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Abstract

The ability for an agent to localize itself within an

environment is crucial for many real-world applications.

For unknown environments, Simultaneous Localization and

Mapping (SLAM) enables incremental and concurrent

building of and localizing within a map. We present a new,

differentiable architecture, Neural Graph Optimizer, pro-

gressing towards a complete neural network solution for

SLAM by designing a system composed of a local pose

estimation model, a novel pose selection module, and a

novel graph optimization process. The entire architecture

is trained in an end-to-end fashion, enabling the network

to automatically learn domain-specific features relevant to

the visual odometry and avoid the involved process of fea-

ture engineering. We demonstrate the effectiveness of our

system on a simulated 2D maze and the 3D ViZ-Doom envi-

ronment.

1. Introduction

The ability for an agent to localize itself within an envi-

ronment is a crucial prerequisite for many real-world appli-

cations, such as household robots [42], autonomous drones

[14], augmented and virtual reality applications, and video

game AI [36]. In most cases, the main challenge for an

agent localizing itself is that, the agent is not provided

with a map of the environment and therefore the agent

must simultaneously map the environment and localize it-

self within the incomplete map it has produced. A wide va-

riety of algorithms to solve this Simultaneous Localization

and Mapping (SLAM) task have been developed over a long

history [42, 4], with modern methods achieving impressive

accuracy and real-time performance [33, 25, 34, 12]. These

methods still have several shortcomings, owing mainly to

the hand-engineered features, dense matching, and heuris-

tics used in the design of these algorithms. For example,

most methods are brittle in certain scenarios, such as vary-

ing lighting conditions (e.g. changing time of day), differ-

Figure 1. Components of the proposed model along with sample

input, output and ground truth. The Local Pose Estimation model

predicts the relative pose change between consecutive observa-

tions and Neural Graph Optimization model jointly optimizes the

predictions of the Local Pose Estimation model to predict global

pose changes. The local pose estimates, global pose estimates,

and ground truth trajectory are shown in green, orange and blue,

respectively.

ent weather conditions or seasons [40], repetitive structures,

textureless objects, extremely large viewpoint changes, dy-

namic elements within the environment, and faulty sensor

calibration [4]. Because these situations are common in

real-world scenarios, robust applications of those systems

are difficult.

In this paper, we develop a method which can be made

more robust to the common situations where previous

SLAM algorithms typically degrade. To do this, we for-

mulate a novel neural network architecture called “Neural

Graph Optimizer”. Neural Graph Optimizer consists of dif-

ferentiable analogues of the common types of subsystems

used in modern SLAM algorithms, such as a local pose

estimation model, a pose selection module (key frame se-

lection, essential graph), and a graph optimization process.

Because each component in the system is differentiable, the

entire architecture can be trained in an end-to-end fashion,
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enabling the network to learn invariances to the types of

scenarios observed during training.

To demonstrate the ability of our method to learn pose

estimation, we use trajectories sampled from several sim-

ulated environments. The first environment is a 2D maze

where the agent has a single-pixel row-scan as input. We

then scale the model up to 3D mazes based on the ViZDoom

environment [21], where the agent receives an image of the

first-person view of the world as input.

2. Related Work

SLAM is a process in which an agent needs to local-

ize itself in an unknown environment and build a map of

this environment at the same time, with uncertainties in

both its motions and observations. SLAM has evolved

from filter-based to graph-based (optimization-based) ap-

proaches. Some EKF-based systems have demonstrated

state-of-the-art performance, such as the Multi-State Con-

straint Kalman Filter [33], the VIN [23], and the system of

Hesch et al. [19]. Those methods, even though efficient,

heavily depend on linearization and Gaussian assumptions,

and thus under-perform their optimization-based counter-

parts, such as OK-VIS [27], ORB-SLAM [34], and LSD-

SLAM [12].

Graph-based SLAM typically includes two main com-

ponents: the front-end and the back-end. The front-end ex-

tracts relevant information (e.g. salient features) from the

sensor data and associates each measurement to a specific

map feature, while the back-end performs graph optimiza-

tion on a graph of abstracted data produced by the front-end.

Graph-based SLAM can be categorized either as feature-

based or direct methods depending on the type of front-

end. Feature-based methods rely on local features (e.g.

SIFT, SURF, FAST, ORB, etc.) for pose estimation. For

example, ORB-SLAM [34] performs data association and

camera relocalization with ORB features and DBoW2 [16].

RANSAC [13] is commonly used for geometric verification

and outlier rejection, and there are also prioritized feature

matching approaches [39]. However, hand-engineered fea-

ture detector and descriptors are not robust to motion blur,

illumination changes, or strong viewpoint changes, any of

which can cause localization to fail.

To avoid some of the aforementioned drawbacks of

feature-based approaches, direct methods, such as LSD-

SLAM [12], utilize extensive photometric information from

the images to determine the pose, by minimizing the photo-

metric error between corresponding pixels. This approach

is in contrast to feature-based methods, which minimize the

reprojection error. However, such methods are usually not

applicable to wide baseline settings [4] during large view-

point changes. Recent work in [14] [15] combines feature

and direct methods by minimizing the photometric error of

features lying on intensity corners and edges. Some meth-

ods focus on dense recontruction of the scene, for instance

[47] builds dense globally consistent surfel-based maps of

room scale environments explored using an RGB-D cam-

era, without pose graph optimisation, while KinectFusion

[35] obtains depth measurements directly using active sen-

sors and fuse them over time to recover high-quality sur-

face maps. These approaches still suffer from strict calibra-

tion and synchronization requirements, and the data associ-

ation modules require extensive parameter tuning in order

to work correctly for a given scenario.

In light of the limitations of feature-based and direct ap-

proaches, deep networks are proposed to learn suitable fea-

ture representations that are robust against motion blur, oc-

clusions, dynamic scenes, illumination, texture, and view-

point changes. They have been successfully applied to sev-

eral related multiview vision problems, including learning

optical flow [11], depth [28], homography between frame

pairs [9], and localization [5] and re-localization problems.

Recent work includes re-formulating the localization

problem as a classification task [46], a regression task

[22, 44], end-to-end trainable filtering [18], and differen-

tiable RANSAC [3]. More specifically, PlaNet [46] formu-

lates localization as a classification problem, predicting the

corresponding tile from a set of tiles subdividing Earth sur-

face for a given image, thus providing the approximate po-

sition from which a photo was taken. PoseNet [22] formu-

lates 6-DoF pose estimation as a regression problem. One

drawback of the PoseNet approach is its relative inaccuracy,

compared to state-of-the-art SIFT methods. Similarly, [30]

fine-tunes a pretrained classification network to estimate the

relative pose between two cameras. To improve its perfor-

mance, [44] added Long-Short Term Memory (LSTM) units

to the fully-connected layers output, to perform structured

dimensionality reduction, choosing the most useful feature

correlations for the task of pose estimation. From a dif-

ferent angle, DSAC [3] proposes a differentiable RANSAC

so that a matching function that optimizes pose quality can

be learned. These approaches are not robust to repeated

structure or similar looking scenes, as they ignore the se-

quential and graphical nature of the problem. Addressing

this limitation, work in [6] fused additional sequential in-

ertial measurement with visual odometry. SemanticFusion

[29] combines convolutional neural networks (CNNs) and

a dense ElasticFusion [47]. However, classic feature-based

methods still outperform CNN-based methods published to

date in terms of accuracies.

Recently, there has been an increasing interest in com-

bining navigation and plannning in an end-to-end deep re-

inforcement learning (DRL) framework. The efforts to date

can be divided into two categories depending on the pres-

ence of external memory in the architecture or not. Target-

driven visual navigation takes a visual observation and an

image of the target [50] or range findings [41] as input, and
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plans goal seeking actions in a 3D indoor simulated envi-

ronment as the output.

In simulated environments, [31] uses stacked LSTM in a

goal-driven RL problem with auxilary tasks of depth predic-

tion and loop-closure classification, while [48] added suc-

cessor features to ease transfer from previously mastered

navigation tasks to new ones. Work in [1] augmented DRL

with Faster-RCNN for object detection and SLAM (ORB-

SLAM2) for pose estimation; observing images and depth

from VizDoom, they built semantic maps with 3D recon-

struction and bounding boxes as input to a RL policy.

To deal with the limited memory of standard recurrent

architures (such as LSTM) more structured external mem-

ories have been developed to take the spatial relations of

memories into account. [17] assumes known ego-motion

and constructs a metric egocentric multi-scale belief map

(top-down-view latent representation of free space) of the

world with a 2D spatial memory, upon which RL plans a

sequence of actions towards goals in the environment with

a value iteration network. Neural Map in [36] is a writable

structured 2D external memory map for an agent to learn

to navigate within 2D and 3D maze environments. These

works all assume precise egomotion and thus perfect local-

ization, a prerequisite that can rarely be met in real-world

scenarios. Relaxing this assumption and resembling tradi-

tional occupancy grid SLAM, Neural SLAM [49] uses an

occupancy-grid-like memory map, assuming only an initial

pose is provided, and updates the pose beliefs and grid map

using end-to-end DRL.

One of key ingredient for the success of graph-based

SLAM is the back-end optimization. The back-end builds

the pose graph, in which two pose nodes share an edge

if an odometry measurement is available between them,

while a landmark and a robot-pose node share an edge if

the landmark was observed from the corresponding robot

pose. In pose graph optimization, the variables to be esti-

mated are poses sampled along the trajectory of the robot,

and each factor imposes a constraint on a pair of poses.

Modern SLAM solvers exploit the sparse nature of the un-

derlying factor graph and apply iterative linearization and

optimization methods (e.g. nonlinear least squares via the

Gauss-Newton or Levenberg-Marquardt algorithm). Sev-

eral such solvers achieve excellent performance, for exam-

ple, g2o [25], TSAM [8], Ceres, iSAM [20], SLAM++

[38], and recently [2] for optimization with semantic data

association. The SLAM back-end offers a natural defense

against data association and perceptual aliasing errors from

the front-end, where similarly looking scenes, correspond-

ing to distinct locations in the environment, would deceive

place recognition. However, they depend heavily on lin-

earization of the sensing and motion models, and require

good initial guesses. Current systems can be easily induced

to fail when either the motion of the robot or the environ-

ment are too challenging (e.g. fast robot dynamics or highly

dynamic environments) [4].

In this work we formulate a complete end-to-end train-

able solution to the graph-based SLAM problem. We

present a novel architecture that combines a CNN-based

local front-end and an attention-based differentiable back-

end. We learn effective features automatically and perform

implicit loop closure by designing an additional differen-

tiable Neural Graph Optimizer to perform global optimiza-

tion over entire pose trajectories and correct errors accumu-

lated by the local estimation model.

3. Method

The Neural Graph Optimizer architecture is split into

distinct differentiable components. Similar to many of the

previous methods, we split the process into local adjust-

ments between temporally adjacent frames combined with a

global optimization procedure which distributes error over

the entire observed trajectory. As will be shown in the ex-

periments, the global graph optimization procedure is criti-

cal to removing drift (the accumulation of small errors over

long trajectories). The graph optimization procedure does

this by learning to do loop closures, recognizing when the

agent has revisted the same location, and enforcing a con-

straint that those poses should be nearly equal. The lo-

cal model is crucial for providing a good starting point for

the global optimization. It does this by estimating relative

transformations between two temporally adjacent frames.

By accumulating transformations from the start of the tra-

jectory to the end, we can use this model to get the initial

pose estimate within the global frame.

The complete model architecture is shown in Fig. 2. We

will describe relative poses as ∆P = (∆p1, . . . ,∆pT ) with

the first pose set as the origin, i.e. ∆p1 is the transformation

from origin to pose 1, ∆p2 is the transformation from pose 1

to pose 2, and so on. These relative poses can be trans-

formed into a global frame of reference by accumulating the

relative pose changes along the trajectory, i.e. p1 = ∆p1I,

p2 = ∆p2∆p1I, and so on. These global poses will be

refered to as P = (p1, . . . , pT ). There exists a differen-

tial function r2g = g2r−1 such that P = r2g(∆P ) and

∆P = g2r(P ). Each component is described in more de-

tail in the next sections.

3.1. Local Pose Estimation Network

The Local Pose Estimation network learns to predict the

relative pose change between two consecutive frames. From

two consecutive observations, where each observation is,

for example, an RGB frame, this component predicts the x-

coordinate, y-coordinate, and orientation (∆x, ∆y and ∆θ)

of the second frame with respect to the first frame. It can

also optionally take in side information, such as the action

taken by the agent between the two frames. The architecture
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Figure 2. The architecture of the proposed model, showing the Local Pose Estimation, the Pose Aggregation, and the Neural Graph

Optimization modules.

of the Local Pose Estimation network is shown in Fig. 3.

Both frames are stacked and passed through a series of con-

volutional layers. The output of the convolutional layers

is flattened and passed to two fully-connected layers that

predict the translational and rotational pose change respec-

tively.

Some of the recent work showed that optical flow is use-

ful in predicting frame-to-frame ego-motion [7]. The archi-

tecture of the Local Pose Estimation network is inspired by

the architecture of Flownet [11] which predicts the optical

flow between two frames. The convolutional layers in the

Local Pose Estimation network are identical to the convo-

lutional layers in Flownet. Prior work on visual odometry

and visual inertial odometry has also used the convolutional

layer architecture of Flownet [6, 45].

3.2. Pose Aggregation

The next step of the architecture is a Pose Aggregation

network which takes in a large number of low-level poses

and pose features (up to 2000 for 2D, 1000 for 3D VizDoom

environment) and reduces them into a smaller number of

more temporally distant “meta-poses” and “meta-pose fea-

tures” (around 250 for 2D, 125 for 3D VizDoom). These re-

sulting meta-poses and meta-pose features are then passed

to the Neural Graph Optimization procedure.

For pose feature aggregation, we utilize a deep tempo-

ral convolutional network with several alternating layers of

(kernel size 3, stride 1, padding 1) dimension-preserving

convolutions and (kernel size 2, stride 2, padding 0)

dimension-reducing max pooling (where each max pooling

operation halves the sequence size). The number of times

we halve the sequence length is a hyperparameter. Instead

of temporal convolutions, we could have utilized recurrent

networks, but we decided to focus on convolutions for com-

putational and memory-efficiency reasons.

In addition to the pose features being aggregated into

meta-pose features by the temporal convolution, we also

compose all the local pose transformations that were pre-

dicted by the Local Pose Estimation model. This composi-

tion gives us an initial global pose estimate for each of the

meta-poses. The combined meta-features and meta-poses

are then passed onto the Neural Graph Optimization layer

for the final global pose adjustments, as shown in Fig. 2.

3.3. Neural Graph Optimization

The final component of our system is the “Neural Graph

Optimizer”. This submodule aggregates information over

the entire pose trajectory with the goal of redistributing er-

ror to minimize drift. The Neural Graph Optimizer model

is a neural analogue of the global optimization procedures

commonly used in traditional state-of-the-art SLAM pack-

ages, such the g2o framework [25]. We define the Neural

Graph Optimizer as a recurrent network submodule which

takes as input sequential pose features and outputs a refined

estimate of these poses.

In more detail, the Neural Graph Optimizer takes as in-

put some initial T relative pose estimates (i.e. the aggre-

gated output of the local pose estimation network) ∆P
(0) =

(

∆p
(0)
1 , . . . ,∆p

(0)
T

)

and produces two outputs for each

pose:

∇P
(1) =

(

∇p
(1)
1 , . . . ,∇p

(1)
T

)

, and

βββ(1) =
(

β
(1)
1 , . . . , β

(1)
T

)

.

New pose estimates are then constructed by performing an

iterative update:

∆p
(1)
i

= ∆p
(0)
i

+ β
(1)
i

∇p
(1)
i

.

The Neural Graph Optimizer procedure can then be rerun

on the new pose estimates ∆P
(1) = (∆p

(1)
1 , . . . ,∆p

(1)
T

)
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Figure 3. The architecture of the Local Pose Estimation network. The architecture of the convolutional layers is adapted from the architec-

ture of the Flownet [11].

to produce ∆P
(2) = (∆p

(2)
1 , . . . ,∆p

(2)
T

), and so on. The

process is repeated until some pre-specified number of it-

erations M has taken place. We then transform the re-

fined relative pose estimates into the final global output:

P
(M) = r2g(∆P

(M)).

The specific architecture of the Neural Graph Optimizer

is based on two priors that are intuitively useful for pose

optimization. The first prior is the notion that poses that are

temporally adjacent should have similar outputs, while the

second prior is that visually similar but temporally disparate

poses should also have similar outputs since this provides a

hint that a place has been revisited, thereby potentially en-

abling a loop closure-like correction of drift. We express

these priors by using two architectural systems in the Neural

Graph Optimizer. The first is a Transformer-like [43] atten-

tion phase where information is propagated over the entire

sequence, and the second is a convolutional phase where

local temporal information is aggregated.

3.3.1 Attention Phase

Suppose there is a meta-pose sequence of T steps, pro-

cessed by the pose aggregation network into an initial set

of features at each time step: F(0) = (f
(0)
1 , . . . , f

(0)
T

). The

attention phase computes, for each pose, a soft-attention

operation over the entire trajectory. This attention opera-

tion allows each pose to query information over long time

spans. The attention phase takes as input the pose fea-

ture sequence (f
(i−1)
1 , . . . , f

(i−1)
T

) and produces for each

time step a query vector: (q
(i−1)
1 , . . . , q

(i−1)
T

) using a fully-

connected layer. Then, for each query vector q
(i−1)
t , a soft-

attention operation is carried out to produce an attention

vector a
(i−1)
t as follows:

Ctu = 〈qt, fu〉,

αtu =
Ctu

∑

T

v=1 Ctv

,

at =

T
∑

v=1

αtu ⊙ fu,

where the superscripts (i − 1) were omitted for clar-

ity of notation. This produces a sequence of attention

vectors (a
(i−1)
1 , . . . , a

(i−1)
T

), which are passed along with

(f
(i−1)
1 , . . . , f

(i−1)
T

) to the next “Optimization” phase.

3.3.2 Optimization

The optimization phase aggregates local temporal informa-

tion by passing the pose features through several temporal

convolutions and is responsible for producing the iterative

adjustments: {∇p
(i)
1 , . . . ,∇p

(i)
T
} and {β

(i)
1 , . . . , β

(i)
T

}. The

optimization phase proceeds as follows: First, the attention

and feature vectors are concatenated into a new sequence of

features:
([

f
(i−1)
1

a
(i−1)
1

]

, . . . ,

[

f
(i−1)
T

a
(i−1)
T

])

.

These features are then passed through several layers of 1D

convolutions hl and activations σl:





F
(i)

∇P
(i)

βββ(i)



 = σL

(

hL

(

... h1

([

f
(i−1)
1

a
(i−1)
1

]

...

[

f
(i−1)
T

a
(i−1)
T

])

...

))

to produce the current iteration’s adjustments (∇P
(i) and

βββ(i)) as well as the feature layer for the next iteration of the

process (F(i)).

For our experiments, we use 9 layers of convolutions

with filter size 3 and ReLU activations. While temporal

convolutions have a limited receptive field which provides

a hard upper limit on how far they can transmit information

across time, we found that in practice they worked better

than using a bidirectional LSTMs.

3.3.3 Induced Attention Graph

We now provide some intuition on why the attention phase

enables higher performance than only using the optimiza-

tion phase, or running all pose features through bidirec-

tional LSTMs. We can see that during the attention phase,

some similarity graph C is constructed such that each ele-

ment Ctu is the inner product between the query vector qt
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Figure 4. Left: A screenshot of the 2D environment based on

Box2D. Right: A bird’s eye view of the 3D environment based

on the Doom game engine.

Results on the 2D Environment

Model RMSE

Only Local Estimation 17.80

Global Estimation - 1 Attend-Opt iteration 10.21

Global Estimation - 5 Attend-Opt iterations 3.16

Table 1. Results for different Neural Graph Optimizer architec-

tures and hyperparameters, in terms of test set Global RMSE. We

can see that the addition of the global optimization procedure re-

duces the loss by more than 80% as compared to solely using the

local pose model.

and the pose feature vector fu. Therefore C represents a

similarity matrix between the queries and pose features, and

those with very similar features will thus have high infor-

mation bandwidth through the attention operator because

the attention weight αtu will be near 1 for highly similar

query and pose features, and near 0 otherwise. The atten-

tion operation is thus inducing a connectivity graph between

poses with highly similar features. This therefore resembles

a soft, differentiable analogue of the pose graph constructed

in SLAM algorithms such as ORB-SLAM [34].

4. Experiments

We use two simulation environments for our experi-

ments, a 2D environment based on Box2D and a 3D envi-

ronment based on the Doom game engine. To train the sys-

tem, we pretrained the local pose estimation model and then

trained the global optimizer with the local pose model held

fixed. This was mainly due to the large sequence lengths we

were required to process (on the order of 1000 time steps).

This limited the amount of sequences we could process due

to the large memory requirements. Training the system in

stages enabled us to preprocess the sequence images into a

far more memory-efficient compressed representation.

4.1. 2D Environment

For the 2D Environment, random maze designs are gen-

erated using Prim’s algorithm [37], and the environment is

created using Box2D (box2d.org). The agent projects 241
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Figure 5. Images visually demonstrating the effect on pose esti-

mates of adding the Neural Graph Optimizer module on top of

the local pose estimation model in the 2D environment. We can

see that the global optimization procedure greatly reduces drift.

These figures were generated with the 5 iteration Neural Graph

Optimization model.

rays uniformly in front of itself with an effective field of

view of 300◦. The observation of the agent includes the

RGB values as well as the depth of the points where these

rays hit a wall. An example of the 2D environment is shown

in Fig. 4. Each cell in the maze has a random color. The

agent can take one of three discrete actions at every time

step: move-forward, turn-left, or turn-right. These actions

result in translational acceleration if the action is move-

forward or angular acceleration if the action is turn-left or

turn-right. Data is collected by visiting four different cor-

ners on the maze using Dijkstra’s algorithm [10].

For this environment, the training data is generated by

worker threads in parallel with the model training and each

training datapoint is used only once. A test set is fixed and

common for all experiments. Each epoch of training con-

sists of 200, 000 datapoints. The error metric is Root Mean

Squared Error (RMSE) in pose estimation.

To improve upon the results produced by the local pose

estimation model, we train a Neural Graph Optimizer on the

pose outputs of a pretrained Local Pose Estimation model.

For the 2D environment, as shown in Table 1, we observed

over 80% improvement in the correction of drift compared

to using only the local pose estimation model, as measured

by the root mean squared error loss. We can see that increas-

ing the number of iterations (applying the attention opera-

tor and then the temporal aggregation operator) improved

results from 1 to 5 iterations. We show some sample trajec-

tories in Fig. 5 before and after the Neural Graph Optimizer

procedure.
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Results on the 3D Doom Environment

Model Seen Unseen

% Err. Trans. % Err. Rot. % Err. Trans. % Err. Rot.

Only Local Estimation 1.65 0.117 1.62 0.122

Global Estimation - 1 Attend-Opt iteration 1.42 0.071 1.16 0.071

Global Estimation - 5 Attend-Opt iterations 1.25 0.057 1.04 0.056

DeepVO [45] 1.78 0.079 2.39 0.091

Table 2. Results for different Neural Graph Optimizer architectures and hyperparameters, in terms of % translation and rotation error

on maps either seen or unseen during training time. We can see that the addition of the global optimization procedure reduces error

significantly compared to using only the local pose model. In addition, increasing the number of attention iterations provides an increase

in performance.

4.2. 3D Environment

For the 3D Environment, random maze designs are gen-

erated using the Kruskal’s algorithm [24], and the environ-

ment is created using the ViZDoom API [21]. The agent

observes the environment in a first-person view with a field-

of-view of 108◦. An example of the 3D environment design

is shown in Fig. 4. Similr to the 2D environment, the pose

predictions are 3-dimensional tuples (x, y, angle) and the

agent can take one of three discrete actions at every time

step: move-forward, turn-left, or turn-right, which results

in translational or angular acceleration. For collecting data

in this environment, a navigation network [26] is trained

to maximize the distance travelled by the agent using the

Asynchronous Advantage Actor-Critic algorithm [32]. The

data is collected by using the policy learned by the naviga-

tion network.

Like the 2D environment, the training data is generated

by worker threads in parallel with the model training, and

each training datapoint is used only once. We additionally

sample two test sets, one containing 39 trajectories sampled

from maze geometries that were seen during training and

one containing 39 trajectories sampled from novel maze ge-

ometries that the agent had not encountered during training.

4.2.1 Results

Results are shown in Table 2. Here we report % Error

in Translation and Rotation for seen/unseen mazes, where

the accumulated drift error is divided by the entire distance

traveled in each trajectory. Observe that the local model

is significantly improved by using global optimization and

performance of the global model improves as we increase

the number of Attend-Opt iterations from 1 to 5. The global

model outperforms the DeepVO [45] baseline on both the

test sets. Additionally, we can clearly see that the model

itself does not overfit to the training environments it ex-

perienced, and gets similar or even lower error on unseen

test mazes. Learning curves are shown in Fig 6. We can

see that performance plateaus decrease significantly early

on and then progress is much slower after around 2000 up-

dates.
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Figure 6. Training curves for Doom over 13, 000 updates for the 5

iteration Attend-Opt model. We show the performance on both

seen and unseen test sets as training progress. The dotted line

represents the estimate provided by using only the local model.

We can see there is a large reduction in error when making use of

the global optimizer.

The baseline DeepVO [45] is one of the state-of-the-art

methods using deep neural nets for monocular visual odom-

etry. It stacks 2 consecutive frames and passes them through

9 convolutional layers followed by 2 LSTM layers to esti-

mate the pose changes. As compared to the proposed Lo-

cal Pose Estimation model which observes only the last 2

frames at the time, the DeepVO model can potentially uti-

lize information from all the prior frames using the LSTM

layer. However, the DeepVO model does not correct its pre-

vious predictions as it observes new information. The Neu-

ral Graph Optimizer has the ability to correct its predictions

using the Attention operation and consequently leads to im-

proved performance.

4.2.2 Analysis

We next plot the total rotational and translational errors as

a function of number of steps in the trajectory in Figures 7

(for unseen mazes) and 8 (for seen mazes). The global

model reduces the slope of the rate of increase of both trans-

lational and rotation errors as compared to the local esti-

mates. Figures 9 and 10 display the ratio of the translational

(left) and rotational (right) drift error over distance traveled.

We can see from these plots that the trend is negative, mean-

ing that drift accumulates much slower than the distance be-

ing traveled. This indicates that the model is likely to gen-

eralize well to arbitrarily long trajectories. Additionally, in

all plots, we can see a clear ordering of the performance of

7356



Figure 7. Translational (Left) and Rotational (Right) RMSE as a

function of number of images in the trajectory in unseen mazes.

Figure 8. Translational (Left) and Rotational (Right) RMSE as a

function of number of images in the trajectory in seen mazes.

the models, where the local model performs worst, one it-

eration of Attend-Opt increases model performance signif-

icantly, and increasing the number of Attend-Opt iterations

to 5 further increases model performance.

The plots in Figures 7 and 8 as well as the numbers in

Table 2 show that the improvement in rotational errors due

to the neural optimization is higher than the improvement

in translation errors. Fig 11 shows sample trajectories with

estimates of both global and local pose estimates. As seen

in the figure, the neural graph optimizer considerably im-

proves the rotation estimates, consequently leading to sig-

nificant improvements in the drift reduction.

5. Conclusion

In this paper, we designed a novel attention-based archi-

tecture to perform an end-to-end trainable global pose es-

timation. Compared to the previous work on using deep

networks to do pose estimation, our method uses an atten-

tion operation to re-estimate its trajectory at each time step

and therefore enables iterative refinement of the quality of

its estimates as more data is available. We demonstrate the

benefit of the model on two simulators, the first is a top-

down 2D maze world and the second is a 3D random maze

environment running the Doom engine. Our results show

that our method has an increased performance compared to

models which used only temporally local information.

The proposed method can be further extended to a com-

plete end-to-end graph-based SLAM system by adding a re-

localization module which uses pose features to relocalize

in a known map [5]. It can also be extended to an Active

SLAM system where the agent also decides the actions, in

order to map the environment as fast as possible.

Figure 9. Ratio of the Translational (Left) and Rotational (Right)

RMSE to the distance travelled as a function of number of images

in the trajectory in unseeen mazes.

Figure 10. Ratio of the Translational (Left) and Rotational (Right)

RMSE to the distance travelled as a function of number of images

in the trajectory in seen mazes.
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Figure 11. Images visually demonstrating the effect on pose es-

timates of adding the Neural Graph Optimizer module on top of

the local pose estimation model in the 3D environment. We can

see that the global optimization procedure greatly reduces drift.

These figures were generated with the 5 iteration Neural Graph

Optimization model. The agent always starts at the origin (0, 0).
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