
Revisiting Self-Supervised Visual Representation Learning

Alexander Kolesnikov*, Xiaohua Zhai*, Lucas Beyer*

Google Brain

Zürich, Switzerland

{akolesnikov,xzhai,lbeyer}@google.com

Abstract

Unsupervised visual representation learning remains

a largely unsolved problem in computer vision research.

Among a big body of recently proposed approaches for un-

supervised learning of visual representations, a class of

self-supervised techniques achieves superior performance

on many challenging benchmarks. A large number of the

pretext tasks for self-supervised learning have been stud-

ied, but other important aspects, such as the choice of con-

volutional neural networks (CNN), has not received equal

attention. Therefore, we revisit numerous previously pro-

posed self-supervised models, conduct a thorough large

scale study and, as a result, uncover multiple crucial in-

sights. We challenge a number of common practices in self-

supervised visual representation learning and observe that

standard recipes for CNN design do not always translate

to self-supervised representation learning. As part of our

study, we drastically boost the performance of previously

proposed techniques and outperform previously published

state-of-the-art results by a large margin.

1. Introduction

Automated computer vision systems have recently made

drastic progress. Many models for tackling challenging

tasks such as object recognition, semantic segmentation or

object detection can now compete with humans on com-

plex visual benchmarks [15, 45, 14]. However, the success

of such systems hinges on a large amount of labeled data,

which is not always available and often prohibitively ex-

pensive to acquire. Moreover, these systems are tailored to

specific scenarios, e.g. a model trained on the ImageNet

(ILSVRC-2012) dataset [38] can only recognize 1000 se-

mantic categories or a model that was trained to perceive

road traffic at daylight may not work in darkness [5, 4].

As a result, a large research effort is currently focused on

systems that can adapt to new conditions without leverag-

*equal contribution

Rotation [10] Exemplar [8] Rel. Patch Loc. [6] Jigsaw [29]
35

40

45

50

55

Do
wn

str
ea

m
 Im

ag
eN

et 
Ac

cu
ra

cy
 [%

] RevNet50
ResNet50 v2
ResNet50 v1

Figure 1. Quality of visual representations learned by various self-

supervised learning techniques significantly depends on the convo-

lutional neural network architecture that was used for solving the

self-supervised learning task. For instance, ResNet50 v1 excels

when trained with the relative patch location self-supervision [7],

but produces suboptimal results when trained with the rotation

self-supervision [11]. In our paper we provide a large scale in-

depth study in support of this observation and discuss its implica-

tions for evaluation of self-supervised models.

ing a large amount of expensive supervision. This effort in-

cludes recent advances on transfer learning, domain adapta-

tion, semi-supervised, weakly-supervised and unsupervised

learning. In this paper, we concentrate on self-supervised

visual representation learning, which is a promising sub-

class of unsupervised learning. Self-supervised learning

techniques produce state-of-the-art unsupervised represen-

tations on standard computer vision benchmarks [11, 34, 2].

The self-supervised learning framework requires only

unlabeled data in order to formulate a pretext learning task

such as predicting context [7] or image rotation [11], for

which a target objective can be computed without supervi-

sion. These pretext tasks must be designed in such a way

that high-level image understanding is useful for solving

them. As a result, the intermediate layers of convolutional

neural networks (CNNs) trained for solving these pretext

tasks encode high-level semantic visual representations that

are useful for solving downstream tasks of interest, such as

11920



image recognition.

Most of the prior work, which aims at improving perfor-

mance of self-supervised techniques, does so by proposing

novel pretext tasks and showing that they result in improved

representations. Instead, we propose to have a closer look

at CNN architectures. We revisit a prominent subset of the

previously proposed pretext tasks and perform a large-scale

empirical study using various architectures as base models.

As a result of this study, we uncover numerous crucial in-

sights. The most important are summarized as follows:

• Standard architecture design recipes do not neces-

sarily translate from the fully-supervised to the self-

supervised setting. Architecture choices which neg-

ligibly affect performance in the fully labeled set-

ting, may significantly affect performance in the self-

supervised setting.

• In contrast to previous observations with the AlexNet

architecture [11, 48, 31], the quality of learned repre-

sentations in CNN architectures with skip-connections

does not degrade towards the end of the model.

• Increasing the number of filters in a CNN model and,

consequently, the size of the representation signifi-

cantly and consistently increases the quality of the

learned visual representations.

• The evaluation procedure, where a linear model is

trained on a fixed visual representation using stochastic

gradient descent, is sensitive to the learning rate sched-

ule and may take many epochs to converge.

In Section 4 we present experimental results supporting the

above observations and offer additional in-depth insights

into the self-supervised learning setting. Some of these in-

sights are illustrated in Figure 1. We make the code for re-

producing our core experimental results publicly available1.

In our study we obtain new state-of-the-art results for

visual representations learned without labeled data. Inter-

estingly, the context prediction [7] technique that sparked

the interest in self-supervised visual representation learning

and that serves as the baseline for follow-up research, out-

performs all currently published results (among papers on

self-supervised learning) if the appropriate CNN architec-

ture is used.

2. Related Work

Self-supervision is a learning framework in which a su-

pervised signal for a pretext task is created automatically,

in an effort to learn representations that are useful for solv-

ing real-world downstream tasks. Being a generic frame-

work, self-supervision enjoys a wide number of applica-

tions, ranging from robotics to image understanding.

1https://github.com/google/revisiting-self-supervised

In robotics, both the result of interacting with the world,

and the fact that multiple perception modalities simultane-

ously get sensory inputs are strong signals which can be

exploited to create self-supervised tasks [21, 41, 26, 10].

Similarly, when learning representation from videos, one

can either make use of the synchronized cross-modality

stream of audio, video, and potentially subtitles [35, 39, 23,

44], or of the consistency in the temporal dimension [41].

In this paper we focus on self-supervised techniques that

learn from image databases. These techniques have demon-

strated impressive results for learning high-level image rep-

resentations. Inspired by unsupervised methods from the

natural language processing domain which rely on predict-

ing words from their context [28], Doersch et al. [7] pro-

posed a practically successful pretext task of predicting the

relative location of image patches. This work spawned a

line of work in patch-based self-supervised visual represen-

tation learning methods. These include a model from [31]

that predicts the permutation of a “jigsaw puzzle” created

from the full image and recent follow-ups [29, 33].

In contrast to patch-based methods, some methods gen-

erate cleverly designed image-level classification tasks. For

instance, in [11] Gidaris et al. propose to randomly rotate

an image by one of four possible angles and let the model

predict that rotation. Another way to create class labels is

to use clustering of the images [2]. Yet another class of pre-

text tasks contains tasks with dense spatial outputs. Some

prominent examples are image inpainting [37], image col-

orization [47], its improved variant split-brain [48] and mo-

tion segmentation prediction [36]. Other methods instead

enforce structural constraints on the representation space.

Noroozi et al. propose an equivariance relation to match the

sum of multiple tiled representations to a single scaled rep-

resentation [32]. Authors of [34] propose to predict future

patches in via autoregressive predictive coding.

Our work is complimentary to the previously discussed

methods, which introduce new pretext tasks, since we show

how existing self-supervision methods can significantly

benefit from our insights.

Finally, many works have tried to combine multiple pre-

text tasks in one way or another. For instance, Kim et al.

extend the “jigsaw puzzle” task by combining it with col-

orization and inpainting in [22]. Combining the jigsaw puz-

zle task with clustering-based pseudo labels as in [2] leads

to the method called Jigsaw++ [33]. Doersch and Zisser-

man [8] implement four different self-supervision methods

and make one single neural network learn all of them in

a multi-task setting. Chen et al. [3] combined the self-

supervised loss from [11] with the GANs [13] objective.

The latter work is similar to ours since it contains a com-

parison of different self-supervision methods using a unified

neural network architecture, but with the goal of combining

all these tasks into a single self-supervision task. The au-

1921



thors use a modified ResNet101 architecture [16] without

further investigation and explore the combination of multi-

ple tasks, whereas our focus lies on investigating the influ-

ence of architecture design on the representation quality.

3. Self-supervised study setup

In this section we describe the setup of our study and mo-

tivate our key choices. We begin by introducing six CNN

models in Section 3.1 and proceed by describing the four

self-supervised learning approaches used in our study in

Section 3.2. Subsequently, we define our evaluation metrics

and datasets in Sections 3.3 and 3.4. Further implementa-

tion details can be found in Supplementary Material.

3.1. Architectures of CNN models

A large part of the self-supervised techniques for vi-

sual representation approaches uses AlexNet [24] architec-

ture. In our study, we investigate whether the landscape

of self-supervision techniques changes when using modern

network architectures. Thus, we employ variants of ResNet

and a batch-normalized VGG architecture, all of which

achieve high performance in the fully-supervised training

setup. VGG is structurally close to AlexNet as it does not

have skip-connections and uses fully-connected layers.

In our preliminary experiments, we observed an intrigu-

ing property of ResNet models: the quality of the repre-

sentations they learn does not degrade towards the end of

the network (see Section 4.5). We hypothesize that this is

a result of skip-connections making residual units invert-

ible under certain circumstances [1], hence facilitating the

preservation of information across the depth even when it

is irrelevant for the pretext task. Based on this hypothesis,

we include RevNets [12] into our study, which come with

stronger invertibility guarantees while being structurally

similar to ResNets.

ResNet was introduced by He et al. [16], and we use the

width-parametrization proposed in [46]: the first 7× 7 con-

volutional layer outputs 16 × k channels, where k is the

widening factor, defaulting to 4. This is followed by a se-

ries of residual units of the form y := x + F(x), where

F is a residual function consisting of multiple convolu-

tions, ReLU non-linearities [30] and batch normalization

layers [19]. The variant we use, ResNet50, consists of four

blocks with 3, 4, 6, and 3 such units respectively, and we

refer to the output of each block as block1, block2, etc. The

network ends with a global spatial average pooling produc-

ing a vector of size 512×k, which we call pre-logits as it is

followed only by the final, task-specific logits layer. More

details on this architecture are provided in [16].

In our experiments we explore k ∈ {4, 8, 12, 16}, result-

ing in pre-logits of size 2048, 4096, 6144 and 8192 respec-

tively. For some self-supervised techniques we skip config-

urations that do not fit into memory.

Moreover, we analyze the sensitivity of the self-

supervised setting to underlying architectural details by

using two variants of ordering operations known as

ResNet v1 [16] and ResNet v2 [17] as well as a variant with-

out ReLU preceding the global average pooling, which we

mark by a “(-)”. Notably, these variants perform similarly

on the pretext task.

RevNet slightly modifies the design of the residual unit

such that it becomes analytically invertible [12]. We note

that the residual unit used in [12] is equivalent to double ap-

plication of the residual unit from [20] or [6]. Thus, for con-

ceptual simplicity, we employ the latter type of unit, which

can be defined as follows. The input x is split channel-wise

into two equal parts x1 and x2. The output y is then the

concatenation of y2 := x2 and y1 := x1 + F(x2).
It easy to see that this residual unit is invertible, because

its inverse can be computed in closed form as x2 = y2 and

x1 = y1 −F(x2).
Apart from this slightly different residual unit, RevNet is

structurally identical to ResNet and thus we use the same

overall architecture and nomenclature for both. In our ex-

periments we use RevNet50 network, that has the same

depth and number of channels as the original Resnet50

model. In the fully labelled setting, RevNet performs only

marginally worse than its architecturally equivalent ResNet.

VGG as proposed in [42] consists of a series of 3× 3 con-

volutions followed by ReLU non-linearities, arranged into

blocks separated by max-pooling operations. The VGG19

variant we use has 5 such blocks of 2, 2, 4, 4, and 4 con-

volutions respectively. We follow the common practice of

adding batch normalization between the convolutions and

non-linearities.

In an effort to unify the nomenclature with ResNets, we

introduce the widening factor k such that k = 8 corre-

sponds to the architecture in [42], i.e. the initial convolu-

tion produces 8×k channels and the fully-connected layers

have 512 × k channels. Furthermore, we call the inputs to

the second, third, fourth, and fifth max-pooling operations

block1 to block4, respectively, and the input to the last fully-

connected layer pre-logits.

3.2. Self­supervised techniques

In this section we describe the self-supervised techniques

that are used in our study.

Rotation [11]: Gidaris et al. propose to produce 4 copies of

a single image by rotating it by {0°, 90°, 180°, 270°} and let

a single network predict the rotation which was applied—a

4-class classification task. Intuitively, a good model should

learn to recognize canonical orientations of objects in natu-

ral images.

Exemplar [9]: In this technique, every individual image

1922



corresponds to its own class, and multiple examples of it

are generated by heavy random data augmentation such as

translation, scaling, rotation, and contrast and color shifts.

We use data augmentation mechanism from [43]. [8] pro-

poses to use the triplet loss [40, 18] in order to scale this

pretext task to a large number of images (hence, classes)

present in the ImageNet dataset. The triplet loss avoids ex-

plicit class labels and, instead, encourages examples of the

same image to have representations that are close in the Eu-

clidean space while also being far from the representations

of different images. Example representations are given by a

1000-dimensional logits layer.

Jigsaw [31]: the task is to recover relative spatial position of

9 randomly sampled image patches after a random permu-

tation of these patches was performed. All of these patches

are sent through the same network, then their representa-

tions from the pre-logits layer are concatenated and passed

through a two hidden layer fully-connected multi-layer per-

ceptron (MLP), which needs to predict a permutation that

was used. In practice, the fixed set of 100 permutations

from [31] is used.

In order to avoid shortcuts relying on low-level im-

age statistics such as chromatic aberration [31] or edge

alignment, patches are sampled with a random gap be-

tween them. Each patch is then independently converted to

grayscale with probability 2⁄3 and normalized to zero mean

and unit standard deviation. More details on the preprocess-

ing are provided in Supplementary Material. After train-

ing, we extract representations by averaging the representa-

tions of nine uniformly sampled, colorful, and normalized

patches of an image.

Relative Patch Location [7]: The pretext task consists of

predicting the relative location of two given patches of an

image. The model is similar to the Jigsaw one, but in this

case the 8 possible relative spatial relations between two

patches need to be predicted, e.g. “below” or “on the right

and above”. We use the same patch prepossessing as in the

Jigsaw model and also extract final image representations

by averaging representations of 9 cropped patches.

3.3. Evaluation of Learned Visual Representations

We follow common practice and evaluate the learned vi-

sual representations by using them for training a linear lo-

gistic regression model to solve multiclass image classifica-

tion tasks requiring high-level scene understanding. These

tasks are called downstream tasks. We extract the represen-

tation from the (frozen) network at the pre-logits level, but

investigate other possibilities in Section 4.5.

In order to enable fast evaluation, we use an efficient

convex optimization technique for training the logistic re-

gression model unless specified otherwise. Specifically, we

precompute the visual representation for all training images

and train the logistic regression using L-BFGS [27].

For consistency and fair evaluation, when comparing to

the prior literature in Table 2, we opt for using stochastic

gradient descent (SGD) with momentum and use data aug-

mentation during training.

We further investigate this common evaluation scheme in

Section 4.3, where we use a more expressive model, which

is an MLP with a single hidden layer with 1000 channels

and the ReLU non-linearity after it. More details are given

in Supplementary material.

3.4. Datasets

In our experiments, we consider two widely used image

classification datasets: ImageNet [38] and Places205 [49].

ImageNet contains roughly 1.3million natural images

that represent 1000 various semantic classes. There are

50 000 images in the official validation and test sets, but

since the official test set is held private, results in the liter-

ature are reported on the validation set. In order to avoid

overfitting to the official validation split, we report numbers

on our own validation split (50 000 random images from the

training split) for all our studies except in Table 2, where for

a fair comparison with the literature we evaluate on the of-

ficial validation set.

The Places205 dataset consists of roughly 2.5million

images depicting 205 different scene types such as airfield,

kitchen, coast, etc. This dataset is qualitatively different

from ImageNet and, thus, a good candidate for evaluating

how well the learned representations generalize to new un-

seen data of different nature. We follow the same procedure

as for ImageNet regarding validation splits for the same rea-

sons.

4. Experiments and Results

In this section we present and interpret results of our

large-scale study. All self-supervised models are trained

on ImageNet (without labels) and consequently evaluated

on our own hold-out validation splits of ImageNet and

Places205. Only in Table 2, when we compare to the re-

sults from the prior literature, we use the official ImageNet

and Places205 validation splits.

4.1. Evaluation on ImageNet and Places205

In Table 1 we highlight our main evaluation results: we

measure the representation quality produced by six differ-

ent CNN architectures with various widening factors (Sec-

tion 3.1), initialized randomly or trained using any of four

self-supervised learning techniques (Section 3.2). We use

the pre-logits of the trained self-supervised networks as rep-

resentation. We follow the standard evaluation protocol

(Section 3.3) which measures representation quality as the

accuracy of a linear regression model trained and evaluated

on the ImageNet dataset.

1923



Table 1. Evaluation of representations from self-supervised techniques based on various CNN architectures. The scores are accuracies (in

%) of a linear logistic regression model trained on top of these representations using ImageNet training split. Our validation split is used

for computing accuracies. The architectures marked by a “(-)” are slight variations described in Section 3.1. Sub-columns such as 4×
correspond to widening factors. Top-performing architectures in a column are bold; the best pretext task for each model is underlined.

Model

Rnd Rotation Exemplar RelPatchLoc Jigsaw

4× 4× 8× 12× 16× 4× 8× 12× 4× 8× 4× 8×

RevNet50 8.1 47.3 50.4 53.1 53.7 42.4 45.6 46.4 40.6 45.0 40.1 43.7

ResNet50 v2 4.4 43.8 47.5 47.2 47.6 43.0 45.7 46.6 42.2 46.7 38.4 41.3

ResNet50 v1 2.5 41.7 43.4 43.3 43.2 42.8 46.9 47.7 46.8 50.5 42.2 45.4

RevNet50 (-) 8.4 45.2 51.0 52.8 53.7 38.0 42.6 44.3 33.8 43.5 36.1 41.5

ResNet50 v2 (-) 5.3 38.6 44.5 47.3 48.2 33.7 36.7 38.2 38.6 43.4 32.5 34.4

VGG19-BN 2.7 16.8 14.6 16.6 22.7 26.4 28.3 29.0 28.5 29.4 19.8 21.1

Now we discuss key insights that can be learned from

the table and motivate our further in-depth analysis. First,

we observe that similar models often result in visual rep-

resentations that have significantly different performance.

Importantly, neither is the ranking of architectures con-

sistent across different methods, nor is the ranking of

methods consistent across architectures. For instance, the

RevNet50 v2 model excels under Rotation self-supervision,

but is not the best model in other scenarios. Similarly, rel-

ative patch location seems to be the best method when bas-

ing the comparison on the ResNet50 v1 architecture, but

not otherwise. Notably, VGG19-BN consistently demon-

strates the worst performance, even though it achieves per-

formance similar to ResNet50 models on standard vision

benchmarks [42]. Note that VGG19-BN performs better

when using representations from layers earlier than the pre-

logit layer are used, though still falls short. We investigate

this in Section 4.5. We depict the performance of the mod-

els with the largest widening factor in Figure 2 (left), which

displays these ranking inconsistencies.

Our second observation is that increasing the number

of channels in CNN models improves performance of self-

supervised models. While this finding is in line with the

fully-supervised setting [46], we note that the benefit is

more pronounced in the context of self-supervised represen-

tation learning, a fact not yet acknowledged in the literature.

We further evaluate how visual representations trained in

a self-supervised manner on ImageNet generalize to other

datasets. Specifically, we evaluate all our models on the

Places205 dataset using the same evaluation protocol. The

performance of models with the largest widening factor are

reported in Figure 2 (right) and the full result table is pro-

vided in Supplementary Material. We observe the follow-

ing pattern: ranking of models evaluated on Places205 is

consistent with that of models evaluated on ImageNet, indi-

cating that our findings generalize to new datasets.

4.2. Comparison to prior work

In order to put our findings in context, we select the

best model for each self-supervision from Table 1 and com-

pare them to the numbers reported in the literature. For

this experiment only, we precisely follow standard proto-

col by training the linear model with stochastic gradient de-

scent (SGD) on the full ImageNet training split and eval-

uating it on the public validation set of both ImageNet and

Places205. We note that in this case the learning rate sched-

ule of the evaluation plays an important role, which we elab-

orate in Section 4.7.

Table 2 summarizes our results. Surprisingly, as a result

of selecting the right architecture for each self-supervision

and increasing the widening factor, our models signifi-

cantly outperform previously reported results. Notably,

Rotation
Exemplar

Rel. Patch Loc.
Jigsaw

20

25

30

35

40

45

50

55

Do
wn

str
ea

m
 Im

ag
eN

et 
Ac

cu
ra

cy
 [%

]

Rotation
Exemplar

Rel. Patch Loc.
Jigsaw

25

30

35

40

45

50

Do
wn

str
ea

m
 P

lac
es

20
5 

Ac
cu

ra
cy

 [%
]

RevNet50
RevNet50 (-)

ResNet50 v2
ResNet50 v2 (-)

ResNet50 v1
VGG19-BN

Figure 2. Different network architectures perform significantly

differently across self-supervision tasks. This observation gener-

alizes across datasets: ImageNet evaluation is shown on the left

and Places205 is shown on the right.

1924



35
40
45
50
55
60 RevNet50 ResNet50 v2 ResNet50 v1

Rota
tio

n

Exem
pla

r

Rel. 
Patc

h L
oc.

Jig
saw

35
40
45
50
55
60 RevNet50 (-)

Rota
tio

n

Exem
pla

r

Rel. 
Patc

h L
oc.

Jig
saw

ResNet50 v2 (-)

Rota
tio

n

Exem
pla

r

Rel. 
Patc

h L
oc.

Jig
saw

20

25

30

35

40VGG19-BN

Do
wn

str
ea

m
 Im

ag
eN

et 
Ac

cu
ra

cy
 [%

]

Figure 3. Comparing linear evaluation ( ) of the representa-

tions to non-linear ( ) evaluation, i.e. training a multi-layer per-

ceptron instead of a linear model. Linear evaluation is not limiting:

conclusions drawn from it carry over to the non-linear evaluation.

context prediction [7], one of the earliest published meth-

ods, achieves 51.4% top-1 accuracy on ImageNet. Our

strongest model, using Rotation, attains unprecedentedly

high accuracy of 55.4%. Similar observations hold when

evaluating on Places205.

F
am

il
y ImageNet Places205

Prev. Ours Prev. Ours

A Rotation[11] 38.7 55.4 35.1 48.0

R Exemplar[8] 31.5 46.0 - 42.7

R Rel. Patch Loc.[8] 36.2 51.4 - 45.3

A Jigsaw[31, 48] 34.7 44.6 35.5 42.2

V CC+vgg-Jigsaw++[33] 37.3 - 37.5 -

A Counting[32] 34.3 - 36.3 -

A Split-Brain[48] 35.4 - 34.1 -

V DeepClustering[2] 41.0 - 39.8 -

R CPC[34] 48.7† - - -

R Supervised RevNet50 74.8 74.4 - 58.9

R Supervised ResNet50 v2 75.3 75.8 - 61.6

V Supervised VGG19 72.7 75.0 58.9 61.5

† marks results reported in unpublished manuscripts.

Table 2. Comparison of the published self-supervised models to

our best models. The scores correspond to accuracy of linear lo-

gistic regression that is trained on top of representations provided

by self-supervised models. Official validation splits of ImageNet

and Places205 are used for computing accuracies. The “Family”

column shows which basic model architecture was used in the ref-

erenced literature: AlexNet, VGG-style, or Residual.

91 92 93 94 95
10

20

30

40

50

60

Do
wn

str
ea

m
 Im

ag
eN

et 
Ac

cu
ra

cy
 [%

] Rotation

55 60 65 70
Pretext Task Accuracy [%]

Rel. Patch Loc.

93 95 97 99

Jigsaw

Figure 4. A look at how predictive pretext performance is to even-

tual downstream performance. Colors correspond to the architec-

tures in Figure 3 and circle size to the widening factor k. Within

an architecture, pretext performance is somewhat predictive, but it

is not so across architectures. For instance, according to pretext

accuracy, the widest VGG model is the best one for Rotation, but

it performs poorly on the downstream task.

Importantly, our design choices result in almost halving

the gap between previously published self-supervised result

and fully-supervised results on two standard benchmarks.

Overall, these results reinforce our main insight that in self-

supervised learning architecture choice matters as much as

choice of a pretext task.

4.3. A linear model is adequate for evaluation.

Using a linear model for evaluating the quality of a repre-

sentation requires that the information relevant to the evalu-

ation task is linearly separable in representation space. This

is not necessarily a prerequisite for a “useful” representa-

tion. Furthermore, using a more powerful model in the eval-

uation procedure might make the architecture choice for a

self-supervised task less important. Hence, we consider an

alternative evaluation scenario where we use a multi-layer

perceptron (MLP) for solving the evaluation task, details of

which are provided in Supplementary Material.

Figure 3 clearly shows that the MLP provides only

marginal improvement over the linear evaluation and the

relative performance of various settings is mostly un-

changed. We thus conclude that the linear model is adequate

for evaluation purposes.

4.4. Better performance on the pretext task does not
always translate to better representations.

In many potential applications of self-supervised meth-

ods, we do not have access to downstream labels for eval-

uation. In that case, how can a practitioner decide which

model to use? Is performance on the pretext task a good

proxy?

In Figure 4 we plot the performance on the pretext task

against the evaluation on ImageNet. It turns out that per-

formance on the pretext task is a good proxy only once the

1925



Bl
oc

k1

Bl
oc

k2

Bl
oc

k3

Bl
oc

k4

Pr
e-l

og
its

Rotation
10
20
30
40
50

Bl
oc

k1

Bl
oc

k2

Bl
oc

k3

Bl
oc

k4

Pr
e-l

og
its

Exemplar

Bl
oc

k1

Bl
oc

k2

Bl
oc

k3

Bl
oc

k4

Pr
e-l

og
its

Rel. Patch Loc.

Bl
oc

k1

Bl
oc

k2

Bl
oc

k3

Bl
oc

k4

Pr
e-l

og
its

Jigsaw
10
20
30
40
50

RevNet50 ResNet50 v2 VGG19-BN

Figure 5. Evaluating the representation from various depths within the network. The vertical axis corresponds to downstream ImageNet

performance in percent. For residual architectures, the pre-logits are always best.

512 1024 2048 3072 4096 6144 8192

Representation Size

1 ×

2 ×

4 ×

6 ×

8 ×

12 ×

16 ×

W
id

th
 M

ul
tip

lie
r

31

32

34

35

34

35

35

37

40

42

42

43

43

44

41

44

47

47

48

50

49

43

46

48

49

50

51

52

42

46

48

50

50

51

52

43

45

49

50

51

53

53

43

45

49

50

50

51

54

Figure 6. Disentangling the performance contribution of network

widening factor versus representation size. Both matter indepen-

dently, and larger is always better. Scores are accuracies of logis-

tic regression on ImageNet. Black squares mark models which are

also present in Table 1.

model architecture is fixed, but it can unfortunately not be

used to reliably select the model architecture. Other label-

free mechanisms for model-selection need to be devised,

which we believe is an important and underexplored area

for future work.

4.5. Skip­connections prevent degradation of rep­
resentation quality towards the end of CNNs.

We are interested in how representation quality depends

on the layer choice and how skip-connections affect this de-

pendency. Thus, we evaluate representations from five in-

termediate layers in three models: Resnet v2, RevNet and

VGG19-BN. The results are summarized in Figure 5.

Similar to prior observations [11, 48, 31] for

AlexNet [25], the quality of representations in VGG19-BN

deteriorates towards the end of the network. We believe that

this happens because the models specialize to the pretext

task in the later layers and, consequently, discard more

general semantic features present in the middle layers.

In contrast, we observe that this is not the case for mod-

els with skip-connections: representation quality in ResNet

consistently increases up to the final pre-logits layer. We

hypothesize that this is a result of ResNet’s residual units

being invertible under some conditions [1]. Invertible units

preserve all information learned in intermediate layers, and,

thus, prevent deterioration of representation quality. We fur-

ther test and confirm this hypothesis by performing a study,

where we ablate residual connections in a ResNet model,

see Supplementary Material for more details.

Additionally, we investigate benefits of using the RevNet

model that has stronger invertibility guarantees. Indeed, it

boosts performance by more than 5% on the Rotation task,

albeit it does not result in improvements across other tasks.

We leave identifying more scenarios where Revnet results

in significant boost of performance for the future research.

4.6. Model width and representation size strongly
influence the representation quality.

Table 1 shows that using a wider network architecture

consistently leads to better representation quality. It should

be noted that increasing the network’s width has the side-

effect of also increasing the dimensionality of the final rep-

resentation (Section 3.1). Hence, it is unclear whether the

increase in performance is due to increased network capac-

ity or to the use of higher-dimensional representations, or to

the interplay of both.

In order to answer this question, we take the best rota-

tion model (RevNet50) and disentangle the network width

from the representation size by adding an additional linear

layer to control the size of the pre-logits layer. We then

vary the widening factor and the representation size inde-

pendently of each other, training each model from scratch

on ImageNet with the Rotation pretext task. The results,

evaluated on the ImageNet classification task, are shown in

1926



Rotation Exemplar Rel. Patch Loc. Jigsaw

4x 8x 12
x

16
x 4x 8x 12
x

16
x 4x 8x 12
x 4x 8x 12
x 4x 8x 4x 8x 4x 8x 4x 8x

20

25

30

35

40

45

50

55

60

Do
wn

str
ea

m
 A

cc
ur

ac
y 

[%
]

ImageNet
ImageNet (10%)
Places205
Places205 (5%)

Figure 7. Performance of the best models evaluated using all data

as well as a subset of the data. The trend is clear: increased widen-

ing factor increases performance across the board.

Figure 6. In essence, it is possible to increase performance

by increasing either model capacity, or representation size,

but increasing both jointly helps most. Notably, one can

significantly boost performance of a very thin model from

31% to 43% by increasing representation size.

Low-data regime. In principle, the effectiveness of in-

creasing model capacity and representation size might only

work on relatively large datasets for downstream evaluation,

and might hurt representation usefulness in the low-data

regime. In Figure 7, we depict how the number of channels

affects the evaluation using both full and heavily subsam-

pled (10% and 5%) ImageNet and Places205 datasets.

We observe that increasing the widening factor consis-

tently boosts performance in both the full- and low-data

regimes. We present more low-data evaluation experi-

ments in Supplementary Material. This suggests that self-

supervised learning techniques are likely to benefit from us-

ing CNNs with increased number of channels across wide

range of scenarios.

4.7. SGD for training linear model takes long time
to converge

In this section we investigate the importance of the SGD

optimization schedule for training logistic regression in

downstream tasks. We illustrate our findings for linear eval-

uation of the Rotation task, others behave the same and are

provided in Supplementary Material.

We train the linear evaluation models with a mini-batch

size of 2048 and an initial learning rate of 0.1, which we

decay twice by a factor of 10. Our initial experiments sug-

gest that when the first decay is made has a large influence

on the final accuracy. Thus, we vary the moment of first de-

cay, applying it after 30, 120 or 480 epochs. After this first

decay, we train for an extra 40 extra epochs, with a second

decay after the first 20.

Figure 8 depicts how accuracy on our validation split

0 100 200 300 400 500
Epochs

40

45

50

55

Do
wn

str
ea

m
 Im

ag
eN

et 
Ac

cu
ra

cy
 [%

]

Decay at 30
Decay at 120
Decay at 480

Figure 8. Downstream task accuracy curve of the linear evaluation

model trained with SGD on representations from the Rotation task.

The first learning rate decay starts after 30, 120 and 480 epochs.

We observe that accuracy on the downstream task improves even

after very large number of epochs.

progresses depending on when the learning rate is first de-

cayed. Surprisingly, we observe that very long training

(≈ 500 epochs) results in higher accuracy. Thus, we con-

clude that SGD optimization hyperparameters play an im-

portant role and need to be reported.

5. Conclusion

In this work, we have investigated self-supervised visual

representation learning from the previously unexplored an-

gles. Doing so, we uncovered multiple important insights,

namely that (1) lessons from architecture design in the fully-

supervised setting do not necessarily translate to the self-

supervised setting; (2) contrary to previously popular archi-

tectures like AlexNet, in residual architectures, the final pre-

logits layer consistently results in the best performance; (3)

the widening factor of CNNs has a drastic effect on perfor-

mance of self-supervised techniques and (4) SGD training

of linear logistic regression may require very long time to

converge. In our study we demonstrated that performance

of existing self-supervision techniques can be consistently

boosted and that this leads to halving the gap between self-

supervision and fully labeled supervision.

Most importantly, though, we reveal that neither is the

ranking of architectures consistent across different meth-

ods, nor is the ranking of methods consistent across archi-

tectures. This implies that pretext tasks for self-supervised

learning should not be considered in isolation, but in con-

junction with underlying architectures.

Acknowledgements. We thank Sylvain Gelly for many

fruitful discussions and Marvin Ritter for helping us to run

experiments using TPUs.

1927



References

[1] J. Behrmann, D. Duvenaud, and J.-H. Jacobsen. Invertible

residual networks. arXiv preprint arXiv:1811.00995, 2018.

[2] M. Caron, P. Bojanowski, A. Joulin, and M. Douze. Deep

clustering for unsupervised learning of visual features. Eu-

ropean Conference on Computer Vision (ECCV), 2018.

[3] T. Chen, X. Zhai, M. Ritter, M. Lucic, and N. Houlsby. Self-

supervised generative adversarial networks. In Conference

on Computer Vision and Pattern Recognition (CVPR). 2019.

[4] Y. Chen, W. Li, C. Sakaridis, D. Dai, and L. Van Gool. Do-

main adaptive faster R-CNN for object detection in the wild.

In Conference on Computer Vision and Pattern Recognition

(CVPR), 2018.

[5] D. Dai and L. Van Gool. Dark model adaptation: Seman-

tic image segmentation from daytime to nighttime. arXiv

preprint arXiv:1810.02575, 2018.

[6] L. Dinh, J. Sohl-Dickstein, and S. Bengio. Density estima-

tion using real NVP. In International Conference on Learn-

ing Representations (ICLR), 2017.

[7] C. Doersch, A. Gupta, and A. A. Efros. Unsupervised vi-

sual representation learning by context prediction. In Inter-

national Conference on Computer Vision (ICCV), 2015.

[8] C. Doersch and A. Zisserman. Multi-task self-supervised

visual learning. In International Conference on Computer

Vision (ICCV), 2017.

[9] A. Dosovitskiy, J. T. Springenberg, M. Riedmiller, and

T. Brox. Discriminative unsupervised feature learning with

convolutional neural networks. In Advances in Neural Infor-

mation Processing Systems (NIPS), 2014.

[10] F. Ebert, S. Dasari, A. X. Lee, S. Levine, and C. Finn.

Robustness via retrying: Closed-loop robotic manipulation

with self-supervised learning. Conference on Robot Learn-

ing (CoRL), 2018.

[11] S. Gidaris, P. Singh, and N. Komodakis. Unsupervised rep-

resentation learning by predicting image rotations. In In-

ternational Conference on Learning Representations (ICLR),

2018.

[12] A. N. Gomez, M. Ren, R. Urtasun, and R. B. Grosse. The re-

versible residual network: Backpropagation without storing

activations. In Advances in neural information processing

systems (NIPS), 2017.

[13] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu,

D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio. Gen-

erative adversarial nets. In Advances in neural information

processing systems, 2014.

[14] K. He, G. Gkioxari, P. Dollár, and R. Girshick. Mask r-cnn.

In International Conference on Computer Vision (ICCV).

IEEE, 2017.

[15] K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into

rectifiers: Surpassing human-level performance on imagenet

classification. In International conference on computer vi-

sion (ICCV), pages 1026–1034, 2015.

[16] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning

for image recognition. In Conference on Computer Vision

and Pattern Recognition (CVPR), 2016.

[17] K. He, X. Zhang, S. Ren, and J. Sun. Identity mappings in

deep residual networks. In European conference on com-

puter vision (ECCV). Springer, 2016.

[18] A. Hermans, L. Beyer, and B. Leibe. In Defense of the

Triplet Loss for Person Re-Identification. arXiv preprint

arXiv:1703.07737, 2017.

[19] S. Ioffe and C. Szegedy. Batch normalization: Acceler-

ating deep network training by reducing internal covari-

ate shift. International Conference on Machine Learning

(ICML), 2015.

[20] J. Jacobsen, A. W. M. Smeulders, and E. Oyallon. i-RevNet:

Deep invertible networks. In International Conference on

Learning Representations (ICLR), 2018.

[21] E. Jang, C. Devin, V. Vanhoucke, and S. Levine. Grasp2Vec:

Learning object representations from self-supervised grasp-

ing. In Conference on Robot Learning, 2018.

[22] D. Kim, D. Cho, D. Yoo, and I. S. Kweon. Learning image

representations by completing damaged jigsaw puzzles. Win-

ter Conference on Applications of Computer Vision (WACV),

2018.

[23] B. Korbar, D. Tran, and L. Torresani. Cooperative learning

of audio and video models from self-supervised synchroniza-

tion. arXiv preprint arXiv:1807.00230, 2018.

[24] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet

classification with deep convolutional neural networks. In

Advances in neural information processing systems (NIPS),

2012.

[25] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet

classification with deep convolutional neural networks. In

Advances in neural information processing systems (NIPS),

2012.

[26] M. A. Lee, Y. Zhu, K. Srinivasan, P. Shah, S. Savarese,

L. Fei-Fei, A. Garg, and J. Bohg. Making sense of vi-

sion and touch: Self-supervised learning of multimodal

representations for contact-rich tasks. arXiv preprint

arXiv:1810.10191, 2018.

[27] D. C. Liu and J. Nocedal. On the limited memory bfgs

method for large scale optimization. Mathematical program-

ming, 45(1-3):503–528, 1989.

[28] T. Mikolov, K. Chen, G. Corrado, and J. Dean. Efficient

estimation of word representations in vector space. arXiv

preprint arXiv:1301.3781, 2013.

[29] T. N. Mundhenk, D. Ho, and B. Y. Chen. Improvements

to context based self-supervised learning. In Conference on

Computer Vision and Pattern Recognition (CVPR), 2018.

[30] V. Nair and G. E. Hinton. Rectified linear units improve re-

stricted boltzmann machines. In International conference on

machine learning (ICML), 2010.

[31] M. Noroozi and P. Favaro. Unsupervised learning of visual

representations by solving jigsaw puzzles. In European Con-

ference on Computer Vision (ECCV), 2016.

[32] M. Noroozi, H. Pirsiavash, and P. Favaro. Representation

learning by learning to count. In International Conference

on Computer Vision (ICCV), 2017.

[33] M. Noroozi, A. Vinjimoor, P. Favaro, and H. Pirsiavash.

Boosting self-supervised learning via knowledge transfer.

Conference on Computer Vision and Pattern Recognition

(CVPR), 2018.

1928



[34] A. v. d. Oord, Y. Li, and O. Vinyals. Representation

learning with contrastive predictive coding. arXiv preprint

arXiv:1807.03748, 2018.

[35] A. Owens and A. A. Efros. Audio-visual scene analysis with

self-supervised multisensory features. European Conference

on Computer Vision (ECCV), 2018.

[36] D. Pathak, R. B. Girshick, P. Dollár, T. Darrell, and B. Har-

iharan. Learning features by watching objects move. In

Conference on Computer Vision and Pattern Recognition

(CVPR), 2017.

[37] D. Pathak, P. Krähenbühl, J. Donahue, T. Darrell, and

A. Efros. Context encoders: Feature learning by inpainting.

In Conference on Computer Vision and Pattern Recognition

(CVPR), 2016.

[38] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,

S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein,

et al. Imagenet large scale visual recognition challenge. In-

ternational Journal of Computer Vision (IJCV), 115(3):211–

252, 2015.

[39] N. Sayed, B. Brattoli, and B. Ommer. Cross and

learn: Cross-modal self-supervision. arXiv preprint

arXiv:1811.03879, 2018.

[40] F. Schroff, D. Kalenichenko, and J. Philbin. Facenet: A uni-

fied embedding for face recognition and clustering. In Com-

puter Vision and Pattern Recognition (CVPR), 2015.

[41] P. Sermanet, C. Lynch, Y. Chebotar, J. Hsu, E. Jang,

S. Schaal, and S. Levine. Time-contrastive networks:

Self-supervised learning from video. arXiv preprint

arXiv:1704.06888, 2017.

[42] K. Simonyan and A. Zisserman. Very deep convolutional

networks for large-scale image recognition. arXiv preprint

arXiv:1409.1556, 2014.

[43] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,

D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich.

Going deeper with convolutions. In Conference on Computer

Vision and Pattern Recognition (CVPR), 2015.

[44] O. Wiles, A. Koepke, and A. Zisserman. Self-supervised

learning of a facial attribute embedding from video. In

British Machine Vision Conference (BMVC), 2018.

[45] S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He. Ag-

gregated residual transformations for deep neural networks.

In Conference on Computer Vision and Pattern Recognition

(CVPR). IEEE, 2017.

[46] S. Zagoruyko and N. Komodakis. Wide residual networks.

British Machine Vision Conference (BMVC), 2016.

[47] R. Zhang, P. Isola, and A. A. Efros. Colorful image coloriza-

tion. In European Conference on Computer Vision (ECCV),

2016.

[48] R. Zhang, P. Isola, and A. A. Efros. Split-brain autoen-

coders: Unsupervised learning by cross-channel prediction.

In Conference on Computer Vision and Pattern Recognition

(CVPR), 2017.

[49] B. Zhou, A. Lapedriza, J. Xiao, A. Torralba, and A. Oliva.

Learning deep features for scene recognition using places

database. In Advances in Neural Information Processing Sys-

tems (NIPS). 2014.

1929


