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Abstract

The most recent trend in estimating the 6D pose of rigid

objects has been to train deep networks to either directly

regress the pose from the image or to predict the 2D loca-

tions of 3D keypoints, from which the pose can be obtained

using a PnP algorithm. In both cases, the object is treated

as a global entity, and a single pose estimate is computed.

As a consequence, the resulting techniques can be vulnera-

ble to large occlusions.

In this paper, we introduce a segmentation-driven 6D

pose estimation framework where each visible part of the

objects contributes a local pose prediction in the form of

2D keypoint locations. We then use a predicted measure of

confidence to combine these pose candidates into a robust

set of 3D-to-2D correspondences, from which a reliable

pose estimate can be obtained. We outperform the state-of-

the-art on the challenging Occluded-LINEMOD and YCB-

Video datasets, which is evidence that our approach deals

well with multiple poorly-textured objects occluding each

other. Furthermore, it relies on a simple enough architec-

ture to achieve real-time performance.

1. Introduction

Image-based 6D object pose estimation is crucial in

many real-world applications, such as augmented reality or

robot manipulation. Traditionally, it has been handled by

establishing correspondences between the object’s known

3D model and 2D pixel locations, followed by using the

Perspective-n-Point (PnP) algorithm to compute the 6 pose

parameters [19, 38, 43]. While very robust when the object

is well textured, this approach can fail when it is featureless

or when the scene is cluttered with multiple objects occlud-

ing each other.

Recent work has therefore focused on overcoming these

difficulties, typically using deep networks to either regress

directly from image to 6D pose [17, 45] or to detect key-

points associated to the object [35, 39], which can then be

used to perform PnP. In both cases, however, the object is

(a) (b)

(c) (d)

Figure 1: Global pose estimation vs our segmentation-driven

approach. (a) The drill’s bounding box overlaps another occlud-

ing it. (b) As a result, the globally-estimated pose [45] is wrong.

(c) In our approach, only image patches labeled as corresponding

to the drill contribute to the pose estimate. (d) It is now correct.

still treated as a global entity, which makes the algorithm

vulnerable to large occlusions. Fig. 1 depicts a such a case:

The bounding box of an occluded drill overlaps other ob-

jects that provide irrelevant information to the pose esti-

mator and thereby degrade its performance. Because this

happens often, many of these recent methods require an ad-

ditional post-processing step to refine the pose [23].

In this paper, we show that more robust pose estimates

can be obtained by combining multiple local predictions in-

stead of a single global one. To this end, we introduce a

segmentation-driven 6D pose estimation network in which

each visible object patch contributes a pose estimate for the

object it belongs to in the form of the predicted 2D projec-

tions of predefined 3D keypoints. Using confidence values

also predicted by our network, we then combine the most

reliable 2D projections for each 3D keypoint, which yields

a robust set of 3D-to-2D correspondences. We then use a

RANSAC-based PnP strategy to infer a single reliable pose

per object.

Reasoning in terms of local patches not only makes our
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approach robust to occlusions, but also yields a rough seg-

mentation of each object in the scene. In other words, un-

like other methods that divorce object detection from pose

estimation [35, 17, 45], we perform both jointly while still

relying on a simple enough architecture for real-time per-

formance.

In short, our contribution is a simple but effective

segmentation-driven network that produces accurate 6D ob-

ject pose estimates without the need for post-processing,

even when there are multiple poorly-textured objects oc-

cluding each other. It combines segmentation and ensem-

ble learning in an effective and efficient architecture. We

will show that it outperforms the state-of-the-art methods

on standard benchmarks, such as the OccludedLINEMOD

and YCB-Video datasets.

2. Related Work

In this paper, we focus on 6D object pose estimation

from RGB images, without access to a depth map, unlike

in RGBD-based methods [12, 2, 3, 28]. The classical ap-

proach to performing this task involves extracting local fea-

tures from the input image, matching them with those of the

model, and then running a PnP algorithm on the resulting

3D-to-2D correspondences. Over the years, much effort has

been invested in designing local feature descriptors that are

invariant to various transformations [27, 40, 41, 42, 34, 32],

so that they can be matched more robustly [29, 30, 14].

In parallel, increasingly effective PnP methods have been

developed to handle noise and mismatches [20, 46, 22, 8].

As a consequence, when dealing with well-textured objects,

feature-based pose estimation is now fast and robust, even in

the presence of mild occlusions. However, it typically strug-

gles with heavily-occluded and poorly-textured objects.

In the past, textureless objects have often been handled

by template-matching [11, 12]. Image edges then become

the dominant information source [21, 26], and researchers

have developed strategies based on different distances, such

as the Hausdorff [15] and the Chamfer [25, 13] ones, to

match the 3D model against the input image. While ef-

fective for poorly-textured objects, these techniques often

fail in the presence of mild occlusions and cluttered back-

ground.

As in many computer vision areas, the modern take on

6D object pose estimation involves deep neural networks.

Two main trends have emerged: Either regressing from the

image directly to the 6D pose [17, 45] or predicting 2D key-

point locations in the image [35, 39], from which the pose

can be obtained via PnP. Both approaches treat the object

as a global entity and produce a single pose estimate. This

makes them vulnerable to occlusions because, when consid-

ering object bounding boxes as they all do, signal coming

from other objects or from the background will contaminate

the prediction. While, in [35, 45], this is addressed by seg-

menting the object of interest, the resulting algorithms still

provide a single, global pose estimate, that can be unreli-

able, as illustrated in Fig. 1 and demonstrated in the results

section. As a consequence, these methods typically invoke

an additional pose refinement step [23].

To the best of our knowledge, the work of [16] and [31]

constitute the only recent attempts at going beyond a global

prediction. While the method in [16] also relies on segmen-

tation via a state-of-the-art semantic segmentation network,

its use of regression to 3D object coordinates, which reside

in a very large space, yields disappointing performance. By

contrast, the technique in [31] predicts multiple keypoint lo-

cation heatmaps from local patches and assembles them to

form an input to a PnP algorithm. The employed patches,

however, remain relatively large, thus still potentially con-

taining irrelevant information. Furthermore, at runtime,

this approach relies on a computationally-expensive sliding-

window strategy that is ill-adapted to real-time processing.

Here, we propose to achieve robustness by combining mul-

tiple local pose predictions in an ensemble manner and in

real time, without post-processing. In the results section,

we will show that this outperforms the state-of-the-art ap-

proaches [17, 45, 35, 39, 16, 31].

Note that human pose estimation [10, 44, 33] is also re-

lated to global 6D object pose prediction techniques. By

targeting non-rigid objects, however, these methods require

the more global information extracted from larger recep-

tive fields and are inevitably more sensitive to occlusions.

By contrast, dealing with rigid objects allows us to rely on

local predictions that can be robustly combined, and local

visible object parts can provide reliable predictions for all

keypoints. We show that assembling these local predictions

yields robust pose estimates, even when observing multiple

objects that occlude each other.

3. Approach

Given an input RGB image, our goal is to simultane-

ously detect objects and estimate their 6D pose, in terms

of 3 rotations and 3 translations. We assume the objects to

be rigid and their 3D model to be available. As in [35, 39],

we design a CNN architecture to regress the 2D projections

of some predefined 3D points, such as the 8 corners of the

objects’ bounding boxes. However, unlike these methods

whose predictions are global for each object and therefore

affected by occlusions, we make individual image patches

predict both to which object they belong and where the 2D

projections are. We then combine the predictions of all

patches assigned to the same object for robust PnP-based

pose estimation.

Fig. 2 depicts the corresponding workflow. In the re-

mainder of this section, we first introduce our two-stream

network architecture. We then describe each stream indi-

vidually and finally our inference strategy.
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Figure 2: Overall workflow of our method. Our architecture has two streams: One for object segmentation and the other to regress 2D

keypoint locations. These two streams share a common encoder, but the decoders are separate. Each one produces a tensor of a spatial

resolution that defines an S×S grid over the image. The segmentation stream predicts the label of the object observed at each grid location.

The regression stream predicts the 2D keypoint locations for that object.

3.1. Network Architecture

In essence, we aim to jointly perform segmentation by

assigning image patches to objects and 2D coordinate re-

gression of keypoints belonging to these objects, as shown

in Fig. 3. To this end, we design the two-stream architecture

depicted by Fig. 2, with one stream for each task. It has an

encoder-decoder structure, with a common encoder for both

streams and two separate decoders.

For the encoder, we use the Darknet-53 architecture of

YOLOv3 [37] that has proven highly effective and efficient

for objection detection. For the decoders, we designed net-

works that output 3D tensors of spatial resolution S × S

and feature dimensions Dseg and Dreg , respectively. This

amounts to superposing an S × S grid on the image and

computing a feature vector of dimension Dseg or Dreg per

grid element. The spatial resolution of that grid controls the

size of the image patches that vote for the object label and

specific keypoint projections. A high resolution yields fine

segmentation masks and many votes. However, it comes at

a higher computational cost, which may be unnecessary for

our purposes. Therefore, instead of matching the 5 down-

sampling layers of the Darknet-53 encoder with 5 upsam-

pling layers, we only use 2 such layers, with a standard

stride of 2. The same architecture, albeit with a different

output feature size, is used for both decoder streams.

To train our model end-to-end, we define a loss function

L = Lseg + Lreg , (1)

which combines a segmentation and a regression term that

we use to score the output of each stream. We now turn to

their individual descriptions.

3.2. Segmentation Stream

The role of the segmentation stream is to assign a label

to each cell of the virtual S × S grid superposed on the im-

age, as shown in Fig. 3(a). More precisely, given K object

classes, this translates into outputting a vector of dimension

Dseg = K + 1 at each spatial location, with an additional

dimension to account for the background.

During training, we have access to both the 3D object

models and their ground-truth pose. We can therefore gen-

erate the ground-truth semantic labels by projecting the 3D

models in the images while taking into account the depth

of each object to handle occlusions. In practice, the images

typically contain many more background regions than ob-

ject ones. Therefore, we take the loss Lseg of Eq. 1 to be

the Focal Loss of [24], a dynamically weighted version of

the cross-entropy. Furthermore, we rely on the median fre-

quency balancing technique of [6, 1] to weigh the different

samples. We do this according to the pixel-wise class fre-

quencies rather than the global class frequencies to account

for the fact that objects have different sizes.

3.3. Regression Stream

The purpose of the regression stream is to predict the

2D projections of predefined 3D keypoints associated to the

3D object models. Following standard practice [35, 9, 36],

we typically take these keypoints to be the 8 corners of the

model bounding boxes.

Recall that the output of the regression stream is a 3D

tensor of size S × S × Dreg . Let N be the number of 3D

keypoints per object whose projection we want to predict.

When using bounding box corners, N = 8. We take Dreg
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(a) Object segmentation. (b) Keypoint 2D locations.

Figure 3: Outputs of our two-stream network. (a) The seg-

mentation stream assigns a label to each cell of the virtual grid

superposed on the image. (b) In the regression stream, each grid

cell predicts the 2D keypoint locations of the object it belongs to.

Here, we take the 8 bounding box corners to be our keypoints.

to be 3N to represent at each spatial location the N pairs

of 2D projection values along with a confidence value for

each.

In practice, we do not predict directly the keypoints’ 2D

coordinates. Instead, for each one, we predict an offset vec-

tor with respect to the center of the corresponding grid cell,

as illustrated by Fig. 3(b). That is, let c be the 2D location

of a grid cell center. For the ith keypoint, we seek to predict

an offset hi(c), such that the resulting location c+hi(c) is

close to the ground-truth 2D location gi. During training,

this is expressed by the residual

∆i(c) = c+ hi(c)− gi , (2)

and by defining the loss function

Lpos =
∑

c∈M

N
∑

i=1

‖∆i(c)‖1 , (3)

where M is the foreground segmentation mask, and ‖ · ‖1
denotes the L1 loss function, which is less sensitive to out-

liers than the L2 loss. Only accounting for the keypoints

that fall within the segmentation mask M focuses the com-

putation on image regions that truly belong to objects.

As mentioned above, the regression stream also outputs

a confidence value si(c) for each predicted keypoint, which

is obtained via a sigmoid function on the network output.

These confidence values should reflect the proximity of the

predicted 2D projections to the ground truth. To encourage

this, we define a second loss term

Lconf =
∑

c∈M

N
∑

i=1

∥

∥si(c)− exp(−τ‖∆i(c)‖2)
∥

∥

1
, (4)

where τ is a modulating factor. We then take the regression

loss term of Eq. 1 to be

Lreg = βLpos + γLconf , (5)

(a) (b)

(c) (d)

Figure 4: Combining pose candidates. (a) Grid cells predicted to

belong to the cup are overlaid on the image. (b) Each one predicts

2D locations for the corresponding keypoints, shown as green dots.

(c) For each 3D keypoint, the n = 10 2D locations about which the

network is most confident are selected. (d) Running a RANSAC-

based PnP on these yields an accurate pose estimate, as evidenced

by the correctly drawn outline.

where β and γ modulate the influence of the two terms.

Note that because the two terms in Eq. 5 focus on the

regions that are within the segmentation mask M , their gra-

dients are also backpropagated to these regions only. As

in the segmentation stream, to account for pixel-wise class

imbalance, we weigh the regression loss term for different

objects according to the pixel-wise class frequencies in the

training set.

3.4. Inference Strategy

At test time, given a query image, our network returns,

for each foreground cell in the S×S grid of Section 3.1, an

object class and a set of predicted 2D locations for the pro-

jection of the N 3D keypoints. As we perform class-based

segmentation instead of instance-based segmentation, there

might be ambiguities if two objects of the same class are

present in the scene. To avoid that, we leverage the fact that

the predicted 2D keypoint locations tend to cluster accord-

ing to the objects they correspond and use a simple pixel

distance threshold to identify such clusters.

For each cluster, that is, for each object, we then exploit

the confidence scores predicted by the network to estab-

lish 2D-to-3D correspondences between the image and the

object’s 3D model. The simplest way of doing so would
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ADD-0.1d REP-5px

PoseCNN Heatmaps Ours PoseCNN BB8 Tekin iPose Heatmaps Ours

Ape 9.6 16.5 12.1 34.6 28.5 7.0 24.2 64.7 59.1

Can 45.2 42.5 39.9 15.1 1.2 11.2 30.2 53.0 59.8

Cat 0.9 2.8 8.2 10.4 9.6 3.6 12.3 47.9 46.9

Driller 41.4 47.1 45.2 7.4 0 1.4 - 35.1 59.0

Duck 19.6 11.0 17.2 31.8 6.8 5.1 12.1 36.1 42.6

Eggbox∗ 22.0 24.7 22.1 1.9 - - - 10.3 11.9

Glue∗ 38.5 39.5 35.8 13.8 4.7 6.5 25.9 44.9 16.5

Holepun. 22.1 21.9 36.0 23.1 2.4 8.3 20.6 52.9 63.6

Average 24.9 25.8 27.0 17.2 7.6 6.2 20.8 43.1 44.9

Table 1: Comparison with the state of the art on Occluded-LINEMOD. We compare our results with those of PoseCNN [45], BB8 [35],

Tekin [39], iPose [16], and Heatmaps [31]. The results missing from the original papers are denoted as “-”.

PoseCNN BB8 Tekin Heatmaps iPose Ours

FPS 4 3 50 4 - 22

Table 2: Runtime comparisons on Occluded-LINEMOD. All

methods run on a modern Nvidia GPU.

NF HC B-2 B-10 Oracle

Ape 37.8 58.2 58.2 59.1 84.0

Can 53.4 58.7 58.5 59.8 89.0

Cat 42.6 46.1 47.4 46.9 60.6

Driller 52.5 56.8 59.4 59.0 90.3

Duck 40.4 42.8 42.4 42.6 55.6

Eggbox∗ 12.8 11.2 12.1 11.9 10.9

Glue∗ 14.7 15.8 15.1 16.5 41.0

Holepun. 58.4 62.2 63.1 63.6 89.3

Average 39.1 44.0 44.5 44.9 65.1

FPS 26 26 25 22 -

Table 3: Accuracy (REP-5px) of different fusion strategies on

Occluded-LINEMOD. We compare a No-Fusion (NF) scheme

with one that relies on the Highest-Confidence predictions, and

with strategies relying on performing RANSAC on the n most

confident predictions (B-n). Oracle consists of choosing the best

2D location using the ground-truth one, and is reported to indicate

the potential for improvement of our approach. In the bottom row,

we also report the average runtime of these different strategies.

be to use RANSAC on all the predictions. This, however,

would significantly slow down our approach. Instead, we

rely on the n most confident 2D predictions for each 3D

keypoint. In practice, we found n = 10 to yield a good

balance between speed and accuracy. Given these filtered

2D-to-3D correspondences, we obtain the 6D pose of each

object using the RANSAC-based version of the EPnP algo-

rithm of [20]. Fig. 4 illustrates this procedure.

4. Experiments

We now evaluate our segmentation-driven multi-object

6D pose estimation method on the challenging Occluded-

LINEMOD [18] and YCB-Video [45] datasets, which, un-

like LINEMOD [12], contain 6D pose annotations for each

object appearing in all images.

Metrics. We report the commonly-used 2D reprojection

(REP) error [3]. It encodes the average distance between

the 2D reprojection of the 3D model points obtained us-

ing the predicted pose and those obtained with the ground-

truth one. Furthermore, we also report the pose error in

3D space [12], which corresponds to the average distance

between the 3D points transformed using the predicted

pose and those obtained with the ground-truth one. As

in [23, 45], we will refer to it as ADD. Since many ob-

jects in the datasets are symmetric, we use the symmetric

version of these two metrics and report their REP-5px and

ADD-0.1d values. They assume the predicted pose to be

correct if the REP is below a 5 pixel threshold and the ADD

below 10% of the model diameter, respectively. Below, we

denote the objects that are considered to be symmetric by a
∗ superscript.

Implementation Details. As in [37], we scale the input

image to a 608 × 608 resolution for both training and test-

ing. Furthermore, when regressing the 2D reprojections, we

normalize the horizontal and vertical positions to the range

[0, 10]. We use the same normalization procedure when es-

timating the confidences.

We train the network for 300 epochs on Occluded-

LINEMOD and 30 epochs on YCB-Video. In both cases,

the initial learning rate is set to 1e-3, and is divided by 10

after 50%, 75%, and 90% of the total number of epochs.

We use SGD as our optimizer with a momentum of 0.9

and a weight decay of 5e-4. Each training batch con-

tains 8 images, and we have employed the usual data aug-

mentation techniques, such as random luminance, Gaus-
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ADD-0.1d REP-5px

Mask R-CNN CPM [45] Ours Mask R-CNN CPM [45] [35] [39] Ours

Average 11.8 12.7 24.9 27.0 22.4 22.9 17.2 7.6 6.2 44.9

Table 4: Comparison with human pose estimation methods on Occluded-LINEMOD. We modified two state-of-the-art human pose

estimation methods, Mask R-CNN [10] and CPM [44], to output bounding box corner locations. While both Mask R-CNN and CPM

perform slightly better than other global-inference methods, our local approach yields much more accurate predictions.

sian noise, translation and scaling. We have also used

the random erasing technique of [47] for better occlu-

sion handling. Our source code is publicly available at

https://github.com/cvlab-epfl/segmentation-driven-pose.

4.1. Evaluation on Occluded­LINEMOD

The Occluded-LINEMOD dataset [18] was compiled by

annotating the pose of all the objects in a subset of the raw

LINEMOD dataset [12]. This subset depicts 8 different ob-

jects in 1214 images. Although depth information is also

provided, we only exploit the RGB images. The Occluded-

LINEMOD images, as the LINEMOD ones, depict a central

object surrounded by non-central ones. The standard proto-

col consists of only evaluating on the non-central objects.

To create training data for our model, we follow the same

procedure as in [23, 39]. We use the mask inferred from the

ground-truth pose to segment the central object in each im-

age, since, as mentioned above, it will not be used for eval-

uation. We then generate synthetic images by inpainting be-

tween 3 and 8 objects on random PASCAL VOC images [7].

These objects are placed at random locations, orientations,

and scales. This procedure still enables us to recover the oc-

clusion state of each object and generate the corresponding

segmentation mask. By using the central objects from any

of the raw LINEMOD images, provided that it is one of the

8 objects used in Occluded-LINEMOD, we generated 20k

training samples.

4.1.1 Comparing against the State of the Art

We compare our method with the state-of-the-art ones

of [45] (PoseCNN), [35] (BB8), and [39] (Tekin), which all

produce a single global pose estimate. Furthermore, we also

report the results of the recent work of [16] (iPose), and [31]

(Heatmaps), which combines the predictions of multiple,

relatively large patches, but relies on an expensive sliding-

window strategy. Note that [31] also provides results ob-

tained with the Feature Mapping technique [36]. However,

most methods, including ours, do not use this technique,

and for a fair comparison, we therefore report the results of

all methods, including that of [31], without it.

We report our results in Table 1 and provide the runtimes

of the methods in Table 2. Our method outperforms the

global inference ones [45, 35, 39] by a large margin. It also

outperforms Heatmaps, albeit by a smaller one. Further-

more, thanks to our simple architecture and one-shot infer-

ence strategy, our method runs more than 5 times faster than

Heatmaps. Our approach takes 30ms per-image for segmen-

tation and 2D reprojection estimation, and 3-4ms per object

for fusion. With 5 objects per image on average, this yields

a runtime of about 50ms. Fig. 5 depicts some of our results.

Note their accuracy even in the presence of large occlusions.

4.1.2 Comparison of Different Fusion Strategies

As shown in Fig. 4, not all local predictions of the 2D key-

point locations are accurate. Therefore, the fusion strategy

based on the predicted confidence values that we described

in Section 3.4 is important to select the right ones. Here, we

evaluate its impact on the final pose estimate. To this end,

we report the results obtained by taking the 2D location with

highest confidence (HC) for each 3D keypoint and those ob-

tained with different values n in our n most-confident selec-

tion strategy. We refer to this as B-n for a particular value n.

Note that we then use RANSAC on the selected 2D-to-3D

correspondences.

In Table 3, we compare the results of these different

strategies with a fusion-free method that always uses the 2D

reprojections predicted by the center grid, which we refer

to as No-Fusion (NF). These results evidence that all fusion

schemes outperform the No-Fusion one. We also report the

Oracle results obtained by selecting the best predicted 2D

location for each 3D keypoint using the ground truth 2D

reprojections. This indicates that our approach could fur-

ther benefit from improving the confidence predictions or

designing a better fusion scheme.

4.1.3 Comparison with Human Pose Methods

Our method enables us to infer keypoints’ locations of rigid

objects from local visible object regions and does not re-

quire the more global information extracted from larger re-

ceptive fields that are more sensitive to occlusions. To fur-

ther back up this claim, we compare our approach to two

state-of-the-art human pose estimation methods, Mask R-

CNN [10] and Convolutional Pose Machines (CPM) [44],

which target non-rigid objects, i.e. human bodies. By con-

trast, dealing with rigid objects allows us to rely on local

predictions that can be robustly combined. Specifically,

we modified the publicly available code of Mask R-CNN
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Figure 5: Occluded-LINEMOD results. In each column, we show, from top to bottom: the foreground segmentation mask, all 2D

reprojection candidates, the selected 2D reprojections, and the final pose results. Our method generates accurate pose estimates, even in

the presence of large occlusions. Furthermore, it can process multiple objects in real time.

Figure 6: Comparison to PoseCNN [45] on YCB-Video. (Top) PoseCNN and (Bottom) Our method. This demonstrates the benefits of

reasoning about local object parts instead of globally, particularly in the presence of large occlusions.
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ADD-0.1d REP-5px

[45] [31] Ours [45] [31] Ours

master chef can 3.6 32.9 33.0 0.1 9.9 21.0

cracker box 25.1 62.6 44.6 0.1 24.5 12.0

sugar box 40.3 44.5 75.6 7.1 47.0 56.3

tomato soup can 25.5 31.1 40.8 5.2 41.5 46.2

mustard bottle 61.9 42.0 70.6 6.4 42.3 70.3

tuna fish can 11.4 6.8 18.1 3.0 7.1 39.3

pudding box 14.5 58.4 12.2 5.1 43.9 17.3

gelatin box 12.1 42.5 59.4 15.8 62.1 83.6

potted meat can 18.9 37.6 33.3 23.1 38.5 60.7

banana 30.3 16.8 16.6 0.3 8.2 22.4

pitcher base 15.6 57.2 90.0 0 15.9 33.5

bleach cleanser 21.2 65.3 70.9 1.2 12.1 43.3

bowl∗ 12.1 25.6 30.5 4.4 16.0 13.3

mug 5.2 11.6 40.7 0.8 20.3 38.1

power drill 29.9 46.1 63.5 3.3 40.9 43.3

wood block∗ 10.7 34.3 27.7 0 2.5 2.5

scissors 2.2 0 17.1 0 0 8.8

large marker 3.4 3.2 4.8 1.4 0 13.6

large clamp∗ 28.5 10.8 25.6 0.3 0 7.6

extra large clamp∗ 19.6 29.6 8.8 0.6 0 0.6

foam brick∗ 54.5 51.7 34.7 0 52.4 13.5

Average 21.3 33.6 39.0 3.7 23.1 30.8

Table 5: Comparison with the state of the art on YCB-

Video. We compare our results with those of PoseCNN [45] and

Heatmaps [31].

and CPM to output 8 bounding box 2D corners instead of

human keypoints and trained these methods on Occluded-

LINEMOD. As shown in Table 4, while both Mask R-

CNN and CPM perform slightly better than other global-

inference methods, our local approach yields much more

accurate predictions.

4.2. Evaluation on YCB­Video

We also evaluate our method on the recent and more

challenging YCB-Video dataset [45]. It comprises 21 ob-

jects taken from the YCB dataset [5, 4], which are of diverse

sizes and with different degrees of texture. This dataset con-

tains about 130K real images from 92 video sequences, with

an additional 80K synthetically rendered images that only

contain foreground objects. It provides the pose annotations

of all the objects, as well as the corresponding segmentation

masks. The test images depict a great diversity in illumina-

tion, noise, and occlusions, which makes this dataset ex-

tremely challenging. As before, while depth information is

available, we only use the color images. Here, we gener-

ate complete synthetic images from the 80K synthetic fore-

ground ones by using the same random background proce-

dure as in Section 4.1. As before, we report results with-

out feature mapping, because neither PoseCNN nor our ap-

proach use them.

4.2.1 Comparing against the State of the Art

Fewer methods have reported results on this newer dataset.

In Table 5, we contrast our method with the two base-

lines that have. Our method clearly outperforms both

PoseCNN [45] and Heatmaps [31]. Furthermore, recall that

our approach runs more than 5 times faster than either of

them.

In Fig. 6, we compare qualitative results of PoseCNN

and ours. While our pose estimates are not as accurate on

this dataset as on Occluded-LINEMOD, they are still much

better than those of PoseCNN. Again, this demonstrates

the benefits of reasoning about local object parts instead of

globally, particularly in the presence of large occlusions.

4.3. Discussion

Although our method performs well in most cases, it still

can handle neither the most extreme occlusions nor tiny ob-

jects. In such cases, the grid we rely on becomes to rough

a representation. This, however, could be addressed by us-

ing a finer grid, or, to limit the computational burden, a grid

that is adaptively subdivided to better handle each image

region. Furthermore, as shown in Table 3, we do not yet

match the performance of an oracle that chooses the best

predicted 2D location for each 3D keypoint. This suggests

that there is room to improve the quality of the predicted

confidence score, as well as the fusion procedure itself. This

will be the topic of our future research.

5. Conclusion

We have introduced a segmentation-driven approach to

6D object pose estimation, which jointly detects multiple

objects and estimates their pose. By combining multiple

local pose estimates in a robust fashion, our approach pro-

duces accurate results without the need for a refinement

step, even in the presence of large occlusions. Our experi-

ments on two challenging datasets have shown that our ap-

proach outperforms the state of the art, and, as opposed to

the best competitors, predicts the pose of multiple objects

in real time. In the future, we will investigate the use of

other backbone architectures for the encoder and devise a

better fusion strategy to select the best predictions before

performing PnP. We will also seek to incorporate the PnP

step of our approach into the network, so as to have a com-

plete, end-to-end learning framework.
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