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Figure 1: We propose a new model for neural rendering of humans. The model is trained for a single person and can produce

renderings of this person from novel viewpoints (top) or in the new body pose (bottom) unseen during training. To improve

generatlization, our model retains explicit texture representation, which is learned alongside the rendering neural network.

Abstract

We present a system for learning full body neural avatars,

i.e. deep networks that produce full body renderings of a

person for varying body pose and varying camera pose.

Our system takes the middle path between the classi-

cal graphics pipeline and the recent deep learning ap-

proaches that generate images of humans using image-to-

image translation. In particular, our system estimates an

explicit two-dimensional texture map of the model surface.

At the same time, it abstains from explicit shape model-

ing in 3D. Instead, at test time, the system uses a fully-

convolutional network to directly map the configuration of

body feature points w.r.t. the camera to the 2D texture co-

ordinates of individual pixels in the image frame. We show

that such system is capable of learning to generate realis-

tic renderings while being trained on videos annotated with

3D poses and foreground masks. We also demonstrate that

maintaining an explicit texture representation helps our sys-

tem to achieve better generalization compared to systems

that use direct image-to-image translation.

1. Introduction

Capturing and rendering human body in all of its com-

plexity under varying pose and imaging conditions is one

of the core problems of both computer vision and computer

graphics. Recently, there is a surge of interest that involves

deep convolutional networks (ConvNets) as an alternative to

traditional computer graphics means. Realistic neural ren-

dering of body fragments e.g. faces [37, 43, 62], eyes [24],

hands [47] is now possible. Very recent works have shown

abilities of such networks to generate views of a person with

a varying body pose but with fixed camera position, and us-

ing an excessive amount of training data [1, 12, 42, 67].

In this work, we focus on the learning of neural avatars,

i.e. generative deep networks that are capable of rendering

views of individual people under varying body pose defined

by a set of 3D positions of the body joints and under vary-

ing camera positions (Figure 1). We prefer to use body joint

positions to represent the human pose, as joint positions are

often easier to capture using marker-based or marker-less

motion capture systems.

Generally, neural avatars can serve as an alternative to

classical (“neural-free”) avatars based on a standard com-

puter graphics pipeline that estimates a user-personalized

body mesh in a neutral position, performs skinning (defor-

mation of the neutral pose), and projects the resulting 3D

surface onto the image coordinates, while superimposing

person-specific 2D texture. Neural avatars attempt to short-

cut the multiple stages of the classical pipeline and to re-

place them with a single network that learns the mapping

from the input (the location of body joints) to the output (the
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2D image). As a part of our contribution, we demonstrate

that, however appealing for its conceptual simplicity, exist-

ing pose-to-image translation networks generalize poorly to

new camera views, and therefore new architectures for neu-

ral avatars are required.

Towards this end, we present a neural avatar system that

does full body rendering and combines the ideas from the

classical computer graphics, namely the decoupling of ge-

ometry and texture, with the use of deep convolutional neu-

ral networks. In particular, similarly to the classic pipeline,

our system explicitly estimates the 2D textures of body

parts. The 2D texture within the classical pipeline effec-

tively transfers the appearance of the body fragments across

camera transformations and body articulations. Keeping

this component within the neural pipeline boosts general-

ization across such transforms. The role of the convolu-

tional network in our approach is then confined to predict-

ing the texture coordinates of individual pixels in the out-

put 2D image given the body pose and the camera parame-

ters (Figure 2). Additionally, the network predicts the body

foreground/background mask.

In our experiments, we compare the performance of our

textured neural avatar with a direct video-to-video trans-

lation approach [67], and show that explicit estimation of

textures brings additional generalization capability and im-

proves the realism of the generated images for new views

and/or when the amount of training data is limited.

2. Related work

Our approach is closely related to a vast number of pre-

vious work, and below we discuss a small subset of these

connections.

Building full-body avatars from image data has long

been one of the main topics of the computer vision re-

search. Traditionally, an avatar is defined by a 3D geomet-

ric mesh of a certain neutral pose, a texture, and a skinning

mechanism that transform the mesh vertices according to

pose changes. A large group of works has been devoted

to body modeling from 3D scanners [51], registered mul-

tiview sequences [53] as well as from depth and RGB-D

sequences [7, 69, 74]. On the other extreme are methods

that fit skinned parametric body models to single images

[6, 8, 30, 35, 49, 50, 59]. Finally, research on building full-

body avatars from monocular videos has started [4, 3]. Sim-

ilarly to the last group of works, our work builds an avatar

from a video or a set of unregistered monocular videos. The

classical (computer graphics) approach to modeling human

avatars requires explicit physically-plausible modeling of

human skin, hair, schlera, clothing surface, as well as ex-

plicit physically-plausible modeling of motion under pose

changes. Despite considerable progress in reflectivity mod-

eling [2, 18, 38, 70, 72] and better skinning/dynamic sur-

face modeling [23, 44, 60], the computer graphics approach

still requires considerable “manual” effort of designers to

achieve high realism [2] and to pass the so-called uncanny

valley [46], especially if real-time rendering of avatars is

required.

Image synthesis using deep convolutional neural net-

works is a thriving area of research [27, 20] and a lot of

recent effort has been directed onto synthesis of realistic hu-

man faces [15, 36, 61]. Compared to traditional computer

graphics representations, deep ConvNets model data by fit-

ting an excessive number of learnable weights to training

data. Such ConvNets avoid explicit modeling of the sur-

face geometry, surface reflectivity, or surface motion under

pose changes, and therefore do not suffer from the lack of

realism of the corresponding components. On the flipside,

the lack of ingrained geometric or photometric models in

this approach means that generalizing to new poses and in

particular to new camera views may be problematic. Still

a lot of progress has been made over the last several years

for the neural modeling of personalized talking head mod-

els [37, 43, 62], hair [68], hands [47]. Notably, the recent

system [43] has achieved very impressive results for neural

face rendering, while decomposing view-dependent texture

and 3D shape modeling.

Over the last several months, several groups have pre-

sented results of neural modeling of full bodies [1, 12, 42,

67]. While the presented results are very impressive, the ap-

proaches still require a large amount of training data. They

also assume that the test images are rendered with the same

camera views as the training data, which in our experience

makes the task considerably simpler than modeling body

appearance from arbitrary viewpoint. In this work, we aim

to expand the neural body modeling approach to tackle the

latter, harder task. The work [45] uses a combination of

classical and neural rendering to render human body from

new viewpoints, but does so based on depth scans and there-

fore with a rather different algorithmic approach.

A number of recent works warp a photo of a person to a

new photorealistic image with modified gaze direction [24],

modified facial expression/pose [9, 55, 64, 71], or modified

body pose [5, 48, 56, 64], whereas the warping field is esti-

mated using a deep convolutional network (while the origi-

nal photo effectively serves as a texture). These approaches

are however limited in their realism and/or the amount of

change they can model, due to their reliance on a single

photo of a given person for its input. Our approach also

disentangles texture from surface geometry/motion model-

ing but trains from videos, therefore being able to handle

harder problem (full body multiview setting) and to achieve

higher realism.

Our system relies on the DensePose body surface param-

eterization (UV parameterization) similar to the one used in

the classical graphics-based representation. Part of our sys-

tem performs a mapping from the body pose to the surface
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parameters (UV coordinates) of image pixels. This makes

our approach related to the DensePose approach [28] and

the earlier works [29, 63] that predict UV coordinates of

image pixels from the input photograph. Furthermore, our

approach uses DensePose results [28] for pretraining.

Our system is related to approaches that extract textures

from multi-view image collections [26, 39] or multi-view

video collections [66] or a single video [52]. Our approach

is also related to free-viewpoint video compression and ren-

dering systems, e.g. [11, 16, 21, 66]. Unlike those works,

ours is restricted to scenes containing a single human. At

the same time, our approach aims to generalize not only

to new camera views but also to new user poses unseen in

the training videos. The work of [73] is the most related

to ours in this group, as they warp the individual frames of

the multi-view video dataset according to the target pose to

generate new sequences. The poses that they can handle,

however, are limited by the need to have a close match in

the training set, which is a strong limitation given the com-

binatorial nature of the human pose configuration space.

3. Methods

Notation. We use the lower index i to denote objects that

are specific to the i-th training or test image. We use up-

percase notation, e.g. Bi to denote a stack of maps (a third-

order tensor/three-dimensional array) corresponding to the

i-th training or test image. We use the upper index to denote

a specific map (channel) in the stack, e.g. B
j
i . Furthermore,

we use square brackets to denote elements corresponding to

a specific image location, e.g. B
j
i [x, y] denotes the scalar

element in the j-th map of the stack Bi located at location

(x, y), and Bi[x, y] denotes the vector of elements corre-

sponding to all maps sampled at location (x, y).

Input and output. In general, we are interested in syn-

thesizing images of a certain person given her/his pose. We

assume that the pose for the i-th image comes in the form of

3D joint positions defined in the camera coordinate frame.

As an input to the network, we then consider a map stack

Bi, where each map B
j
i contains the rasterized j-th seg-

ment (bone) of the “stickman” (skeleton) projected on the

camera plane. To retain the information about the third

coordinate of the joints, we linearly interpolate the depth-

value between the joints defining the segments, and use the

interpolated values to define the values in the map B
j
i cor-

responding to the bone pixels (the pixels not covered by the

j-th bone are set to zero). Overall, the stack Bi incorporates

the information about the person and the camera pose.

As an output of the whole system, we expect an RGB

image (a three-channel stack) Ii and a single channel mask

Mi, defining the pixels that are covered by the avatar. Be-

low, we consider two approaches: the direct translation

baseline, which directly maps Bi into {Ii,Mi} and the tex-

tured neural avatar approach that performs such mapping

indirectly using texture mapping.

In both cases, at training time, we assume that for each

input frame i, the input joint locations and the “ground

truth” foreground mask are estimated, and we use 3D body

pose estimation and human semantic segmentation to ex-

tract them from raw video frames. At test time, given a

real or synthetic background image Ĩi, we generate the fi-

nal view by first predicting Mi and Ii from the body pose

and then linearly blending the resulting avatar into an im-

age: Îi = Ii ⊙ Mi + Ĩi ⊙ (1 − Mi) (where ⊙ defines a

“location-wise” product, i.e. the RGB values at each loca-

tion are multiplied by the mask value at this location).

Direct translation baseline. The direct approach that we

consider as a baseline to ours is to learn an image trans-

lation network that maps the map stack Bk
i to the map

stacks Ii and Mi (usually the two output stacks are pro-

duced within two branches that share the initial stage of the

processing [20]). Generally, mappings between stacks of

maps can be implemented using fully-convolutional archi-

tectures. Exact architectures and losses for such networks is

an active area of research [19, 14, 31, 33, 65]. Very recent

works [1, 12, 42, 67] have used direct translation (with var-

ious modifications) to synthesize the view of a person for

a fixed camera. We use the video-to-video variant of this

approach [67] as a baseline for our method.

Textured neural avatar. The direct translation approach

relies on the generalization ability of ConvNets and incor-

porates very little domain-specific knowledge into the sys-

tem. As an alternative, we suggest the textured avatar ap-

proach, that explicitly estimates the textures of body parts,

thus ensuring the similarity of the body surface appearance

under varying pose and cameras.

Following the DensePose approach [28], we subdivide

the body into n=24 parts, where each part has a 2D param-

eterization. Each body part also has the texture map T k,

which is a color image of a fixed pre-defined size (256×256

in our implementation). The training process for the tex-

tured neural avatar estimates personalized part parameteri-

zations and textures.

Again, following the DensePose approach, we assume

that each pixel in an image of a person is (soft)-assigned

to one of n parts or to the background and with a specific

location on the texture of that part (body part coordinates).

Unlike DensePose, where part assignments and body part

coordinates are induced from the image, our approach at

test time aims to predict them based solely on the pose Bi.

The introduction of the body surface parameterization

outlined above changes the translation problem. For a

given pose defined by Bi, the translation network now has
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Figure 2: The overview of the textured neural avatar system. The input pose is defined as a stack of ”bone” rasterizations (one

bone per channel; here we show it highlighted in red). The input is processed by the fully-convolutional network (orange) to

produce body part assignment map stack and the body part coordinate map stack. These stacks are then used to sample the

body texture maps at the locations prescribed by the part coordinate stack with the weights prescribed by the part assignment

stack to produce the RGB image. In addition, the last body assignment stack map corresponds to the background probability.

During learning, the mask and the RGB image are compared with ground-truth and the resulting losses are backpropagated

through the sampling operation into the fully-convolutional network and onto the texture, resulting in their updates.

to predict the stack Pi of body part assignments and the

stack Ci of body part coordinates, where Pi contains n+1
maps of non-negative numbers that sum to identity (i.e.
∑n

k=1
P k
i [x, y] = 1 for any position (x, y)), and Ci con-

tains 2n maps of real numbers between 0 and w, where w is

the spatial size (width and height) of the texture maps T k.

The map channel P k
i for k = 0, . . . , n−1 is then in-

terpreted as the probability of the pixel to belong to the k-

th body part, and the map channel Pn
i corresponds to the

probability of the background. The coordinate maps C2k
i

and C2k+1

i correspond to the pixel coordinates on the k-th

body part. Specifically, once the part assignments Pi and

body part coordinates Ci are predicted, the image Ii at each

pixel (x, y) is reconstructed as a weighted combination of

texture elements, where the weights and texture coordinates

are prescribed by the part assignment maps and the coordi-

nate maps correspondingly:

s(Pi, Ci, T )[x, y] =

n−1
∑

k=0

P k
i [x, y]·

T k
[

C2k
i [x, y], C2k+1

i [x, y]
]

, (1)

where s(·, ·, ·) is the sampling function (layer) that outputs

the RGB map stack given the three input arguments. In (1),

the texture maps T k are sampled at non-integer locations

(C2k
i [x, y], C2k+1

i [x, y]) in a piecewise-differentiable man-

ner using bilinear interpolation [32].

When training the neural textured avatar, we learn a con-

volutional network gφ with learnable parameters φ to trans-

late the input map stacks Bi into the body part assignments

and the body part coordinates. As gφ has two branches

(“heads”), we denote with gPφ the branch that produces the

body part assignments stack, and with gCφ the branch that

produces the body part coordinates. To learn the parameters

of the textured neural avatar, we optimize the loss between

the generated image and the ground truth image Īi:

Limage(φ, T ) = dImage

(

Īi, s
(

gPφ (Bi), g
C
φ (Bi), T

)

)

(2)

where d(·, ·) is a loss used to compare two images. In

our current implementation we use a simple perceptual loss

[25, 33, 65], which computes the maps of activations within

pretrained fixed VGG network [58] for both images and

evaluates the L1-norm between the resulting maps (12 first

layers are used). More advanced adversarial losses [27]

popular in image translation [19, 31] can also be used here.

During the stochastic optimization, the gradient of the

loss (2) is backpropagated through (1) both into the trans-

lation network gφ and onto the texture maps T k, so that

minimizing this loss updates not only the network param-

eters but also the textures themselves. As an addition, the

learning also optimizes the mask loss that measures the dis-

crepancy between the ground truth background mask 1−M̄i

and the background mask prediction:

Lmask(φ, T ) = dBCE

(

1̄−Mi, g
P
φ (Bi)

n
)

(3)

where dBCE is the binary cross-entropy loss, and gPφ (Bi)
n

corresponds to the n-th (i.e. background) channel of the pre-

dicted part assignment map stack. After backpropagation
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Figure 3: The impact of the learning on the texture (top,

shown for the same subset of maps T k) and on the convolu-

tional network gCφ predictions (bottom, shown for the same

pair of input poses). Left part shows the starting state (af-

ter initialization), while the right part shows the final state,

which is considerably different from the start.

of the weighted combination of (2) and (3), the network

parameters φ and the textures maps T k are updated. As

the training progresses, the texture maps change (Figure 2),

and so does the body part coordinate predictions, so that the

learning is free to choose the appropriate parameterization

of body part surfaces.

Initialization of textured neural avatar. The success of

our network depends on the initialization strategy. When

training from multiple video sequences, we use the Dense-

Pose system [28] to initialize the textured neural avatar.

Specifically, we run DensePose on the training data and pre-

train gφ as a translation network between the pose stacks Bi

and the DensePose outputs.

An alternative way that is particularly attractive when

training data is scarce is to initialize the avatar is through

transfer learning. In this case, we simply take gφ from an-

other avatar trained on abundant data. The explicit decou-

pling of geometry from appearance in our method facilitates

transfer learning, as the geometrical mapping provided by

the network gφ usually does not need to change much be-

tween two people, especially if the body types are not too

dissimilar.

Once the mapping gφ has been initialized, the texture

maps T k are initialized as follows. Each pixel in the train-

ing image is assigned to a single body part (according to the

prediction of the pretrained gPφ ) and to a particular texture

pixel on the texture of the corresponding part (according

to the prediction of the pretrained gCφ ). Then, the value of

each texture pixel is initialized to the mean of all image pix-

els assigned to it (the texture pixels assigned zero pixels are

initialized to black). The initialized texture T and gφ usu-

ally produce images that are only coarsely reminding the

person, and they change significantly during the end-to-end

learning (Figure 3).

4. Experiments

Below, we discuss the details of the experimental vali-

dation, provide comparison with baseline approaches, and

show qualitative results. The project webpage1 also con-

tains the video of the learned avatars.

Architecture. We input 3D pose via bone rasterizations,

where each bone, hand and face are drawn in separate

channels. We then use standard image translation archi-

tecture [33] to perform a mapping from these bones’ ras-

terizations to texture assignments and coordinates. This ar-

chitecture consists of downsampling layers, stack of resid-

ual blocks, operating at low dimensional feature representa-

tions, and upsampling layers. We then split the network into

two roughly equal parts: encoder and decoder, with texture

assignments and coordinates having separate decoders. We

use 4 downsampling and upsampling layers with initial 32

channels in the convolutions and 256 channels in the resid-

ual blocks. The ConvNet gφ has 17 million parameters.

Datasets. We train neural avatars on two types of datasets.

First, we consider collections of multiview videos registered

in time and space, where 3D pose estimates can be obtained

via triangulation of 2D poses. We use two subsets (cor-

responding to two persons from the 171026 pose2 scene)

from the CMU Panoptic dataset collection [34], referring to

them as CMU1 and CMU2 (both subsets have approximately

four minutes / 7,200 frames in each camera view). We con-

sider two regimes: training on 16 cameras (CMU1-16 and

CMU2-16) or six cameras (CMU1-6 and CMU2-6). The

evaluation is done on the hold-out cameras and hold-out

parts of the sequence (no overlap between train and test in

terms of the cameras or body motion).

We have also captured our own multiview sequences of

three subjects using a rig of seven cameras, spanning ap-

proximately 30◦. In one scenario, the training sets included

six out of seven cameras, where the duration of each video

was approximately six minutes (11,000 frames). We show

qualitative results for the hold-out camera as well as from

new viewpoints. In the other scenario described below,

training was done based on a video from a single camera.

Finally, we evaluate on two short monocular sequences

from [4] and a Youtube video in Figure 7.

Pre-processing. Our system expects 3D human pose as

input. For non-CMU datasets, we used the OpenPose-

1https://saic-violet.github.io/texturedavatar/
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Figure 4: Renderings produced by multiple textured neural avatars (for all people in our study). All renderings are produced

from the new viewpoints unseen during training.

(a) User study (b) SSIM score (c) Frechet distance

Ours-v-V2V Ours-v-Direct V2V Direct Ours V2V Direct Ours

CMU1-16 0.56 0.75 0.908 0.899 0.919 6.7 7.3 8.8

CMU2-16 0.54 0.74 0.916 0.907 0.922 7.0 8.8 10.7

CMU1-6 0.50 0.92 0.905 0.896 0.914 7.7 10.7 8.9

CMU2-6 0.53 0.71 0.918 0.907 0.920 7.0 9.7 10.4

Table 1: Quantitative comparison of the three models operating on different datasets (see text for discussion).

compatible [10, 57] 3D pose formats, represented by

25 body joints, 21 joints for each hand and 70 facial land-

marks. For the CMU Panoptic datasets, we use the avail-

able 3D pose annotation as input (which has 19 rather than

25 body joints). To get a 3D pose for non-CMU sequences

we first apply the OpenPose 2D pose estimation engine to

five consecutive frames of the monoculuar RGB image se-

quence. Then we concatenate and lift the estimated 2D

poses to infer the 3D pose of the last frame by using a multi-

layer perceptron model. The perceptron is trained on the

CMU 3D pose annotations (augmented with position of the

feet joints by triangulating the output of OpenPose) in or-

thogonal projection.

For foreground segmentation we use DeepLabv3+ with

Xception-65 backbone [13] initially trained on PAS-

CAL VOC 2012 [22] and fine-tuned on HumanParsing

dataset [40, 41] to predict initial human body segmentation

masks. We additionally employ GrabCut [54] with back-

ground/foreground model initialized by the masks to refine

object boundaries on the high resolution images. Pixels

covered by the skeleton rasterization were always added to

the foreground mask.

Baselines. We consider two other systems, against which

ours is compared. First, we use the video-to-video (V2V)

system [67], using the authors code with minimal modifica-

tions that lead to improved performance. We provide it with

the same input as ours, and we use images with blacked-

out background (according to our segmentation) as desired

output. On the CMU1-6 task, we have also evaluated a

model with DensePose results computed on the target frame

given as input (alongside keypoins). Despite much stronger

(oracle-type) conditioning, the performance of this model

in terms of considered metrics has not improved in compar-

ison with V2V that uses body joints as input only.

The video-to-video system employs several adversarial

losses and an architecture different from ours. Therefore we

consider a more direct ablation (Direct), which has the same

network architecture that predicts RGB color and mask di-

rectly, rather than via body part assignments/coordinates.

The Direct system is trained using the same losses and in

the same protocol as ours.

Multi-video comparison. We compare the three system

(ours, V2V, Direct) in CMU1-16, CMU2-16, CMU1-6,

CMU2-6. Using the hold-out sequences/motions, we then

evaluated two popular metrics, namely structured self-

similarity (SSIM) and Frechet Inception Distance (FID) be-

tween the results of each system and the hold-out frames

(with background removed using our segmentation algo-

rithm). Our method outperforms the other two in terms of

SSIM and underperforms V2V in terms of FID. Represen-

tative examples are shown in Figure 5.

We have also performed user study using a crowdsourc-
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GT Direct V2V Proposed GT Direct V2V Proposed

Figure 5: Comparison of the rendering quality for the Vid2vid, Direct and proposed methods on the CMU1-6 and CMU2-6

sequences. Images from six arbitrarily chosen cameras were used for training. We generate the views onto the hold-out

cameras which were not used during training. The pose and camera in the lower right corner are in particular difficult for all

the systems.

ing website, where the users were shown the results of ours

and one of the other two systems on either side of the ground

truth image, and were asked to pick a better match to the

middle image. In the side-by-side comparison, the results

of our method were always preferred by the majority of the

crowd-sourcing users. We note that our method suffers from

a disadvantage both in the quantitative metrics and in the

user comparison, since it averages out lighting from differ-

ent viewpoints. The more detailed quantitative comparison

is presented in Table 1.

We show more qualitative examples of our method for a

variety of models in Figure 4 and some qualitative compar-

isons with baselines in Figure 6.

Single video comparisons. We also evaluate our system

in the single video case. We consider the scenario, where

we train the model and transfer it to a new person by fitting

it to a single video. We use single camera videos from one

of the cameras in our rig. We then evaluate the model (and

the baselines) on a hold-out set of poses projected onto the

camera from the other side of the rig (around 30◦ away).

We thus demonstrate that new models can be obtained us-

ing single monocular videos. For our models, we consider

transferring from CMU1-16.

We thus pretrain V2V and our system on CMU1-16 and

use the obtained weights of gφ as initialization for fine-

tuning to the single video in our dataset. The texture maps

are initialized from scratch as described above. Evaluating

on hold-out camera and motion highlighted strong advan-

tage of our method. In the user study on two subjects, the

result of our method has been preferred to V2V in 55% and

65% of the cases. We further compare our method and the

system of [4] on the sequences from [4]. The qualitative

comparison is shown in Figure 7. In addition, we gener-

ate an avatar from a youtube video. In this set of exper-

iments, the avatars were obtained by fine-tuning from the

same avatar (shown in Figure 6–left). Except for the con-

siderable artefacts on hand parts, our system has generated

avatars that can generalize to new pose despite very short

video input ( 300 frames in the case of [4]).

5. Summary and Discussion

We have presented textured neural avatar approach to

model the appearance of humans for new camera views and

new body poses. Our system takes the middle path between

the recent generation of methods that use ConvNets to map

the pose to the image directly, and the traditional approach

that uses geometric modeling of the surface and superim-

pose the personalized texture maps. This is achieved by

learning a ConvNet that predicts texture coordinates of pix-

els in the new view jointly with the texture within the end-

to-end learning process. We demonstrate that retaining an

explicit shape and texture separation helps to achieve better

generalization than direct mapping approaches.

Our method suffers from certain limitations. The gen-

eralization ability is still limited, as it does not generalize

well when a person is rendered at a scale that is consid-

erably different from the training set (which can be par-

tially addressed by rescaling prior to rendering followed by

cropping/padding postprocessing). Furthermore, textured

avatars exhibit strong artefacts in the presence of pose es-

timation errors on hands and faces. Finally, our method as-

sumes constancy of the surface color and ignores lighting

effects. This can be potentially addressed by making our

textures view- and lighting-dependent [17, 43].
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GT Proposed V2V GT Proposed V2V

Figure 6: Results comparison for our multi-view sequences using a hold-out camera. Textured Neural Avatars and the images

produced by the video-to-video (V2V) system correspond to the same viewpoint. Both systems use a video from a single

viewpoint for training. Electronic zoom-in recommended.

Figure 7: Results on external monocular sequences. Rows 1-2: avatars for sequences from [4] in an unseen pose (left – ours,

right – [4]). Row 3 – the textured avatar computed from a popular Youtube video (’PUMPED UP KICKS DUBSTEP’). In

general, our system is capable of learning avatars from monocular videos.
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