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Abstract

This paper presents a normalization mechanism called

Instance-Level Meta Normalization (ILM Norm) to ad-

dress a learning-to-normalize problem. ILM Norm learns

to predict the normalization parameters via both the fea-

ture feed-forward and the gradient back-propagation paths.

ILM Norm provides a meta normalization mechanism and

has several good properties. It can be easily plugged into

existing instance-level normalization schemes such as In-

stance Normalization, Layer Normalization, or Group Nor-

malization. ILM Norm normalizes each instance individu-

ally and therefore maintains high performance even when

small mini-batch is used. The experimental results show

that ILM Norm well adapts to different network architec-

tures and tasks, and it consistently improves the perfor-

mance of the original models. The code is available at

https://github.com/Gasoonjia/ILM-Norm.

1. Introduction

The mechanism of normalization plays a key role in deep

learning. Various normalization strategies have been pre-

sented to show their effectiveness in stabilizing the gradient

propagation. In practice, a normalization mechanism aims

to normalize the output of a given layer such that the vanish-

ing gradient problem can be suppressed and hence to reduce

the oscillation in the output distribution. With appropriate

normalization, a deep network would be able to improve the

training speed and the generalization capability.

A typical normalization mechanism contains two stages:

standardization and rescaling. The standardization stage

regularizes an input tensor x of feature maps with its mean

µ and variance γ by

xs =
x− µ√
γ + ǫ

, (1)

where xs is a standardized input feature tensor. At

the rescaling stage, the standardized feature tensor xs is

rescaled by a learned weight ω and a bias β to recover

the statistics of the features vanished in the standardization

Figure 1. CIFAR-10 classification error rate versus batch size

per GPU. The evaluation model is ResNet-101. The result shows

that ILM Norm applied on Group Normalization has the best error

rates in comparison with Batch Normalization [11] and the origi-

nal Group Normalization [27].

stage by

xn = ω ∗ xs + β , (2)

where xn is the final output of the entire normalization pro-

cess.

Existing normalization techniques mainly focus on

studying the standardization stage to improve the training

of deep networks under various circumstances. In contrast,

as far as we know, the rescaling stage is less investigated

and its related improvements remain unexplored. We ob-

serve that existing techniques of estimating the rescaling pa-

rameters for recovering the standardized input feature ten-

sor often merely rely on the back-propagation process with-

out considering the correlation between the standardization

stage and the rescaling stage. As a result, information might

be lost while data flow is passing through these two stages.

We argue that the lack of correlation between two stages

may lead to a performance bottleneck for existing normal-

ization techniques.

The proposed Instance-Level Meta Normalization

(ILM Norm) aims to connect the standardization stage and

the rescaling stage. The design of ILM Norm is inspired

by residual networks [6], which use the previously visited

feature maps for guiding the learning of the current feature
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Figure 2. An overview of ILM Norm, the proposed meta learning mechanism for instance-level normalization. As a meta normalization

mechanism, ILM Norm can derive its mechanism for the standardization stage and parameters for the rescaling stage from all kinds of

instance-level standardization methods. For association, ILM Norm divides the C channels of the input into groups for computing the

mean and variance per group as the key features µ and γ. An auto-encoder is then used to associate the features µ and γ of the input

feature tensor to the rescaling parameters ω and β via the outputs (Dγ and Dµ) and the original rescaling parameters (Bω and Bβ) for

rescaling the standardized feature map.

maps. The learning of weight ω and bias β in ILM Norm

follows the clue from the input feature maps of the stan-

dardization stage rather than merely relying on the back-

propagation as previous methods do. We link the input ten-

sor x of feature maps with the weight ω and the bias β in

the rescaling stage. In this way, the weight ω and the bias

β can not only be optimized better but fit to different inputs

more effectively during the forward pass as well.

ILM Norm provides a meta learning mechanism for

instance-level normalization techniques. It is handy for

combining with existing instance-level techniques such as

Instance Normalization [25] or Group Normalization [27].

ILM Norm normalizes the features within each instance in-

dividually, i.e., performing the normalization without using

the batch dimension. The advantage of this property is that,

since the normalization is independent of the batch size, the

performance is more robust to various settings of batch sizes

that are suitable for particular network architectures on dif-

ferent tasks.

An overview of the proposed meta normalization mech-

anism is shown in Figure 2. The main ideas, advantages,

and contributions of this work are summarized as follows:

1. ILM Norm provides a novel way to associate the

rescaling parameters with the input feature maps

rather than deciding the parameters merely from back-

propagation.

2. ILM Norm can be handily plugged into existing

instance-level normalization techniques such as In-

stance Normalization [25], Layer Normalization [2],

and Group Normalization [27]. We show that

ILM Norm improves existing instance-level normal-

ization techniques on various tasks.

3. The number of variables in ILM Norm is small and

does not add too much computation burden. For

ResNet-101, the total number of variables would only

increase 0.086% with ILM Norm.

4. The experimental results show that ILM Norm per-

forms stably well under various batch sizes.

5. We conduct extensive experiments on several datasets

to analyze and compare the properties of ILM Norm

with other normalization techniques.

2. Related Work

2.1. Normalization in Deep Neural Networks

Gradient-based learning may suffer from the well-known

problems of exploding gradient or vanishing gradient. It has

been demonstrated that normalization provides an effective

way to mitigate such problems.

Several popular normalization techniques have been pro-

posed with the developments of deep neural networks.
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AlexNet [16] and its follow-up models [21, 22] adopt Lo-

cal Response Normalization (LRN) [13, 18] to compute the

mean and variance of the same spatial locations across sev-

eral neighboring feature maps for standardizing to the mid-

dle one. However, this kind of normalization only focuses

on the statistics in a small neighborhood per pixel.

As suggested by its name, Batch Normalization (BN)

[11] provides a batch-level normalization method that re-

spectively centers and scales by mean and variance across

the whole mini-batch and then rescales the result. Decor-

related Batch Normalization [8] improves Batch Normal-

ization by adding an extra whitening procedure at the stan-

dardization stage. For batch-level normalization mecha-

nisms, the calculation of mean and variance relies on the

whole mini-batch. The effectiveness of normalization may

degrade when the batch size is not sufficient to support

the statistics calculation. To ease the issue of degradation,

Batch Renormalization [10] suggests adding more learnable

parameters in BN.

Several normalization techniques [1, 2, 25, 19, 27] in-

herit the notion of Batch Normalization but mainly focus on

the manipulations of the standardization stage. Layer Nor-

malization (LN) [2] operates along the channel dimension

and standardizes the features from a single mini-batch by

the mini-batch’s own mean and variance. It can be used with

batch size 1. Instance Normalization (IN) [25] standardizes

each feature map with respect to each sample. Group Nor-

malization (GN) [27] divides the feature channels within

each mini-batch into several groups and then performs the

standardization for each group. GN’s computation is also

independent of batch sizes, and we consider it an instance-

level normalization technique that can be augmented with

ILM Norm.

Another way to do normalization is adjusting the filter

weights instead of modifying the feature maps. For ex-

ample, Weight Normalization [20] and Orthogonal Weight

Normalization [7] present this kind of normalization strat-

egy to address some recognition tasks.

We observe that the existing normalization methods

merely focus on manipulating the learning of parameters

at the standardization stage. They do not consider the cor-

relations between the standardization stage and the rescal-

ing stage. The parameters learned for rescaling are based

on back-propagation and might be of low correlation with

the parameters for standardization. Our experimental re-

sults show that taking into account the connection between

standardization and rescaling is beneficial.

2.2. Style Transfer with Rescaling Parameters

The goal of a style transfer task is to ‘extract’ or ‘imitate’

a visual style from one image and apply that style to another

image. Likewise, domain adaptation aims to enable a func-

tion learned from one domain to work comparably well in

another domain. One solution to this kind of task is manip-

ulating the learned rescaling parameters, and therefore we

quickly review some style transfer methods that are related

to learning rescaling parameters.

The core idea of using the learned rescaling parameters

to address the tasks of style transfer or domain adaptation is

similar to the normalization process. The original distribu-

tion of one domain is standardized and then mapped to the

target distribution in the target domain. Hence, the rescaling

parameters learned from the target distribution can be used

to recover the original distribution in the target domain.

Adaptive Instance Normalization [9] applies the rescal-

ing parameters generated by another domain to the feature

maps of the current domain via Instance Normalization.

Dynamic Layer Normalization [14] generates the rescal-

ing parameters by different speakers and environments for

adaptive neural acoustic modeling via Layer Normalization.

3. Instance-Level Meta Normalization

This section describes the proposed two-stage learn-

ing mechanism for improving instance-level normalization.

Our approach is applicable to various techniques that per-

form instance-level normalization, and hence we call it

Instance-Level Metal Normalization (ILM Norm). Figure 2

shows an overview of ILM Norm. The first stage is stan-

dardization, which regularizes the mean µ and variance γ

of the input feature tensor x for standardizing the distribu-

tion of the feature tensor. The second stage is rescaling,

which rescales the standardized feature map xs for recov-

ering the representation capability of the feature tensor x.

Moreover, we employ an auto-encoder to serve as an associ-

ation between two stages. The rescaling stage uses the auto-

encoder to predict the rescaling parameters, i.e., weight ω

and bias β, with respect to the input tensor x of feature

maps instead of generating the rescaling parameter simply

from back-propagation.

3.1. Standardization Stage

The goal of the standardization stage is to regularize the

distribution of the input feature map, which is often done

by forcing the distribution to have zero mean and unit vari-

ance. Existing normalization techniques mostly focus on

designing different schemes for this stage.

As a meta learning mechanism, ILM Norm can adopt

different standardization processes from different instance-

level normalization techniques. Take, for example, Group

Normalization’s standardization process. Group Normal-

ization (GN) divides the whole layer into several groups

along its channel dimension. Each group calculates its own

mean and variance for standardization. Many other meth-

ods can be considered. It is free to be replaced by others for

different purposes.
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3.2. Rescaling Stage

The goal of the rescaling stage is to recover the distribu-

tion of the input feature maps from its standardized coun-

terpart. Previous approaches usually learn the parameters

for recovering the statistics merely via back-propagation.

In contrast, ILM Norm predicts the parameters with addi-

tional association between the standardization stage and the

rescaling stage. In the following, we detail the process of

extracting the key features of the input tensor x of feature

maps. The auto-encoder for predicting the rescaling param-

eters will be presented in Section 3.3.

3.3. Association between Two Stages

The association between the standardization stage and

the rescaling stage is achieved by a coupled auto-encoder,

which is of little computational cost. An overview of the

components is shown in Figure 2. ILM Norm contains an

auto-encoder for predicting the rescaling parameters ω and

β concerning the pre-computed mean µ and the variance

γ of the input feature tensor x. In comparison with ex-

isting methods that simply learn the parameters ω and β

via back-propagation, our experiments show that the meta

parameter learning mechanism with additional information

from ω and β is more effective.

3.3.1 Key Feature Extraction

ILM Norm uses an auto-encoder to predict the weights ω

and bias β as the rescaling parameters for recovering the

distribution of the tensor x of feature maps. We have ob-

served that directly encoding the entire input feature tensor

x would degrade the prediction accuracy, which might be

due to overfitting. Instead of using the entire feature ten-

sor x as the input for the auto-encoder, we propose to use

the mean µ and variance γ of x for characterizing its statis-

tics. Here we define the key features as the mean µ and

variance γ extracted from the feature tensor x. The exper-

imental results demonstrate that, ILM Norm, which uses a

light-weight auto-encoder, can effectively predict ω and β

for recovering the distribution of input tensor x of feature

maps.

Furthermore, for better performance and lower computa-

tion burden, we extract the key features from each group of

input feature maps rather than a single feature map. For a

specific layer comprising C channels as a tensor of feature

maps f1, f2, . . . , fC , we evenly partition these feature maps

into N groups f1, f2, . . . , fN . The mean and variance of

the whole layer are hence denoted as a vector of length N ,

namely µ = [µ1, µ2, . . . , µN ] and γ = [γ1, γ2, . . . , γN ].
ILM Norm computes the mean µn and variance γn for a

given feature-map group fn as
{

µn = 1

H×W×C/N

∑

f∈fn

∑H
i=1

∑W
j=1

f i,j ,

γn = 1

H×W×C/N

∑

f∈fn

∑H
i=1

∑W
j=1

(f i,j − µn)
2 ,

(3)

where C/N is the number of feature maps in a group, f
denotes a feature map of group fn. Further discussions for

key feature extraction can be found in Section 4.5.2.

3.3.2 Encoder

The goal of the encoder in ILM Norm is to summarize the

information of an input tensors key features through an em-

bedding. Besides, we expect the subsequent rescaling pa-

rameters can be jointly learned from the same embedded

information.

In our implementation, the encoder comprises one fully

connected layer (W1) and one activation function. The

fully connected layer can model not only the individual el-

ements of the key features but also the correlations between

elements. Using an activation function allows us to extract

non-linear information. The embedded vectors, which en-

code the mean and the variance of the grouped input feature

maps, are obtained by
{

Eµ = ReLU(W1µ) ,
Eγ = ReLU(W1γ) ,

(4)

where Eµ and Eγ respectively denote the embedded vec-

tors of µ and γ, ReLU(·) represents the activation function,

and the encoding matrix W1 ∈ R
M×N with the embedded

vector of length M and key feature vectors of length N .

3.3.3 Decoder

The decoder in ILM Norm aims to decode the embedded

vectors Eµ and Eγ into Dµ and Dγ respectively. In a sense,

Dµ and Dγ propagate the correlations from the original fea-

ture maps to the rescaling parameters ω and β.

In our implementation, we use two different fully con-

nected layers (W2 and W3) and two activation functions.

The fully connected layers for decoding aim to summarize

the information-rich embedded vectors for predicting the

rescaling parameters. By accompanying the decoded vec-

tor with an activation function, ILM Norm shifts the vector

values into a suitable range. The decoded vectors, which

yield the mean and variance of the embedded vector, are

obtained as
{

Dµ = tanh(W2Eµ) ,
Dγ = sigmoid(W3Eγ) ,

(5)

where both sigmoid(·) and tanh(·) represent the activation

functions, and the decoding matrices W2, W3 ∈ R
N×M .

Further discussions about choosing activation functions can

be found in Section 4.5.1.

4868



3.3.4 Alignment

Notice that each decoded vector of Dµ and Dγ predicted

from the auto-decoder needs to align with a corresponding

rescaling parameters of the underlying normalization mod-

ule in which the ILM Norm is plugged, , e.g., Instance Nor-

malization. We obtain the final rescaling parameters ω and

β as follow:
{

ω = Dγ ↑ +Bω ,
β = Dµ ↑ +Bβ ,

(6)

where Bω and Bβ denote the rescaling parameters of the

underlying normalization module that is augmented by

ILM Norm. The dimension of either Bω or Bβ is C, i.e.,

the number of channels. The operator ↑ means duplicating

the vector components so that the dimension of Dγ and Bω

can match, and same for Dµ and Bβ.

4. Experiments

In the experiments we evaluate ILM Norm using dif-

ferent datasets on various tasks. We apply ILM Norm to

several state-of-the-art instance-level normalization tech-

niques, including Layer Normalization (LN), Instance Nor-

malization (IN), and Group Normalization (GN), and we

show that the ILM Norm enhanced versions steadily out-

perform the original ones.

4.1. Image classification with Large Batch Size

4.1.1 Implementation Details

We use ResNet-50 and ResNet-101 [6] as a backbone model

for evaluating the experiments on classification tasks. For

CIFAR-10 and CIFAR-100 datasets, we change the first

conv layer to “3× 3, stride 1, padding 1”, remove the max-

pooling layer, and change the kernel size of average-pooling

to 4 to adapt to the input size. We initialize all parameters

using the standard normal distribution except the rescaling

parameters of the corresponding underlying normalization

module Bω and Bβ, which are assigned as 1 and 0, respec-

tively.

Unless otherwise stated, ILM Norm set the size of group

equals to 16 (i.e., C/N = 16), the number N of groups of

GN is set to 32, and the batch size of all normalization meth-

ods is 64. We use SGD as the optimizer with momentum

0.9 and weight decay 0.0005. All experiment are conducted

on only one GPU. For CIFAR-10 and CIFAR-100 datasets,

each normalization method is trained for 350 epochs. The

learning rate is initialized with 0.1 and decreased by 0.1 at

the 150th and 250th epoch. For ImageNet, each normaliza-

tion method is trained for 100 epochs. We set learning rate

as 0.025 according to the suggestion of [4]. The learning

rate is decreased by 0.1 at 30th, 60th and 90th epoch.

Top-1 Error (%)
Method

BN GN IN LN

Original 6.43 7.02 7.00 9.98
with ILM - 5.88 6.50 7.35

with ILM vs.

Original

- −1.14 −0.50 −2.63

with ILM vs. BN - −0.55 +0.07 +0.92
Table 1. Comparison of different normalization methods on

CIFAR-10.

Top-1 Error (%)
Method

BN GN IN LN

Original 26.28 26.94 26.08 41.61
+ ILM - 23.31 23.97 25.43

+ILM vs. Original - −3.63 −2.11 −16.18
+ILM vs. BN - −2.97 −2.31 −0.85

Top-5 Error (%)
Method

BN GN IN LN

Original 9.37 7.02 7.60 15.26
+ILM - 6.47 6.71 6.88

+ILM vs. Original - −0.55 −0.89 −8.38
+ILM vs. BN - −2.90 −2.66 −2.49

Table 2. Comparison of different normalization methods on

CIFAR-100.

4.1.2 CIFAR-10

We compare several instance-level normalization methods

(GN, IN, LN) with their ILM Norm extensions for image

classification on CIFAR-10 dataset [15, 23]. The underly-

ing architecture is ResNet-101. We also present the result

of Batch Normalization (BN) trained under the same con-

figuration as a strong baseline. The results are shown in

Figure 3 and Table 1.

Figure 3 shows the comparisons of different instance-

level normalization techniques. We plot the validation error

rate against the number of training epochs. ILM Norm is

applied to IN, GN and LN, and all the three normalization

methods can be improved to achieve lower validation error

rates.

Table 1 shows the error rates of different methods with

350 training epochs. Notice that, in the last two rows of

Table 1 we compare the change in performance after apply-

ing ILM Norm. We show the relative error rate w.r.t. the

original normalization and w.r.t. BN. As can be seen, all

instance-level normalization methods can achieve a lower

error rate after being equipped with ILM Norm. Further-

more, the combination of ILM+GN can even outperform

BN. It is worth mentioning that, to our best knowledge, no

existing state-of-the-art instance-level normalization meth-

ods have outperformed BN when a large batch size is used

on the CIFAR-10 classification task.
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Figure 3. Comparisons of different instance-level normalization techniques. We show the validation error rate (%) against the number of

training epochs. The batch size is 64. The performances of the original normalization techniques are improved after applying ILM Norm.

ImageNet
Method (Error Rate %)

BN ILM+GN GN IN LN

Top-1 23.85 23.57 24.06 28.40 25.30

vs. BN - −0.28 +0.21 +4.55 +1.45
Table 3. Comparison of different normalization methods on Ima-

geNet.

4.1.3 CIFAR-100

We conduct another similar experiment to compare differ-

ent normalization methods on CIFAR-100 [15, 23] image

classification task. All models are trained on the training

set of 50,000 images and evaluated on the validation set of

10,000 images for 350 epochs. The results are shown in

Table 2. Similar improvements on the CIFAR-100 classifi-

cation task for different methods can be observed.

4.1.4 ImageNet

We also use ImageNet to evaluate the setting of ILM Norm

plus GN (ILM+GN), in comparison with other normaliza-

tion methods including BN, IN, LN, and the original GN.

The underlying network architecture is ResNet-50. The Im-

ageNet dataset contains over one million images with 1000

different classes. All of the models are trained on the Ima-

geNet training set and evaluated on the validation set. The

results are in Table 3.

Table 3 shows the error rates after 100 training epochs for

different normalization methods. We can find that ILM+GN

achieves a 0.49% lower error rate than the original GN.

Moreover, ILM+GN achieves a 0.28% lower error rate than

Batch Normalization as well, while the basic instance-level

normalization methods cannot outperform BN on this task.

In sum, the experiments on classification tasks with

CIFAR-10, CIFAR-100, and ImageNet demonstrate that

instance-level normalization methods, such as GN, IN,

and LN, can be improved if they are equipped with ILM

Norm. Furthermore, ILM+GN is able to achieve better

performance than cross-instance normalization like Batch

Normalization for a large-batch-size setting on ImageNet,

which has never been reported before according to our

best knowledge. The advantage of ILM Norm for various

instance-level normalization methods is therefore evident,

and the improvement can be handily achieved with a negli-

gible computation overhead.

4.2. Image Classification with Various Batch Sizes

The batch size is an issue to be taken into consider-

ation when apply normalization techniques. We conduct

an experiment to evaluate ILM Norm plus GN for vari-

ous batch sizes on CIFAR-10. We test the batch sizes

of {64, 32, 16, 8, 4, 2} per GPU, without changing other

hyper-parameters. For comparison, we also include the re-

sults of BN. The error rates are shown in Table 4 and Fig-

ure 1.

Figure 1 clearly illustrates that both GN and ILM+GN

are not sensitive to the batch size. Furthermore, ILM+GN

gets lower validation error rates than GN among all kinds

of batch sizes. In contrast, BN obviously requires a larger

batch size and gets considerable large error rates when the

batch size is small.

Table 4 shows that ILM+GN has the lowest error rates

among all batch sizes. On average, ILM plus GN achieves

a lower error rate than GN by 0.58% and also a lower error

rate than BN by 2.55% among the evaluated batch sizes.

Discussion. Table 4 shows that ILM+GN outperforms

GN among all batch sizes. Since all hyper-parameters of

ILM+GN are set the same as BN, it is reasonable to consider

that the improvement is owing to the association mecha-

nism of ILM Norm that connects the standardization stage

and the rescaling stage. As a result, it is helpful to leverage

both the cross-stage association and the back-propagation

process while learning the rescaling parameters for normal-

ization.
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CIFAR-10: Error Rate (%)
Batch Size

64 32 16 8 4 2

Method

GN 7.02 7.14 7.24 7.22 7.31 7.29
BN 6.43 6.48 7.39 9.78 11.15 13.79

ILM+GN 5.88 6.36 6.64 6.70 7.05 7.11

Improvement
ILM+GN vs. GN −1.14 −0.78 −0.60 −0.52 −0.26 −0.18
ILM+GN vs. BN −0.55 −0.12 −0.75 −3.08 −4.10 −6.68

Table 4. Evaluations on CIFAR-10 dataset with different batch sizes.

Batch Size Box Head AP bbox AP bbox
50

AP bbox
75

APmask APmask
50

APmask
75

2
GN 22.40 37.65 23.56 20.88 35.43 21.57

ILM + GN 22.68 38.28 23.68 21.19 36.08 21.92

16
GN 39.10 60.33 42.51 34.77 56.88 36.79

ILM + GN 39.42 60.63 42.95 35.03 57.25 36.92
Table 5. Evaluations on MS-COCO dataset for detection and segmentation tasks with different batch sizes.

Metric
Method (Generator / Discriminator)

IN / IN ILM+IN / IN ILM+IN / ILM+IN

RMSE 108.17 105.82 105.46
LPIPS 0.441 0.435 0.428

SSIM 0.372 0.390 0.372
Table 6. Evaluation on the Facades dataset for the style transfer

task. Note that, typically, a higher SSIM score means higher sim-

ilarity, while a lower RMSE or LPIPS value implies better perfor-

mance.

4.3. Object Detection and Segmentation

Object detection and segmentation are important tasks

in computer vision. We evaluate ILM Norm on Mask R-

CNN [5] using MS-COCO dataset [17]. All models are

trained on the training set for 90,000 with batch size per

GPU equal to 2 using 1 GPU and 8 GPUs. The backbone

used in all models are pretrained with GN. We test the mod-

els on the test set. All other configurations are just the same

as R-50-FPN in Detectron [3]. The results are shown in

Table 5.

Table 5 shows that only changing GN layers in the box

head can improve the detection and segmentation perfor-

mance under different batch sizes. To be more specific, we

increase APbbox and APmask by 0.28 and 0.31 when the

batch size is equal to 2, and by 0.32 and 0.26 when batch

size is equal to 16. It indicates that ILM+GN can transfer

the feature from backbone more efficiently than GN, com-

pared with the GN baseline, with different training lengths.

4.4. Image Transfer

Image transfer is a popular and interesting task in com-

puter vision. We evaluate ILM Norm on pix2pix [12] using

the CMP Facades [24] dataset with size of group equals to

1. The Facades dataset contains 400 architectural-labels-to-

photo data. We train the model in 200 of them and eval-

uate on the rest 200 data for 200 epochs. To evaluate the

performance, we use SSIM [26], RMSE, and the LPIPS

metric [28] as the similarity measures. Typically, a higher

SSIM score means higher similarity, while a lower RMSE

or LPIPS value implies better quality. The results are shown

in Table 6.

Table 6 clearly shows that changing all IN layers in the

model or only changing IN in the generator can both im-

prove the similarity between the output of the model and

the target. Since LPIPS focuses on not only the structural

similarity but also the perceptual similarity, using ILM+IN

can produce style transfer results with better structural and

perceptual quality than original IN.

4.5. Ablation Study

4.5.1 Different Activation Functions for Dµ and Dγ

Since the rescaling parameters are the only part in the model

that is modified during forward propagation, it is critical to

control the extent of their variations. Excessive variations in

rescaling parameters lead to instability of the model. More-

over, the domain of µ and γ are different; it is reasonable to

control Dµ and Dγ within a different range. To verify our

assumptions, we evaluate ILM Norm with several different

activation functions applied on Dµ and Dγ . The results can

be found in Table 7.

Table 7 shows that the model cannot converge with-

out appropriate constraints on Dµ and Dγ . Applying the

same activate function, e.g. sigmoid, to both Dµ and Dγ

may make the model converge, but the performance is even

worse than the original group normalization, indicating that

the association has a negative impact on the normalization.

Only by deploying different activation functions, tanh to

Dµ and sigmoid Dγ can we achieve positive impact and

the best performance among these configurations.
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Activation Functions for (Dµ, Dγ) GN
ours (sigmoid, sigmoid) (tanh, tanh) (†, ⋆) (⋆, †) (⋆, ⋆)

Error Rate % 5.88 8.63 8.04 n/a n/a n/a 7.02

Table 7. Comparison of different activation functions for (Dµ, Dγ) on CIFAR-10. The symbol † means the activation function is either

tanh or sigmoid, while ⋆ means the activation function can be ReLU, Leaky ReLU, ReLU6, or Identity. The entry ‘n/a’ indicates that the

model cannot converge.

Increment Ratio of Parameters
Model

ResNet-18 ResNet-34 ResNet-50 ResNet-101 ResNet-152

Group Normalization 0.015% 0.015% 0.086% 0.086% 0.086%
Instance Normalization 2.792% 2.462% 20.696% 20.313% 20.178%

Table 8. The increment in the number of parameters concerning different key-feature extraction strategies. ILM Norm chooses to use GN’s

scheme for key-feature extraction since the increment in number of additional parameters is less than 0.1% for most of the ResNet models.

4.5.2 Alternative Strategies for Key-Feature Extrac-

tion

ILM Norm divides the input channels into groups for com-

puting the mean and variance per group. As mentioned in

Section 2.1, the existing normalization methods, such as

BN, LN, IN, and GN have their own scheme to extract the

mean µ and variance γ from the input x. To make our nor-

malization mechanism robust to various batch sizes, we do

not consider the scheme of BN. Moreover, we also exclude

LN’s scheme, since LN only generates one pair of mean and

variance for all feature maps in a layer, and such few data

is not suitable for training our auto-encoder-like network.

Therefore, our key-feature extraction strategy considers the

implementations as IN and GN. Figure 4 shows a compar-

ison of the key feature extraction strategies derived from

GN and IN. Table 8 provides the ratio of increment in the

number of parameters concerning different key-feature ex-

traction strategies.

Figure 4 shows that the performance of using a key-

feature extraction strategy as GN is usually better than the

performance of using IN. From the perspective of the incre-

Figure 4. Comparison on the performance of using a key-feature

extraction strategy as GN or IN. The evaluation is based on

CIFAR-10 validation error.

ment in the number of parameters, Table 8 provides further

information for choosing the strategy of key feature extrac-

tion. In Table 8, the number of additional parameters due to

the use of the key-feature extraction strategy as GN is quite

small. The lower requirement of additional parameters for

GN is because it partitions the C channels into N groups,

where N = C/K and the size of a group is fixed to K, and

hence the increment in the number of parameters depends

on the ratio C/K instead of C. In contrast, the increment

in the number parameters using IN’s scheme depends on C.

To sum up: The experiments demonstrate that using the

key-feature extraction strategy as GN should be the best op-

tion. It not only achieves a lower error rate but also requires

less increment in the number of parameters.

5. Conclusion

We have presented ILM Norm, a meta learning mech-

anism for various instance-level normalization techniques.

ILM Norm extracts the key features from the input ten-

sor and associates the standardization parameters with the

rescaling parameters for deep network normalization. As

a result, ILM Norm provides an easy way to predict

the rescaling parameters via both the update from back-

propagation and the association with input features. ILM

works well with state-of-the-art instance-level normaliza-

tion methods, and meanwhile, improves the performance in

most cases. The experiments demonstrate that a deep net-

work equipped with ILM Norm is able to achieve better per-

formance for different batch sizes with just a little increase

in the number of parameters.
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