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Abstract

Unpaired Image-to-image Translation is a new ris-

ing and challenging vision problem that aims to learn a

mapping between unaligned image pairs in diverse do-

mains. Recent advances in this field like MUNIT [11]

and DRIT [17] mainly focus on disentangling content and

style/attribute from a given image first, then directly adopt-

ing the global style to guide the model to synthesize new do-

main images. However, this kind of approaches severely in-

curs contradiction if the target domain images are content-

rich with multiple discrepant objects. In this paper, we

present a simple yet effective instance-aware image-to-

image translation approach (INIT), which employs the fine-

grained local (instance) and global styles to the target im-

age spatially. The proposed INIT exhibits three import

advantages: (1) the instance-level objective loss can help

learn a more accurate reconstruction and incorporate di-

verse attributes of objects; (2) the styles used for target do-

main of local/global areas are from corresponding spatial

regions in source domain, which intuitively is a more rea-

sonable mapping; (3) the joint training process can benefit

both fine and coarse granularity and incorporates instance

information to improve the quality of global translation. We

also collect a large-scale benchmark1 for the new instance-

level translation task. We observe that our synthetic images

can even benefit real-world vision tasks like generic object

detection.

1. Introduction

In the recent years, Image-to-Image (I2I) translation has

received significant attention in computer vision commu-

nity, since many vision and graphics problems can be for-

mulated as an I2I translation problem like super-resolution,

neural style transfer, colorization, etc. This technique has

∗Work done during internship at SenseTime.
1contains 155,529 high-resolution natural images across four different

modalities with object bounding box annotations. A summary of the entire

dataset is provided in the following sections.
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Figure 1. Illustration of the motivation of our method. (1) MU-

NIT [11]/DRIT [17] methods; (2) their limitation; and (3) our so-

lution for instance-level translation. More details can be referred

to the text.

also been adapted to the relevant fields such as medical

image processing [40] to further improve the medical vol-

umes segmentation performance. In general, Pix2pix [13]

is regarded as the first unified framework for I2I transla-

tion which adopts conditional generative adversarial net-

works [26] for image generation, while it requires the paired

examples during training process. A more general and chal-

lenging setting is the unpaired I2I translation, where the

paired data is unavailable.

Several recent efforts [42, 21, 11, 17, 1] have been made

on this direction and achieved very promising results. For

instance, CycleGAN [42] proposed the cycle consistency

loss to enforce the learning process that if an image is trans-

lated to the target domain by learning a mapping and trans-

lated back with an inverse mapping, the output should be

the original image. Furthermore, CycleGAN assumes the

latent spaces are separate of the two mappings. In contrast,

UNIT [21] assumes two domain images can be mapped onto
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Figure 2. A natural image example of our I2I translation.

a shared latent space. MUNIT [11] and DRIT [17] fur-

ther postulate that the latent spaces can be disentangled to a

shared content space and a domain-specific attribute space.

However, all of these methods thus far have focused on

migrating styles or attributes onto the entire images. As

shown in Fig. 1 (1), they work well on the unified-style

scenes or relatively content-simple scenarios due to the

consistent pattern across various spatial areas in an image,

while this is not true for the complex structure images with

multiple objects since the stylistic vision disparity between

objects and background in an image is always huge or even

totally different, as in Fig. 1 (2).

To address the aforementioned limitation, in this paper

we present a method that can translate objects and back-

ground/global areas separately with different style codes as

in Fig. 1 (3), and still training in an end-to-end manner. The

motivation of our method is illustrated in Fig. 2. Instead

of using the global style, we use instance-level style vec-

tors that can provide more accurate guidance for visually

related object generation in target domain. We argue that

styles should be diverse for different objects, background

or global image, meaning that the style codes should not

be identical for the entire image. More specifically, a car

from “sunny” to the “night” domain should have different

style codes comparing to the global image translation be-

tween these two domains. Our method achieves this goal

by involving the instance-level styles. Given a pair of un-

aligned images and object locations, we first apply our en-

coders to obtain the intermediate global and instance level

content and style vectors separately. Then we utilize the

cross-domain mapping to obtain the target domain images

by swapping the style/attribute vectors. Our swapping strat-

egy is introduced with more details in Sec. 3. The main

advantage of our method is the exploration and usage of ob-

ject level styles, which affects and guides the generation of

target domain objects directly. Certainly, we can also apply

the global style for target objects to enforce the model to

learn more diverse results.

In summary, our contributions are three fold:

• We propel I2I translation problem step forward to

instance-level such that the constraints could be ex-

ploited on both instance and global-level attributes by

adopting the proposed compound loss.

• We conduct extensive qualitative and quantitative ex-

periments to demonstrate that our approach can sur-

pass against the baseline I2I translation methods. Our

synthetic images can be even beneficial to other vision

tasks such as generic object detection, and further im-

prove the performance.

• We introduce a large-scale, multimodal, highly varied

I2I translation dataset, containing ∼155k streetscape

images across four domains. Our dataset not only in-

cludes the domain category labels, but also provides

the detailed object bounding box annotations, which

will benefit the instance-level I2I translation problem.

2. Related Work

Image-to-Image Translation. The goal of I2I translation

is to learn the mapping between two different domains.

Pix2pix [13] first proposes to use conditional generative ad-

versarial networks [26] to model the mapping function from

input to output images. Inspired by Pix2pix, some works

further adapt it to a variety of relevant tasks, such as seman-

tic layouts → scenes [14], sketches → photographs [33],

etc. Despite popular usage, the major weaknesses of these

methods are that they require the paired training examples

and the outputs are single-modal. In order to produce multi-

modal and more diverse images, BicycleGAN [43] encour-

ages the bijective consistency between the latent and tar-

get spaces to avoid the mode collapse problem. A genera-

tor learns to map the given source image, combined with a

low-dimensional latent code, to the output during training.

While this method still needs the paired training data.

Recently, CycleGAN [42] is proposed to tackle the un-

paired I2I translation problem by using the cycle consis-

tency loss. UNIT [21] further makes a share-latent assump-

tion and adopts Coupled GAN in their method. To address

the multimodal problem, MUNIT [11], DRIT [17], Aug-

mented CycleGAN [1], etc. adopt a disentangled represen-

tation to further learn diverse I2I translation from unpaired

training data.

Instance-level Image-to-Image Translation. To the best

of our knowledge, there are so far very few efforts on the

instance-level I2I translation problem. Perhaps the most

similar to our work is the recently proposed InstaGAN [27],

which utilizes the object segmentation masks to translate

both an image and the corresponding set of instance at-

tributes while maintaining the permutation invariance prop-

erty of instances. A context preserving loss is designed to

encourage model to learn the identity function outside of

target instances. The main difference with ours is that in-
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Datasets Paired Resolution Bbox annotations Modalities # images

edge↔shoes [13] ! low - {edge, shoes} 50,000

edge↔handbags [13] ! low - {edge, handbags} 137,000

CMP Facades [31] ! HD - {facade, semantic map} 606

Yosemite (summer↔winter) [42] ✗ HD - {summer, winter} 2,127

Yosemite∗ (MUNIT) [11] ✗ HD - {summer, winter} 5,638

Cityscapes [4] ! HD ! { semantic, realistic} 3,475

Transient Attributes [16] ! HD ✗ {40 transient attributes} 8,571

Ours ✗ HD† ! {sunny, night, cloudy, rainy} 155,529
Table 1. Feature-by-feature comparison of popular I2I translation datasets. Our dataset contains four relevant but visually-different

domains: sunny, night, cloudy and rainy. †The images in our dataset contain two types of resolutions: 1208×1920 and 3000×4000.

staGAN cannot translate different domains for an entire im-

age sufficiently. They focus on translating instances and

maintain the outside areas, in contrast, our method can

translate instances and outside areas simultaneously and

make global images more realistic. Furthermore, InstaGAN

is built on the CycleGAN [42], which is single modal, while

we choose to leverage the MUNIT [11] and DRIT [17] to

build our INIT, thus our method inherits multimodal and

unsupervised properties, meanwhile, produces more diverse

and higher quality images.

Some other existing works [23, 18] are more or less re-

lated to this paper. For instance, DA-GAN [23] learns a

deep attention encoder to enable the instance-level trans-

lation, which is unable to handle the multi-instance and

complex circumstance. BeautyGAN [18] focuses on fa-

cial makeup transfer by employing histogram loss with face

parsing mask.

A New Benchmark for Unpaired Image-to-Image Trans-

lation. We introduce a new large-scale street scene cen-

tric dataset that addresses three core research problems in

I2I translation: (1) unsupervised learning paradigm, mean-

ing that there is no specific one-to-one mapping in the

dataset; (2) multimodal domains incorporation. Most ex-

isting I2I translation datasets provide only two different do-

mains, which limit the potential to explore more challeng-

ing task like multi-domain incorporation circumstance. Our

dataset contains four domains: sunny, night, cloudy and

rainy2 in a unified street scene; and (3) multi-granularity

(global and instance-level) information. Our dataset pro-

vides instance-level bounding box annotations, which can

utilize more details for learning a translation model. Tab. 1

shows a feature-by-feature comparison among various I2I

translation datasets. We also visualize some examples of

the dataset in Fig. 6. For instance category, we annotate

three common objects in street scenes including: car, per-

son, traffic sign (speed limited sign). The detailed statistics

(# images) of the entire dataset are shown in Sec. 4.

2For safety, we collect the rainy images after the rain, so this category

looks more like overcast weather with wet road.
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Figure 3. Our content-style pair association strategy. Only coarse

styles can be applied to fine contents, the reversal of processing

flow is not allowed during training.

3. Instance-aware Image-to-Image Translation

Our goal is to realize the instance-aware I2I translation

between two different domains without paired training ex-

amples. We build our framework by leveraging the MU-

NIT [11] and DRIT [17] methods. To avoid repetition, we

omit some innocuous details. Similar to MUNIT [11] and

DRIT [17], our method is straight-forward and simple to

implement. As illustrated in Fig. 5, our translation model

consists of two encoders Eg, Eo (g and o denote the global

and instance image regions respectively), and two decoders

Gg, Go in each domain X or Y . A more detailed illustra-

tion is shown in Fig. 4. Since we have the object coordi-

nates, we can crop the object areas and feed them into the

instance-level encoder to extra the content/style vectors. An

alternative method for object content vectors is to adopt RoI

pooling [5] from the global image content features. Here we

use image crop (object region) and share the parameters for

the two encoders, which is more easier to implement.

Disentangle content and style on object and entire im-

age. As [3, 25, 11, 17], our method also decomposes input

images/objects into a shared content space and a domain-

specific style space. Take global image as an example, each

encode Eg can decompose the input to a content code cg
and a style code sg , where Eg = (Ec

g, E
s
g), cg = Ec

g(I),
sg = Es

g(I), I denotes the input image representation. cg
and sg are global-level content/style features.

Generate style code bank. We generate the style codes

from objects, background and entire images, which form

3685



D
o

w
n
-

s
a
m

p
le

D
o
w

n
-

s
a
m

p
le

So1

So2

So3

Sb

Sg

Residual

..
.

Style code bank

Residual

Residual

U
p
-

s
a
m

p
le

U
p

-
s
a
m

p
le

U
p

-
s
a
m

p
le

Sunny

Night

Reconstructed
Region/Image

Residual

..
.

RoIs

FC layer

Content-Style Association

Global pooling

object style

background style

global style

Figure 4. Overview of our instance-aware cross-domain I2I translation. The whole framework is based on the MUNIT method [11], while

we further extend it to realize the instance-level translation purpose. Note that after content-style association, the generated images will

place in the target domain, so a translation back process will be employed before self-reconstruction, which is not illustrated here.
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Figure 5. Illustration of our cross-cycle consistency process. We

only show cross-granularity (image ↔ object), the cross-domain

consistency (X ↔ Y) is similar to the above paradigm.

our style code bank for the following swapping operation

and translation. In contrast, MUNIT [11] and DRIT [17] use

only the entire image style or attribute, which is struggling

to model and cover the rich image spatial representation.

Associate content-style pairs for cyclic reconstruction.

Our cross-cycle consistency is performed by swapping

encoder-decoder pairs (dashed arc lines in Fig. 5). The

cross-cycle includes two modes: cross-domain (X ↔ Y)

and cross-granularity (entire image ↔ object). We illus-

trate cross-granularity (image↔ object) in Fig. 5, the cross-

domain consistency (X ↔ Y) is similar to MUNIT [11] and

DRIT [17]. As shown in Fig. 3, the swapping or content-

style association strategy is a hierarchical structure across

multi-granularity areas. Intuitively, the coarse (global) style

can affect fine content and be adopted to local areas, while

it’s not true if the process is reversed. Following [11], we

also use AdaIN [10] to combine the content and style vec-

tors.

Incorporate Multi-Scale. It’s technically easy to incorpo-

rate multi-scale advantage into the framework. We simply

replace the object branch in Fig. 5 with resolution-reduced

images. In our experiments, we use 1/2 scale and original

size images as pairs to perform scale-augmented training.

Specifically, styles from small size and original size images

can be performed to each other, and the generator needs

to learn multi-scale reconstruction for both of them, which

leads to more accurate results.

Reconstruction loss. We use self-reconstruction and cross-

cycle consistency loss [17] for both entire image and object

that encourage reconstruction of them. With encoded c and

s, the decoders should decode them back to original input,

Î = Gg(E
c
g(I), E

s
g(I)), ô = Go(E

c
o(o), E

s
o(o)) (1)

We can also reconstruct the latent distribution (i.e. content

and style vectors) as [11].

ĉo = Ec
o(Go(co, sg)), ŝo = Es

o(Go(co, sg)) (2)

where co and sg are instance-level content and global-level

style features. Then, we can use the following formation to

learn a reconstruction of them:

Lk
recon = Ek∼p(k)

[∥
∥
∥k̂ − k

∥
∥
∥
1

]

(3)
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Cloudy RainySunny Night

Figure 6. Image samples from our benchmark grouped by their domain categories (sunny, night, cloudy and rainy). In each group, left are

original images and right are images with corresponding bounding box annotations.

where k can be I , o, c or s. p(k) denotes the distribution of

data k. The formation of cross-cycle consistency is similar

to this process and more details can be referred to [17].

Adversarial loss. Generative adversarial learning [6] has

been adapted to many visual tasks, e.g., detection [28, 2],

inpainting [30, 38, 12, 37], ensemble [34], etc. We adopt

adversarial loss Ladv where D
g
X , Do

X , D
g
Y and Do

Y attempt

to discriminate between real and synthetic images/objects

in each domain. We explore two designs for the discrimina-

tors: weight-sharing or weight-independent for global and

instance images in each domain. The ablation experimen-

tal results are shown in Tab. 3 and Tab. 4, we observe that

shared discriminator is a better choice in our experiments.

Full objective function. The full objective function of our

framework is:

min
EX ,EY ,GX ,GY

max
DX ,DY

L(EX , EY , GX , GY , DX , DY)

= λg(L
gX + LgY ) + λcg (L

cX
g + LcY

g ) + λsg (L
sX
g + LsY

g )
︸ ︷︷ ︸

global−level reconstruction loss

+λo(L
oX + LoY ) + λco(L

cX
o + LcY

o ) + λso(L
sX
o + LsY

o )
︸ ︷︷ ︸

instance−level reconstruction loss

+ L
Xg

adv + L
Yg

adv
︸ ︷︷ ︸

global−level GAN loss

+ LXo

adv + L
Yo

adv
︸ ︷︷ ︸

instance−level GAN loss

(4)

During inference time, we simply use the global branch

to generate the target domain images (See Fig. 4 upper-right

part) so that it’s not necessary to use bounding box annota-

tions at this stage, and this strategy can also guarantee that

the generated images are harmonious.

Domain Training (85%) Testing (15%) Total (100%)

Sunny 49,663 8,764 58,427

Night 24,559 4,333 28,892

Rainy 6,041 1,066 7,107

Cloudy 51,938 9,165 61,103

Total 132,201 23,328 155,529

Table 2. Statistics (# images) of the entire dataset across four do-

mains: sunny, night, rainy and cloudy. The data is divided into two

subsets: 85% for training and 15% for testing.

4. Experiments and Analysis

We conduct experiments on our collected dataset (INIT).

We also use COCO dataset [20] to verify the effectiveness

of data augmentation.

INIT Dataset. INIT dataset consists of 132,201 images for

training and 23,328 images for testing. The detailed statis-

tics are shown in Tab. 2. All the data are collected in Tokyo,

Japan with SEKONIX AR0231 camera. The whole collec-

tion process lasted about three months.

Implementation Details. Our implementation is based on

MUNIT3 with PyTorch [29]. For I2I translation, we resize

the short side of images to 360 pixels due to the limitation of

GPU memory. For COCO image synthesis, since the train-

ing images (INIT dataset) and target images (COCO) are

in different distributions, we keep the original size of our

training image and crop 360×360 pixels to train our model,

in order to learn more details of images and objects, mean-

while, ignore the global information. In this circumstance,

we build our object part as an independent branch and each

3https://github.com/NVlabs/MUNIT
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Method Diversity

sunny→ night sunny→rainy sunny→cloudy Average

UNIT [21] 0.067 0.062 0.068 0.066

CycleGAN [42] 0.016 0.008 0.011 0.012

MUNIT [11] 0.292 0.239 0.211 0.247

DRIT [17] 0.231 0.173 0.166 0.190

INIT w/ Ds 0.330 0.267 0.224 0.274

INIT w/o Ds 0.324 0.238 0.177 0.246

Real Images 0.573 0.489 0.465 0.509
Table 3. Diversity scores on our dataset. We use the average LPIPS distance [39] to measure the diversity of generated images.

CycleGAN [42] UNIT [21] MUNIT [11] DRIT [17] INIT w/ Ds INIT w/o Ds

CIS IS CIS IS CIS IS CIS IS CIS IS CIS IS

sunny→night 0.014 1.026 0.082 1.030 1.159 1.278 1.058 1.224 1.060 1.118 1.083 1.120

night→sunny 0.012 1.023 0.027 1.024 1.036 1.051 1.024 1.099 1.045 1.080 1.024 1.104

sunny→rainy 0.011 1.073 0.097 1.075 1.012 1.146 1.007 1.207 1.036 1.152 1.034 1.146

rainy→sunny 0.010 1.090 0.014 1.023 1.055 1.102 1.028 1.103 1.060 1.119 1.059 1.124

sunny→cloudy 0.014 1.097 0.081 1.134 1.008 1.095 1.025 1.104 1.040 1.142 1.025 1.147

cloudy→sunny 0.090 1.033 0.219 1.046 1.026 1.321 1.046 1.249 1.016 1.460 1.006 1.363

Average 0.025 1.057 0.087 1.055 1.032 1.166 1.031 1.164 1.043 1.179 1.039 1.167

Table 4. Comparison of Conditional Inception Score (CIS) and Inception Score (IS). To obtain high CIS and IS scores, a model is

required to synthesis images that are more realistic, diverse with high-quality.

object is resized to 120×120 pixels during training.

4.1. Baselines

We perform our evaluation on the following four recent

proposed state-of-the-art unpaired I2I translation methods:

- CycleGAN [42]: CycleGAN contains two translation

functions (X → Y and X ← Y), and the correspond-

ing adversarial loss. It assumes that the input images can

be translated to another domain and then can be mapped

back with a cycle consistency loss.

- UNIT [21]: The UNIT method is an extension of Cycle-

GAN [42] that is based on the shared latent space assump-

tion. It contains two VAE-GANs and also uses cycle-

consistency loss [42] for learning models.

- MUNIT [11]: MUNIT consists of an encoder and a de-

coder for each domain. It assumes that the image rep-

resentation can be decomposed into a domain-invariant

content space and a domain-specific style space. The la-

tent vectors of each encoder are disentangled to a content

vector and a style vector. I2I translation is performed by

swapping content-style pairs.

- DRIT [17]: The motivation of DRIT is similar to MUNIT.

It consists of content encoders, attribute encoders, gener-

ators and domain discriminators for both domains. The

content encoder maps images into a shared content space

and the attribute encoder maps images into a domain-

specific attribute space. A cross-cycle consistency loss

is adopted for performing I2I translation.

Real Synthetic Real Synthetic GT

Figure 7. Visualization of our synthetic images. The left group

images are from COCO and the right are from Cityscapes.

4.2. Evaluation

We adopt the same evaluation protocol from previous un-

supervised I2I translation works and evaluate our method

with the LPIPS Metric [39], Inception Score (IS) [32] and

Conditional Inception Score (CIS) [11].

LPIPS Metric. Zhang et al. proposed LPIPS distance [39]

to measure the translation diversity, which has been veri-

fied to correlate well with human perceptual psychophysical

similarity. Following [11], we calculate the average LPIPS

distance between 19 pairs of randomly sampled translation

outputs from 100 input images of our test set. Follow-

ing [11] and recommended by [39], we also use the pre-

trained AlexNet [15] to extract deep features.

Results are summarized in Tab. 3, “INIT w/ Ds” denotes

we train our model with shared discriminator between entire
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COCO 2017 training COCO 2017 validation object detection (%) instance segmentation (%)

Real Synthetic Real Synthetic
Avg. Precision, IoU: Avg. Precision, mask:

0.5:0.95 0.5 0.75 0.5:0.95 0.5 0.75

! ! 37.7 59.2 40.8 34.3 56.0 36.2

! ! 30.4 49.7 32.6 27.8 46.6 29.2

! ! 30.0 50.0 31.6 27.2 46.5 28.0

! ! 30.5 49.7 32.7 27.8 46.4 29.0

! ! ! 32.6↑2.1 52.6↑2.9 34.2↑1.5 29.0↑1.2 49.0↑2.6 29.8↑0.8

! ! ! 38.8↑1.1 60.2↑1.0 42.5↑1.7 35.2↑0.9 57.0↑1.0 37.4↑1.2

Table 5. Mask-RCNN with ResNet-50-FPN [19] detection and segmentation results on MS COCO 2017 val set.

Figure 8. Visualization of multimodal results. We use randomly

sampled style codes to generate these images and the darkness are

slightly different across them.

COCO 2017 (%) IoU IoU0.5 IoU0.75

+Syn. (MUNIT [11]) +0.7 +0.4 +1.0

+Syn. (Ours) +1.1 +1.0 + 1.7
Table 6. Improvement comparison on COCO detection with dif-

ferent image synthetic methods.

Metric Percentage (%)

COCO Det.&Seg. ↓19.1 & ↓19.0

Cityscapes mIoU&mAcc ↓ 2.6 & ↓2.4

Table 7. Performance decline when training and testing on

real image, and comparing to results on synthetic image. We

adopt PSPNet [41] with ResNet-50 [9] on Cityscapes [4] and

obtain (real&real): mIoU: 76.6%, mAcc: 83.1%; (syn.&syn.):

74.6%/81.1% .

image and object. “INIT w/o Ds” denotes we build separate

discriminators for image and object. Thanks to the coarse

and fine styles we used, our average INIT w/ Ds score out-

performs MUNIT with a notable margin. We also observe

that our dataset (real image) has a very large diversity score,

which indicates that the dataset is diverse and challenging.

Inception Score (IS) and Conditional Inception Score

(CIS). We use the Inception Score (IS) [32] and Condi-

tional Inception Score (CIS) [11] to evaluate our learned

models. IS measures the diversity of all output images and

CIS measures diversity of output conditioned on a single

input image, which is a modified IS that is more suitable

for evaluating multimodal I2I translation task. The detailed

definition of CIS can be referred to [11]. We also employ

with Inception V3 model [36] to fine-tune our classification

model on four domain category labels of our dataset. Other

Input

Recon

MUNIT

Ours

Figure 9. Qualitative comparison on randomly selected in-

stance level results. The first row shows the input objects. The

second row shows the self-reconstruction results. The third and

fourth rows show outputs from MUNIT and ours, respectively.

settings are the same as [11]. It can be seen in Tab. 4 that

our results are consistently better than the baselines MUNIT

and DRIT.

Image Synthesis on Multiple Datasets The visualization

of our synthetic images is shown in Fig. 7. The left group

images are on COCO and the right are on Cityscapes. We

observe that the most challenging problem for multiple

datasets synthesis is the inter-class variance among them.

Data Augmentation for Detection & Segmentation on

COCO. We use Mask RCNN [8] framework for the exper-

iments. A synthetic copy of entire COCO dataset is gener-

ated by our sunny→night model. We employ open-source

implementation of Mask RCNN4 for training the COCO

models. For training, we use the same number of training

epochs and other default settings including the learning rat-

ing schedule, # batchsize, etc.

All results are summarized in Tab. 5, the first column

(group) shows the training data we used, the second group

shows the validation data where we tested on. The third

and fourth groups are detection and segmentation results,

respectively. We can observe that our real-image trained

model can obtain 30.4% mAP on synthetic validation im-

ages, this indicates that the distribution differences between

original COCO and our synthetic images are not very huge.

It seems that our generation process is more likely to do

4https://github.com/facebookresearch/maskrcnn-benchmark
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Figure 10. Case-by-case comparison on sunny→night. The first row shows the input images. The second and third rows show random

outputs from MUNIT [11] and ours, respectively.

photo-metric distortions or brightness adjustment of im-

ages, which can be regarded as a data augmentation tech-

nique and has been verified the effectiveness for object de-

tection in [22]. From the last two rows we can see that not

only the synthetic images can help improve the real image

testing performance, but the real image can also boost the

results of synthetic images (both train and test on synthetic

images). We also compare improvement with different gen-

eration methods in Tab. 6. The results show that our ob-

ject branch can bring more benefits for detection task than

the baseline. We also believe that the proposed data aug-

mentation method can benefit to some limited training data

scenarios like learning detectors from scratch [35, 7].

We further conduct scene parsing on Cityscapes [4].

However, we didn’t see obvious improvement in this ex-

periment. Using PSPNet [41] with ResNet-50 [9], we ob-

tain mIoU: 76.6%, mAcc: 83.1% when training and testing

on real images and 74.6%/81.1% on both synthetic images.

We can see that the gaps between real and synthetic image

are really small. We conjecture this case (no gain) is be-

cause the synthetic Cityscapes is too close to the original

one. We compare the performance decline in Tab. 7. Since

the metrics are different in COCO and Cityscapes, we use

the relative percentage for comparison. The results indicate

that the synthetic images may be more diverse for COCO

since the decline is much smaller on Cityscapes.

5. Analysis

Qualitative Comparison. We qualitatively compare our

method with baseline MUNIT [11]. Fig. 10 shows example

results on sunny→night. We randomly select one output for

each method. It’s obvious that our results are much more

realistic, diverse with higher quality. If the object area is

small, MUNIT [11] may fall into mode collapse and brings

small artifacts around object area, in contrast, our method

can overcome this problem through instance-level recon-

struction. We also visualize the multimodal results in Fig. 8

with randomly sampled style vectors. It can be observed

that the various degrees of darkness are generated across

these images.

Instance Generation. The results of generated instances

are shown in Fig. 9, our method can generate more diverse

objects (columns 1, 2, 6), more details (columns 5, 6, 7)

with even the reflection (column 7). MUNIT sometimes

fails to generate desired results if the global style is not suit-

able for the target object (column 2).

Visualization of style distri-

bution by t-SNE [24]. The

groups with the same color

are paired object and global

styles of same domain.

Comparison of Local (Object) and Global Style Code

Distributions. To further verify our assumption that the

object and global styles are distinguishable enough to disen-

tangle, we visualize the embedded style vectors from our w/

Ds model. The visualization is plotted by t-SNE tool [24].

We randomly sample 100 images and objects in the test set

of each domain, results are shown in Fig. 5. The same color

groups represent the paired global images and objects in the

same domain. We can observe that the style vectors of same

domain global and object images are grouped and separate

with a remarkable margin, meanwhile, they are neighboring

in the embedded space. This is reasonable and demonstrates

the effectiveness of our learning process.

6. Conclusion

In this paper, we have presented a framework for

instance-aware I2I translation with unpaired training data.

Extensive qualitative and quantitative results demonstrate

that the proposed method can capture the details of objects

and produce realistic and diverse images. Meanwhile, we

also built up a large scale dataset with bounding box anno-

tation for the instance-level I2I translation problem.
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