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Abstract

Incremental learning (IL) is an important task aimed at

increasing the capability of a trained model, in terms of

the number of classes recognizable by the model. The key

problem in this task is the requirement of storing data (e.g.

images) associated with existing classes, while teaching the

classifier to learn new classes. However, this is imprac-

tical as it increases the memory requirement at every incre-

mental step, which makes it impossible to implement IL

algorithms on edge devices with limited memory. Hence, we

propose a novel approach, called ‘Learning without Memo-

rizing (LwM)’, to preserve the information about existing

(base) classes, without storing any of their data, while

making the classifier progressively learn the new classes. In

LwM, we present an information preserving penalty: Atten-

tion Distillation Loss (LAD), and demonstrate that penal-

izing the changes in classifiers’ attention maps helps to

retain information of the base classes, as new classes are

added. We show that adding LAD to the distillation loss

which is an existing information preserving loss consis-

tently outperforms the state-of-the-art performance in the

iILSVRC-small and iCIFAR-100 datasets in terms of the

overall accuracy of base and incrementally learned classes.

1. Introduction

Most state-of-the-art solutions to visual recognition

tasks use models that are specifically trained for these tasks

[6, 13]. For the tasks involving categories (such as object

classification, segmentation), the complexity of the task

(i.e. the number of target classes) limits the ability of these

trained models. For example, a trained model aimed for

object recognition can only classify object categories on

which it has been trained. However, if the number of target

classes increases, the model must be updated in such a way

that it performs well on the original classes on which it has

*These authors have contributed equally to this work, which was

partially done during PD’s internship at Siemens Corporate Technology.

Figure 1: Our problem setup does not store data/model pertaining

to information about classes learned in previous incremental steps.

been trained, also known as base classes, while it incremen-

tally learns new classes as well.

If we retrain the model only on new, previously unseen

classes, it would completely forget the base classes, which

is known as catastrophic forgetting [9, 10], a phenomenon

which is not typically observed in humane learning. There-

fore, most existing solutions [4, 14, 18] explore incre-

mental learning (IL) by allowing the model to retain a

fraction of the training data of base classes, while incre-

mentally learning new classes. Yu et al. [18] proposed

retaining trained models encoding base class information, to

transfer their knowledge to the model learning new classes.

However, this process is not scalable. This is because

storing base class data or models encoding base class infor-

mation is a memory expensive task, and hence is cumber-

some when used in a lifelong learning setting. Also, in an

industrial setting, when a trained object classification model

is delivered to the end user, the training data is kept private

for proprietary reasons. Therefore, the end user will be

unable to update the trained model to incorporate new target

classes in the absence of base class data.

Moreover, storing base class data for incremen-

tally learning new classes is not biologically inspired.

For example, when a toddler learns to recognize new

shapes/objects, it is observed that it does not completely

forget the shapes or objects it already knows. It also does

not always need to revisit the old information when learning
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new entities. Inspired by this, we aim to explore incre-

mental learning in object classification by adding a stream

of new classes without storing data belonging to classes

that the classifier has already seen. While IL solutions

that do not require base class data, such as [1, 9] have

been proposed, these methods mostly aim at incrementally

learning new tasks, which means that at test time the model

cannot confuse the incrementally learned tasks with tasks it

has already learned, making the problem setup much easier.

We explore the problem of incrementally learning object

classes, without storing any data or model associated with

the base classes (Figure 1) in the previous steps, while

allowing the model to confuse new classes with old ones.

In our problem setup, an ideal incremental learner should

have the following properties:

i It should help a trained model to learn new classes

obtained from a stream of data, while preserving the

model’s knowledge of base class information.

ii At testing time, it should enable the model to consider

all the classes it has learned when the model makes a

prediction.

iii The size of the memory footprint should not grow at all,

irrespective of the number of classes seen thus far.

An existing work targeting the same problem is LwF-MC,

which is one of the baselines in [14]. In the following

sections, we use the following terminology (introduced in

[19]) at incremental step t :

Teacher model, Mt−1, i.e. the model trained with only

base classes.

Student model, Mt, i.e. the model which incrementally

learns new classes, while emulating the teacher model for

maintaining performance on base classes.

Information Preserving Penalty (IPP), i.e. the loss to

penalize the divergence between Mt−1 and Mt. Ideally,

this helps Mt to be as proficient in classifying base classes

as Mt−1.

Initialized using Mt−1, Mt is then trained to learn new

classes using a classification loss, LC . However, an IPP

is also applied to Mt so as to minimize the divergence

between the representations of Mt−1 and Mt. While LC

helps Mt to learn new classes, IPP prevents Mt from

diverging too much from Mt−1. Since Mt is already initial-

ized as Mt−1, the initial value of IPP is expected to be close

to zero. However, as Mt keeps learning new classes with

LC , it starts diverging from Mt−1, which leads the IPP to

increase. The purpose of the IPP is to prevent the divergence

of Mt from Mt−1. Once Mt is trained for a fixed number of

epochs, it is used as a teacher in the next incremental step,

using which a new student model is initialized.

In LwF-MC [14], the IPP is the knowledge distillation

loss. The knowledge distillation loss LD, in this context,

was first introduced in [12]. It captures the divergence

between the prediction vectors of Mt−1 and Mt. In an

incremental setup, when an image belonging to a new class

(In) is fed to Mt−1, the base classes which have some

resemblance in In are captured. LD enforces Mt to capture

the same base classes. Thus, LD essentially makes Mt

learn ‘what’ are the possible base classes in In, as shown

in Figure 1. Pixels that have significant influence on the

models’ prediction constitute the attention region of the

network. However, LD does not explicitly take into account

the degree of each pixel influencing the models predictions.

For example, in Figure 2, in the first row, it is seen that

at step n, even though the network focuses on an incor-

rect region while predicting ‘dial telephone’, the numerical

value of LD (0.09) is same as that when the network focuses

on the correct region in step n, in the bottom row.

We hypothesize that attention regions encode the

models’ representation more precisely. Hence, constraining

the attention regions of Mt and Mt−1 using an Attention

Distillation Loss (LD, explained in Sec. 4.1), to mini-

mize the divergence of the representations of Mt from that

of Mt−1 is more meaningful. This is because, instead

of finding which base classes are resembled in the new

data, attention maps explain ‘why’ hints of a base class are

present (as shown in Figure 1). Using these hints, LD, in an

attempt to make the attention maps of Mt−1 and Mt equiva-

lent, helps to encode some visual knowledge of base class in

Mt. We show the utility of LAD in Figure 2, where although

the model correctly predicts the image as ’dial telephone’,

the value of LD in step n increases if the attention regions

diverge too much from the region in Step 0.

We propose an approach where an Attention Distilla-

tion Loss (LAD) is applied to Mt to prevent its divergence

from Mt−1, at incremental step t. Precisely, we propose to

constrain the L1 distance between the attention maps gener-

ated by Mt−1 and Mt in order to preserve the knowledge of

base classes. The reasoning behind this strategy is described

in Sec 4.1. This is applied in addition to the distillation loss

LD and a classification loss for the student model to incre-

mentally learn new classes.

The main contribution of this work is to provide an

attention-based approach, termed as ‘Learning without

Memorizing (LwM)’, that helps a model to incrementally

learn new classes by restricting the divergence between

student and teacher model. LwM does not require any data

of the base classes when learning new classes. Different

from contemporary approaches that explore the same

problem, LwM takes into account the gradient flow infor-

mation of teacher and student models by generating atten-

tion maps using these models. It then constrains this infor-

mation to be equivalent for teacher and student models,

thus preventing the student model to diverge too much from

the teacher model. Finally, we show that LwM consis-

5139



Knowledge Distillation Loss

Attention Distillation Loss

-

-

0.09

0.82

Knowledge Distillation Loss

Attention Distillation Loss

0.09

0.15

Step 0 Step n

…

…

Sample Step 1

0.08

0.12

0.08

0.12

-

-

Figure 2: (Top) Example of a case where attention regions degrade

in later incremental steps.(Bottom) Example of a case where atten-

tion regions do not vary across incremental steps. Distillation loss

is seen to be unaffected by degrading attention regions, whereas

Attention Distillation Loss is sensitive to the attention regions

tently outperforms the state-of-the-art performance in the

iILSVRC-small [14] and iCIFAR-100 [14] datasets.

2. Related work

In object classification, Incremental learning (IL) is the

process of increasing the breadth of an object classifier,

by training it to recognize new classes, while retaining its

knowledge of the classes on which it has been trained orig-

inally. In the past couple of years, there has been consid-

erable research efforts in this field [9, 12]. Moreover, there

exist several subsets of this research problem which impose

different constraints in terms of data storage and evaluation.

We can divide existing methods based on their constraints:

Task incremental (TI) methods: In this problem, a

model trained to perform object classification on a specific

dataset is incrementally trained to classify objects in a new

dataset. A key characteristic of these experiments is that

during evaluation, the final model is tested on different

datasets (base and incrementally learned) separately. This

is known as multi-headed evaluation [4]. In such an eval-

uation, the classes belonging to two different tasks have

no chance to confuse with one another. One of the earlier

works in this category is LwF [12], where a distillation loss

is used to preserve information of the base classes. Also,

the data from base classes is used during training, while

the classifier learns new classes. A prominent work in

this area is EWC [9], where at each incremental task the

weights of the student model are set to those of their corre-

sponding teacher model, according to their importance of

network weights. Aljundi et al. present MAS [1], a tech-

nique to train the agents to learn what information should

not be forgotten. All experiments in this category use multi-

headed evaluation, which is different from the problem

setting of this paper where we use single-headed evalua-

tion, defined explicitly in [4]. Single-headed evaluation

is another evaluation method wherein the model is evalu-

ated on both base and incrementally learned classes jointly.

Multi-headed evaluation is easier than single-headed evalu-

ation, as explained in [4].

Class incremental (CI) methods: In this problem, a

model trained to perform object classification on specific

classes of a dataset is incrementally trained to classify new

unseen classes in the same dataset. Most of the existing

work exploring this problem use single-headed evaluation.

This makes the CI problem more difficult than the TI

problem because the model can confuse the new class with

a base class in the CI problem. iCaRL [14] belongs to this

category. In iCaRL [14], Rebuffi et al. propose a technique

to jointly learn feature representation and classifiers. They

also introduce a strategy to select exemplars which is used

in combination with the distillation loss to prevent catas-

trophic forgetting. In addition, a new baseline: LwF-MC

is introduced in [14], which is a class incremental version

of LwF [12]. LwF-MC uses the distillation loss to preserve

the knowledge of base classes along with a classification

loss, without storing the data of base classes and is evalu-

ated using single-headed evaluation. Another work aiming

to solve the CI problem is [4], which evaluates using both

single-headed and multi-headed evaluations and highlights

their difference. Chaudhry et al. [4] introduce metrics to

quantify forgetting and intransigence, and also propose the

Riemannian walk to incrementally learn classes.

A key factor of most incremental learning frameworks is

whether or not they allow storing the data of base classes

(i.e. classes on which the classifier is originally trained).

We can also divide existing methods based on this factor:

Methods which use base class data: Several exper-

iments have been proposed to use a small percentage of

the data of base classes while training the classifier to

learn new classes. iCaRL [14] uses the exemplars of base

classes, while incrementally learning new classes. Simi-

larly, Chaudhry et al. [4] also use a fraction of the data

of base classes. Chaudhry et al. [4] also show that this

is especially useful for alleviating intransigence, which is

a problem faced in single-headed evaluation. However,

storing data for base classes increases memory requirement

at each incremental step, which is not feasible when the

memory budget is limited.

Methods which do not use base class data: Several

TI methods described earlier (such as [1, 9] ) do not use

the information about base classes while training the clas-

sifier to learn new classes incrementally. To the best of
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Constraints Use base class data No base class data

CI methods iCaRL [14], [4], [18] LwF-MC [14], LwM

TI methods LwF [12]
IMM [10], EWC [9],

MAS [1], [2], [8]

Table 1: Categorization of recent related works in incremental

learning. We focus on the class incremental (CI) problems where

base class data is unavailable when learning new classes.

our knowledge, LwF-MC [14] is the only CI method which

needs no base class data but uses single-headed evaluation.

Table 1 presents a taxonomy of previous works in this

field. We propose a technique to solve the CI problem,

without using any base class data. We can infer from the

discussion above that LwF-MC [14] is the only existing

work which uses single-headed evaluation, and hence use

it as our baseline. We intend to use attention maps in an

incremental setup, instead of only knowledge distillation,

to transfer more comprehensive knowledge of base classes

from teacher to student model. Although in [19], enforcing

equivalence of attention maps of teacher and student models

has been explored previously for transferring knowledge

from teacher to student models, the same approach cannot

be applied to an incremental learning setting. In our incre-

mental problem setup, due to the absence of base class

data, we intend to utilize the attention region in the new

data which resembles one of the base classes. But these

regions are not prominent since the data does not belong to

any of the base classes, thus making class-specific atten-

tion maps a necessity. Class-specificity is required to

mine out base class regions in a more targeted fashion,

which is why generic attention maps such as activation-

based attention maps in [19] are not applicable as they

can not provide a class-specific explanation about relevant

patterns corresponding to the target class. We define class-

specific interpretation as how a network understands the

spatial locations of specific kinds of object. Such loca-

tions are determined by computing Grad-CAM [16] atten-

tion maps. Also, in LwM, by using class-specific atten-

tion map, we can enforce the consistency on class-specific

interpretation between teacher and student models. More-

over, our problem setup is different from knowledge distil-

lation because at incremental step t, we freeze Mt−1 while

training Mt, and do not allow Mt to access data from the

base classes, and therefore Mt−1 and Mt are trained using a

completely different set of classes. This makes the problem

more challenging as the output of Mt on feeding data from

unseen classes is the only source of base class data. This is

further explained in Sec. 4.1.

We intend to explore the CI problem by proposing to

constrain the attention maps of the teacher and student

models to be equivalent (in addition to their prediction

vectors), to improve the information preserving capability

of LwF-MC [14]. In LwF-MC and our proposed method

LwM, storing teacher models trained in previous incre-

mental steps is not allowed since it would not be feasible

to accumulate models from all the previous steps when the

memory budget is limited.

3. Background

Before we discuss LwM, it is important to introduce

distillation loss LD, which is our baseline IPP, as well as

how we generate attention maps.

3.1. Distillation loss (LD)

LD was first introduced in [12] for incremental learning.

It is defined as follows:

LD(y, ŷ) = �

N
X

i=1

y
0

i. log(ŷ
0

i), (1)

where y and ŷ are prediction vectors (composed of prob-

ability scores) of Mt−1 and Mt for base classes at incre-

mental step t, each of length N (assuming that Mt−1

is trained on N base classes). Also, y
0

i = σ(yi) and

ŷ
0

i = σ(ŷi) (where σ(·) is sigmoid activation). This defi-

nition of LD is consistent with that defined in LwF-MC

[14]. Essentially, LD enforces the base class prediction of

Mt and Mt−1 to be equivalent, when an image belonging

to one of the incrementally added classes is fed to each

of them. Moreover, we believe that there exist common

visual semantics or patterns in both base and new class

data. Therefore, it makes sense to encourage the feature

responses of Mt and Mt−1 to be equivalent, when new class

data is given as input. This helps to retain the old class

knowledge (in terms of the common visual semantics).

3.2. Generating attention maps

We describe the technique employed to generate atten-

tion maps. In our experiments we use the Grad-CAM [16]

for this task. In [15], Grad-CAM maps have been shown

to encode information to learn new classes, although not in

an incremental setup. For using the Grad-CAM, the image

is first forwarded to the model, obtaining a raw score for

every class. Following this, the gradient of score yc for a

desired class c is computed with respect to each convolu-

tional feature map Ak. For each Ak, global average pooling

is performed to obtain the neuron importance αk of Ak. All

the Ak weighted by αk are passed through a ReLU activa-

tion function to obtain a final attention map for class c.

More precisely, let αk = ∂yc

∂Ak

. Let α =

[α1,α2, . . . ,αK ] and A = [A1, A2, . . . , AK ], where K is

the number of convolutional feature maps in the layer using

which attention map is to be generated. The attention map

Q can be defined as
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Figure 3: At incremental step t, LwM accepts images belonging

to one of the new classes. Three losses (LC , LD and LAD) are

applied to Mt while Mt−1 remains frozen. The new classes are

depicted in the lower part of the classifier of Mt.

Q = ReLU(αTA) (2)

4. Proposed approach

We introduce an information preserving penalty (LAD)

based on attention maps. We combine LAD with distillation

loss LD and a classification loss LC to construct LwM, an

approach which encourages attention maps of teacher and

student to be similar. Our LwM framework is shown in

Figure 3. The loss function of LwM is defined below:

LLwM = LC + βLD + γLAD (3)

Here β, γ are the weights used for LD, LAD respectively. In

comparison to LwM, LwF-MC [14] only uses a classifica-

tion loss combined with distillation loss and is our baseline.

4.1. Attention distillation loss (LAD)

At incremental step t, we define student model Mt,

initialized using a teacher model Mt−1. We assume Mt is

proficient in classifying N base classes. Mt is required to

recognize N + k classes, where k is the number of previ-

ously unseen classes added incrementally. Hence, the sizes

of the prediction vectors of Mt−1 and Mt are N and N + k

respectively. For any given input image i, we denote the

vectorized attention maps generated by Mt−1 and Mt, for

class c as Q
i,c
t−1

and Q
i,c
t , respectively. We generate these

maps using Grad-CAM [16], as explained above.

Q
i,c
t−1

= vector(Grad-CAM(i,Mt−1, c)) (4)

Q
i,c
t = vector(Grad-CAM(i,Mt, c)) (5)

We assume that the lengths of each vectorized attention map

is l. In [19], it has been mentioned that normalizing the

attention map by dividing it by the L2 norm of the map is

an important step for student training. Hence we perform

this step while computing LAD. During training of Mt, an

image belonging to one of the new classes to be learned

(denoted as In), is given as input to both Mt−1 and Mt.

Let b be the top base class predicted by Mt (i.e. base class

having the highest score) for In. For this input, LAD is

defined as the sum of element wise L1 difference of the

normalized, vectorized attention map:

LAD =

l
X

j=1

k
Q

In,b
t−1,j

kQIn,b
t−1

k2
�

Q
In,b
t,j

kQIn,b
t k2

k1 (6)

From the explanation above, we know that for training Mt,

Mt−1 is fed with the data from the classes that it has not

seen before (In). Essentially, the attention regions gener-

ated by Mt−1 for In, represent the regions in the image

which resemble the base classes. If Mt and Mt−1 have

equivalent knowledge of base classes, they should have

a similar response to these regions, and therefore Q
In,b
t

should be similar to Q
In,b
t−1

. This implies that the attention

outputs of Mt−1 are the only traces of base data, which

guides Mt’s knowledge of base classes. We use the L1

distance between Q
In,b
t−1

and Q
In,b
t as a penalty to enforce

their similarity. We experimented with both L1 and L2

distance in this context. However, as we obtained better

results with L1 distance on held-out data, we chose L1 over

L2 distance.

According to Eq. 2, attention maps encode gradient

of the score of class b, yb with respect to convolutional

feature maps A. This information is not explicitly captured

by the distribution of class scores (used by LD). By

encouraging Q
In,b
t−1

and Q
In,b
t to be equivalent, we are

restricting the divergence between

"

∂yb

∂A

#

t−1

and

"

∂yb

∂A

#

t

.

This ensures the consistency on class-specific interpretation

between teacher and student. We know that every feature

map in A encodes a visual feature. While there can be

several factors that can cause changes to yb, LAD forces

the changes with respect to a specific visual feature encap-

sulated in A to be equivalent for Mt and Mt−1. Hence, we

hypothesize that combining LD, which captures the score

distribution of the model for base classes (y, ŷ), with a loss

that captures the gradient flow information of the model,

would result in a more wholesome information preserving

penalty. Moreover, the attention maps are a 2D manifes-

tation of the prediction vectors (y, ŷ), which means that

they capture more spatial information than these vectors,

and hence it is more advantageous to use attention maps

than using only prediction vectors.

5. Experiments

We first explain our baseline, which is LwF-MC [14].

Following that, we provide information about the datasets
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Figure 4: The example attention maps generated by the following experiment IDs (Table 3): C, LwF-MC, and LwM. All the input images

belong to the initial base classes. The column M0 represents the corresponding base-class attention maps generated by the initial teacher

model, and the columns step 1∼4 represent the corresponding base-class attention maps generated in four different incremental steps in

temporal order. These examples show that the attention maps generated by LwM are closer to those in the column M0 over time compared

with C and LwF-MC, which demonstrates the efficacy of LAD in LwM.

Dataset iILSVRC iCIFAR CUB200 Caltech

-small -100 -2011 -101

# classes 100 100 100 100

# training images 500 500 80% of data 80% of data

# testing images 100 100 20% of data 20% of data

# classes/batch 10 10, 20, 50 10 10

eval. metric top-5 top-1 top-1 top-1

Table 2: The statistics of the datasets used in our experiments, in

accordance with [14]. Additionally, we also perform experiments

on the CUB-200-2011 [17] dataset.

used in our experiments. After that, we describe the iterative

protocol to perform classification at every incremental step.

We also provide implementation details including architec-

tural information.

5.1. Baseline

As our baseline is LwF-MC [14], we firstly implement

its objective function, which is a sum of a classification loss

and distillation loss (LC + LD). In all our experiments, we

use a cross entropy loss for LC to be consistent with [14].

However, it should be highlighted that the official imple-

mentation of LD in LwF-MC by [14] is different from the

definition of LD in [12]. As LwF-MC (but not LwF) is our

baseline, we use iCaRL’s implementation of LwF-MC in

our work. LwF cannot handle CI problems where no base

class training data is available (according to Table 1), which

is the reason why we choose LwF-MC as the baseline and

iCaRL’s implementation.

5.2. Datasets

We use two datasets used in LwF-MC [14] for our exper-

iments. Additionally, we also perform experiments on

Caltech-101 [5] as well as CUBS-200-2011 [17] datasets.

The details for the datasets are provided in Table 2. These

datasets are constructed by randomly selecting a batch of

classes at every incremental step. In both datasets, the

classes belonging to different batches are disjoint. For a

fair comparison, the data preparation for all the datsets and

evaluation strategy are the same as that for LwF-MC [14].

5.3. Experimental protocol

We now describe the protocol using which we iteratively

train Mt, so that it preserves the knowledge of the base

classes while incrementally learning new classes.

Initialization: Before the first incremental step (t = 1),

we train a teacher model M0 on 10 base classes, using a

classification loss for 10 epochs. The classification loss is a

cross entropy loss LC . Following this, for t = 1 to t = k

we initialize student Mt using Mt−1 as its teacher, and feed

data from a new batch of images that is to be incrementally

learned, to both of these models. Here k is the number of

incremental steps.

Applying IPP and classification loss to student model:

Given the data from new classes as inputs, we generate

the output of Mt and Mt−1 with respect to base class

having the highest score. These outputs can either be class-

specific attention maps (required for computing LAD) or

class-specific scores (required for computing LD). Using

these outputs we compute an IPP which can either be LAD

or LD. In addition, we apply a classification loss to Mt
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Experiment ID\loss LC LD LAD

Finetuning 3 7 7

LwF-MC [14] 3 3 7

LwM 3 3 3

Table 3: Experiment configurations used in this work, identified

by their respective experiment IDs.

based on its outputs with respect to the new classes which

are to be learned incrementally. We jointly apply classifi-

cation loss and IPP to Mt and train it for 10 epochs. Once

Mt is trained, we use it as a teacher model in the next incre-

mental step, and follow the aforementioned steps iteratively,

until all the k incremental steps are completed.

5.4. Implementation details

We use the ResNet-18 [7] architecture for training

student and teacher models on the iILSVRC-small, Caltech-

101 and CUBS-200-2011 datasets, and the ResNet-34 [7]

for training models on the iCIFAR-100 dataset. This is

consistent with the networks and datasets used in [14].

We used a learning rate of 0.01. The feature maps of

the final convolutional layer are used to generate attention

maps using Grad-CAM, as these maps are highly inter-

pretable. [16]. The combinations of classification loss and

IPP, along with their experiment IDs are provided in Table

3. The experiment configurations will be referred to as their

respective experiment IDs from now on.

6. Results

Before discussing the quantitative results and advantages

of our proposed penalties, we show some qualitative results

to demonstrate the advantage of using LAD. We show that

we can retain attention regions of base classes for a longer

time when more classes are incrementally added to the clas-

sifier by using LwM as compared to LwF-MC [14]. Before

the first incremental step t = 1, we have M0 trained on 10

base classes. Now, following the protocol in Sec. 5.3, we

incrementally add 10 classes at each incremental step. At

every incremental step t, we train Mt with 3 configurations:

C, LwF-MC [14], and LwM. We use Mt to generate the

attention maps for the data from base classes (using which

M0 was trained), which it has not seen, and show the results

in Figure 4. Additionally, we also generate corresponding

attention maps using M0 (i.e. the first teacher model),

which can be considered ‘ideal’ (as target maps) as M0 was

given full access to base class data. For the Mts trained

with C, it is seen that attention regions for base classes are

quickly forgotten after every incremental step. This can

be attributed to catastrophic forgetting [9, 10]. Mt trained

with LwF-MC [14] have slightly better attention preserving

ability but as the number of incremental steps increases, the

attention regions diverge from the ‘ideal’ attention regions.

# Classes FT LwM (ours) FT LwM (ours)

Dataset Caltech-101 CUBS-200-2011

10 (base) 97.78 97.78 99.17 99.17

20 59.55 75.34 57.92 78.75

30 52.65 71.78 41.11 70.83

40 44.51 67.49 35.42 58.54

50 35.52 59.79 32.33 53.67

60 31.18 56.62 29.03 47.92

70 32.99 54.62 22.14 43.79

80 27.45 48.71 22.27 43.83

90 28.55 46.21 20.52 39.85

100 28.26 48.42 17.4 34.52

Table 4: Results obtained on Caltech-101 [5] and CUBS-200-2011

[17]. Here FT refers to finetuning. The first step refers to the

training of first teacher model using 10 classes.

# Classes / Config LC + LAD LwM (ours)

20 84.95 99.55

30 55.82 99.18

40 43.46 98.72

50 36.36 98.10

60 26.78 97.22

Table 5: Top-5 accuracy comparison of LC + LAD and LwM.

The LwM accuracies are in accordance to that of Figure 5. Not

designed to be used alone, LAD is used to ensure the consistency

on class-specific interpretation between teacher and student, by

enforcing the gradients of class-specific score w.r.t. feature maps

to be equivalent.

Interestingly, the attention maps generated by Mt trained

with LwM configuration retain the attention regions for

base classes for all incremental steps shown in Figure 4,

and are most similar to the target attention maps. These

examples support that LwM delays forgetting of base class

knowledge.

We now present the quantitative results of the following

configurations: C , LwF-MC [14] and LwM. To show the

efficacy of LwM across, we evaluate these configurations

on multiple datasets. The results on the iILSVRC-small

and iCIFAR-100 datasets are presented in Figure 5. For

the iILSVRC-small dataset, the performance of LwM is

better than that of the baseline LwF-MC [14]. LwM outper-

forms the baseline by a margin of more than 30% when the

number of classes is 40 or more. Especially for 100 classes,

LwM achieves an improvement of more than 50% over

the baseline LwF-MC [14]. In addition, LwM outperforms

iCaRL [14], at every incremental step, even though iCaRL

has the unfair advantage of storing the exemplars of base

classes while training the student model for the iILSVRC-

small dataset.

To be consistent with the LwF-MC experiments in [14],

we perform experiments by constructing the iCIFAR-100
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Figure 5: Performance comparison between our method, LwM, and the baselines. LwM outperforms LwF-MC [14] and “using only

classification loss with finetuning” on the iILSVRC-small and iCIFAR-100 datasets [14]. LwM even outperforms iCaRL [14] on the

iILSVRC-small dataset given that iCaRL has the unfair advantage of accessing the base-class data.

datasets by using batches of 10, 20, and 50 classes at

each incremental step. The results are provided in Figure

5. It can be seen that LwM outperforms LwF-MC for all

three sizes of incremental batches in iCIFAR-100 dataset.

Hence, we conclude that LwM consistently outperforms

LwF-MC [14] in iILSVRC-small and iCIFAR-100 datasets.

Additionally, we also perform these experiments using the

Caltech-101 and CUBS-200-2011 dataset [5] by adding a

batch of 10 classes at every incremental step and compare

it with finetuning. The results for these two datasets are

shown in Table 4.In Table 5, we also provide the results

obtained using only a combination of LC and LAD, on a

few incremental steps in iILSVRC-small dataset.

The advantage of incrementally adding every loss on top

of LC is demonstrated in Figure 5, where we show that the

performance with only C is poor due to the catastrophic

forgetting [9, 10]. We achieve some improvement when LD

is added as an IPP in LwF-MC. The performance further

improves with the addition of LAD in LwM configuration.

7. Conclusion and future work

We explored the IL problem for the task of object clas-

sification, and proposed a technique: LwM by combining

LD with LAD, for utilizing attention maps to transfer the

knowledge of base classes from the teacher to student

model, without requiring any data of base classes during

training. This technique outperforms the baseline in all

the scenarios that we investigate. Regarding future appli-

cations, LwM can be used in many real world scenarios.

While we explore IL problem for classification in this

work, we believe that the proposed approach can also be

extended for segmentation. Incremental segmentation is a

challenging problem due to the absence of abundant ground

truth maps. The importance of incremental segmentation

has already been underscored in [3]. As visual attention is

also meaningful for segmentation (as shown in [11]), we

intend to extend LwM to incremental segmentation in the

near future.
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