with no strict need for special mounting or extrinsic calibra-

tion. A single camera allows for the entire scanning system

to be small and affordable compared to moving camera or

camera array systems. The single camera also allows for a

fast scan capture time, mitigating issues where the subject

has the ability to move during the scanning process. Ul-
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timately, our method enables far more widespread use of

3D body scanning for applications of virtual fashion fitting,

health monitoring and even avatar creation. With the sim-

plicity of our method, it may even be useful in providing

robots with 3D information of the people around them, such

that they can navigate and manipulate safely around the 3D

humans.

Our method has many advantages over traditional scan-

ning methods, however it also has its share of drawbacks.

The largest drawback to the system, is that it can only pre-

dict the overall shape of a persons body, rather than provide

true shape information. For the majority of people the sys-

tem should work sufficiently, however if someone for ex-

ample has a unique shape on the surface not seen from the

input view, the system will likely fail to reconstruct it. We

have shown that our two view reconstruction method is flex-

ible enough to be adapted from foot scanning [18] to whole

body scanning, however its uses are still limited to shapes

with minimal self occlusions along some axis. This tech-

nique may not be sufficient for use scanning shapes with

more complex geometry.

In future works, we plan to investigate changes in net-

work architecture, as well as methods of pre-processing and

post-processing that may further improve our results. We

also plan to explore the use of color camera images as input,

as they are far more accessible than even RGBD cameras,

and often are available with far higher resolutions.
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