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Abstract

Video description is one of the most challenging prob-

lems in vision and language understanding due to the large

variability both on the video and language side. Models,

hence, typically shortcut the difficulty in recognition and

generate plausible sentences that are based on priors but

are not necessarily grounded in the video. In this work, we

explicitly link the sentence to the evidence in the video by

annotating each noun phrase in a sentence with the cor-

responding bounding box in one of the frames of a video.

Our dataset, ActivityNet-Entities, augments the challeng-

ing ActivityNet Captions dataset with 158k bounding box

annotations, each grounding a noun phrase. This allows

training video description models with this data, and im-

portantly, evaluate how grounded or “true” such model are

to the video they describe. To generate grounded captions,

we propose a novel video description model which is able

to exploit these bounding box annotations. We demonstrate

the effectiveness of our model on our dataset, but also show

how it can be applied to image description on the Flickr30k

Entities dataset. We achieve state-of-the-art performance

on video description, video paragraph description, and im-

age description and demonstrate our generated sentences

are better grounded in the video.

1. Introduction

Image and video description models are frequently not

well grounded [14] which can increase their bias [9] and

lead to hallucination of objects [24], i.e. the model men-

tions objects which are not in the image or video e.g. be-

cause they might have appeared in similar contexts during

training. This makes models less accountable and trustwor-

thy, which is important if we hope such models will even-

tually assist people in need [2, 27]. Additionally, grounded

models can help to explain the model’s decisions to humans

and allow humans to diagnose them [20]. While researchers

have started to discover and study these problems for image

description [14, 9, 24, 20],1 they are even more pronounced

1We use description instead of captioning as captioning is often used

to refer to transcribing the speech in the video, not describing the content.

A  man  is seen standing in a  room  speaking to the camera while holding a  bike .

A group of  people  are in a  raft  down a  river .

w/o grounding supervision: A man is standing in a gym .

[42]: A man is seen speaking to the camera while holding a piece of exercise equipment.

GT: A man in a room holds a bike and talks to the camera.

w/o grounding supervision: A group of people are in a river.

[42]: A large group of people are seen riding down a river and looking off into the distance.

GT: Several people are on a raft in the water.

Figure 1: Word-level grounded video descriptions gener-

ated by our model on two segments from our ActivityNet-

Entities dataset. We also provide the descriptions generated

by our model without explicit bounding box supervision,

the descriptions generated by [42] and the ground-truth de-

scriptions (GT) for comparison.

for video description due to the increased difficulty and di-

versity, both on the visual and the language side.

Fig. 1 illustrates this problem. A video description ap-

proach (without grounding supervision) generated the sen-

tence “A man standing in a gym” which correctly mentions

“a man” but hallucinates “gym” which is not visible in the

video. Although a man is in the video it is not clear if the

model looked at the bounding box of the man to say this

word [9, 24]. For the sentence “A man [...] is playing the

piano” in Fig. 2, it is important to understand that which

“man” in the image “A man” is referring to, to determine if

a model is correctly grounded. Such understanding is cru-

cial for many applications when trying to build accountable

systems or when generating the next sentence or responding

to a follow up question of a blind person: e.g. answering “Is

he looking at me?” requires an understanding which of the

people in the image the model talked about.

The goal of our research is to build such grounded sys-

tems. As one important step in this direction, we col-
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lect ActivityNet-Entities (short as ANet-Entities) which

grounds or links noun phrases in sentences with bounding

boxes in the video frames. It is based on ActivityNet Cap-

tions [10], one of the largest benchmarks in video descrip-

tion. When annotating objects or noun phrases we specif-

ically annotate the bounding box which corresponds to the

instance referred to in the sentence rather than all instances

of the same object category, e.g. in Fig. 2, for the noun

phrase “the man” in the video description, we only anno-

tate the sitting man and not the standing man or the woman,

although they are all from the object category “person”. We

note that annotations are sparse, in the sense that we only

annotate a single frame of the video for each noun phrase.

ANet-Entities has a total number of 51.8k annotated video

segments/sentences with 157.8k labeled bounding boxes,

more details can be found in Sec. 3.

Our new dataset allows us to introduce a novel

grounding-based video description model that learns to

jointly generate words and refine the grounding of the ob-

jects generated in the description. We explore how this

explicit supervision can benefit the description generation

compared to unsupervised methods that might also utilize

region features but do not penalize grounding.

Our contributions are three-fold. First, we collect

our large-scale ActivityNet-Entities dataset, which grounds

video descriptions to bounding boxes on the level of noun

phrases. Our dataset allows both, teaching models to explic-

itly rely on the corresponding evidence in the video frame

when generating words and evaluating how well models

are doing in grounding individual words or phrases they

generated. Second, we propose a grounded video descrip-

tion framework which is able to learn from the bounding

box supervision in ActivityNet-Entities and we demonstrate

its superiority over baselines and prior work in generating

grounded video descriptions. Third, we show the appli-

cability of the proposed model to image captioning, again

showing improvements in the generated captions and the

quality of grounding on the Flickr30k Entities [22] dataset.

2. Related Work

Video & Image Description. Early work on automatic

caption generation mainly includes template-based ap-

proaches [5, 12, 18], where predefined templates with slots

are first generated and then filled in with detected visual evi-

dences. Although these works tend to lead to well-grounded

methods, they are restricted by their template-based na-

ture. More recently, neural network and attention-based

methods have started to dominate major captioning bench-

marks. Visual attention usually comes in the form of tem-

poral attention [34] (or spatial-attention [32] in the image

domain), semantic attention [13, 35, 36, 41] or both [19].

The recent unprecedented success in object detection [23, 7]

has regained the community’s interests on detecting fine-

grained visual clues while incorporating them into end-to-

end networks [16, 26, 1, 15]. Description methods which

are based on object detectors [16, 38, 1, 15, 5, 12] tackle

the captioning problem in two stages. They first use off-

the-shelf or fine-tuned object detectors to propose object

proposals/detections as for the visual recognition heavy-

lifting. Then, in the second stage, they either attend to the

object regions dynamically [16, 38, 1] or classify the re-

gions into labels and fill into pre-defined/generated sentence

templates [15, 5, 12]. However, directly generating propos-

als from off-the-shelf detectors causes the proposals to bias

towards classes in the source dataset (i.e. for object detec-

tion) v.s. contents in the target dataset (i.e. for description).

One solution is to fine-tune the detector specifically for a

dataset [15] but this requires exhaustive object annotations

that are difficult to obtain, especially for videos. Instead of

fine-tuning a general detector, we transfer the object clas-

sification knowledge from off-the-shelf object detectors to

our model and then fine-tune this representation as part of

our generation model with sparse box annotations. With

a focus on co-reference resolution and identifying people,

[26] proposes a framework that can refer to particular char-

acter instances and do visual co-reference resolution be-

tween video clips. However, their method is restricted to

identifying human characters whereas we study more gen-

eral the grounding of objects.

Attention Supervision. As fine-grained grounding be-

comes a potential incentive for next-generation vision-

language systems, to what degree it can benefit remains an

open question. On one hand, for VQA [4, 39] the authors

point out that the attention model does not attend to same

regions as humans and adding attention supervision barely

helps the performance. On the other hand, adding super-

vision to feature map attention [14, 37] was found to be

beneficial. We noticed in our preliminary experiments that

directly guiding the region attention with supervision [15]

does not necessary lead to improvements in automatic sen-

tence metrics. We hypothesize that this might be due to the

lack of object context information and we thus introduce a

self-attention [28] based context encoding in our attention

model, which allows information passing across all regions

in the sampled video frames.

3. ActivityNet-Entities Dataset

In order to train and test models capable of explicit

grounding-based video description, one requires both lan-

guage and grounding supervision. Although Flickr30k En-

tities [22] contains such annotations for images, no large-

scale description datasets with object localization annota-

tion exists for videos. The large-scale ActivityNet Cap-

tions dataset [10] contains dense language annotations for

about 20k videos from ActivityNet [3] but lacks ground-

ing annotations. Leveraging the language annotations from
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A man in a striped shirt is playing the piano on the street while people watch him.

Figure 2: An annotated example from our dataset. The

dashed box (“people”) indicates a group of objects.

the ActivityNet Captions dataset [10], we collected entity-

level bounding box annotations and created the ActivityNet-

Entities (ANet-Entities) dataset2, a rich dataset that can be

used for video description with explicit grounding. With

15k videos and more than 158k annotated bounding boxes,

ActivityNet-Entities is the largest annotated dataset of its

kind to the best of our knowledge.

When it comes to videos, region-level annotations come

with a number of unique challenges. A video contains more

information than can fit in a single frame, and video descrip-

tions reflect that. They may reference objects that appear

in a disjoint set of frames, as well as multiple persons and

motions. To be more precise and produce finer-grained an-

notations, we annotate noun phrases (NP) (defined below)

rather than simple object labels. Moreover, one would ide-

ally have dense region annotations at every frame, but the

annotation cost in this case would be prohibitive for even

small datasets. Therefore in practice, video datasets are

typically sparsely annotated at the region level [6]. Favour-

ing scale over density, we choose to annotate segments as

sparsely as possible and annotate every noun phrase only in

one frame inside each segment.

Noun Phrases. Following [22], we define noun phrases as

short, non-recursive phrases that refer to a specific region in

the image, able to be enclosed within a bounding box. They

can contain a single instance or a group of instances and

may include adjectives, determiners, pronouns or preposi-

tions. For granularity, we further encourage the annotators

to split complex NPs into their simplest form (e.g. “the man

in a white shirt with a heart” can be split into three NPs:

“the man”, “a white shirt”, and “a heart”).

2ActivityNet-Entities is released at https://github.com/

facebookresearch/ActivityNet-Entities.

Dataset Domain # Vid/Img # Sent # Obj # BBoxes

Flickr30k Entities [22] Image 32k 160k 480 276k

MPII-MD [26] Video ≪1k ≪1k 4 2.6k

YouCook2 [40] Video 2k 15k 67 135k

ActivityNet Humans [33] Video 5.3k 30k 1 63k

ActivityNet-Entities (ours) Video 15k 52k 432 158k

–train 10k 35k 432 105k

–val 2.5k 8.6k 427 26.5k

–test 2.5k 8.5k 421 26.1k

Table 1: Comparison of video description datasets with

noun phrase or word-level grounding annotations. Our

ActivityNet-Entities and ActivityNet Humans [33] dataset

are both based on ActivityNet [3], but ActivityNet Humans

provides boxes only for person on a small subset of videos.

YouCook2 is restricted to cooking and only has box anno-

tations for the val and the test splits.

3.1. Annotation Process

We uniformly sampled 10 frames from each video seg-

ment and presented them to the annotators together with

the corresponding sentence. We asked the annotators to

identify all concrete NPs from the sentence describing the

video segment and then draw bounding boxes around them

in one frame of the video where the target NPs can be

clearly observed. Further instructions were provided in-

cluding guidelines for resolving co-references within a sen-

tence, i.e. boxes may correspond to multiple NPs in the sen-

tence (e.g., a single box could refer to both “the man” and

“him”) or when to use multi-instance boxes (e.g. “crowd”,

“a group of people” or “seven cats”). An annotated exam-

ple is shown in Fig. 2. It is noteworthy that 10% of the

final annotations refer to multi-instance boxes. We trained

annotators, and deployed a rigid quality control by daily in-

spection and feedback. All annotations were verified in a

second round. The full list of instructions provided to the

annotators, validation process, as well as screen-shots of the

annotation interface can be found in the Appendix.

3.2. Dataset Statistics and Analysis

As the test set annotations for the ActivityNet Captions

dataset are not public, we only annotate the segments in the

training (train) and validation (val) splits. This brings the

total number of annotated videos in ActivityNet-Entities to

14,281. In terms of segments, we ended up with about 52k

video segments with at least one NP annotation and 158k

NP bounding boxes in total.

Respecting the original protocol, we keep as our training

set the corresponding split from the ActivityNet Captions

dataset. We further randomly & evenly split the original

val set into our val set and our test set. We use all avail-

able bounding boxes for training our models, i.e., including

multi-instance boxes. Complete stats and comparisons with

other related datasets can be found in Tab. 1.

From Noun Phrases to Objects Labels. Although we
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Figure 3: The proposed framework consists of three parts: the grounding module (a), the region attention module (b) and

the language generation module (c). Region proposals are first represented with grounding-aware region encodings. The

language model then dynamically attends on the region encodings to generate each word. Losses are imposed on the attention

weights (attn-loss), grounding weights (grd-loss), and the region classification probabilities (cls-loss). For clarity, the details

of the temporal attention are omitted.

chose to annotate noun phrases, in this work, we model sen-

tence generation as a word-level task. We follow the con-

vention in [15] to determine the list of object classes and

convert the NP label for box to a single-word object label.

First, we select all nouns and pronouns from the NP an-

notations using the Stanford Parser [17]. The frequency of

these words in the train and val splits are computed and a

threshold determines whether each word is an object class.

For ANet-Entities, we set the frequency threshold to be 50

which produces 432 object classes.

4. Description with Grounding Supervision

In this section we describe the proposed grounded video

description framework (see Fig. 3). The framework con-

sists of three modules: grounding, region attention and lan-

guage generation. The grounding module detects visual

clues from the video, the region attention dynamically at-

tends on the visual clues to form a high-level impression of

the visual content and feeds it to the language generation

module for decoding. We illustrate three options for incor-

porating the object-level supervision: region classification,

object grounding (localization), and supervised attention.

4.1. Overview

We formulate the problem as a joint optimization over

the language and grounding tasks. The overall loss function

consists of four parts:

L = Lsent + λαLattn + λcLcls + λβLgrd, (1)

where Lsent denotes the teacher-forcing language genera-

tion cross-entropy loss, commonly used for language gen-

eration tasks (details in Sec. 4.2). Lattn corresponds to the

cross entropy region attention loss which is presented in

Sec. 4.3. Lcls and Lgrd are cross-entropy losses that cor-

respond to the grounding module for region classification

and supervised object grounding (localization), respectively

(Sec. 4.4). The three grounding-related losses are weighted

by coefficients λα, λc, and λβ which we selected on the

dataset validation split.

We denote the input video (segment) as V and

the target/generated sentence description (words) as S.

We uniformly sample F frames from each video as

{v1, v2, . . . , vF } and define Nf object regions on sam-

pled frame f . Hence, we can assemble a set of regions

R = [R1, . . . , RF ] = [r1, r2, . . . , rN ] ∈ R
d×N to rep-

resent the video, where N =
∑F

f=1 Nf is the total num-

ber of regions. We overload the notation here and use ri
(i ∈ {1, 2, . . . , N}) to also represent region feature embed-

dings, as indicated by fc6 in Fig. 3. We represent words in

S with one-hot vectors which are further encoded to word

embeddings yt ∈ R
e where t ∈ {1, 2, . . . , T}, where T

indicates the sentence length and e is the embedding size.

4.2. Language Generation Module

For language generation, we adapt the language model

from [15] for video inputs, i.e. extend it to incorporate tem-

poral information. The model consists of two LSTMs: the

first one for encoding the global video feature and the word

embedding yt into the hidden state ht
A ∈ R

m where m is

the dimension and the second one for language generation

(see Fig. 3c). The language model dynamically attends on

videos frames or regions for visual clues to generate words.

We refer to the attention on video frames as temporal atten-

tion and the one on regions as region attention.

The temporal attention takes in a sequence of frame-wise

feature vectors and determines by the hidden state how sig-

nificant each frame should contribute to generate a descrip-
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tion word. We deploy a similar module as in [42], except

that we replace the self-attention context encoder with Bi-

directional GRU (Bi-GRU) which yields superior results.

We train with cross-entropy loss Lsent.

4.3. Region Attention Module

Unlike temporal attention that works on a frame level,

the region attention [1, 15] focuses on more fine-grained

details in the video, i.e., object regions [23]. We denote the

region encoding as R̃ = [r̃1, r̃2, . . . , r̃N ], more details are

defined later in Eq. 5. At time t of the caption generation,

the attention weight over region i is formulated as:

αt
i = w⊤

α tanh(Wr r̃i+Whh
t
A), αt := Softmax(αt), (2)

where Wr ∈ R
m×d, Wh ∈ R

m×m, wα ∈ R
m, and

αt = [αt
1, α

t
2, . . . , α

t
N ]. The region attention encoding is

then R̃αt and along with the temporal attention encoding,

fed into the language LSTM.

Supervised Attention. We want to encourage the language

model to attend on the correct region when generating a

visually-groundable word. As this effectively assists the

language model in learning to attend to the correct region,

we call this attention supervision. Denote the indicators of

positive/negative regions as γt = [γt
1, γ

t
2, . . . , γ

t
N ], where

γt
i = 1 when the region ri has over 0.5 IoU with the GT

box rGT and otherwise 0. We regress αt to γt and hence

the attention loss for object word st can be defined as:

Lattn = −

N∑

i=1

γt
i logα

t
i. (3)

4.4. Grounding Module

Assume we have a set of visually-groundable object

class labels {c1, c2, . . . , cK}, short as object classes, where

K is the total number of classes. Given a set of object re-

gions from all sampled frames, the grounding module esti-

mates the class probability distribution for each region.

We define a set of object classifiers as Wc =
[w1, w2, . . . , wK] ∈ R

d×K and the learnable scalar bi-

ases as B = [b1, b2, . . . , bK]. So, a naive way to esti-

mate the class probabilities for all regions (embeddings)

R = [r1, r2, . . . , rN ] is through dot-product:

Ms(R) = Softmax(W⊤

c R+B✶⊤), (4)

where ✶ is a vector with all ones, W⊤
c R is followed by

a ReLU and a Dropout layer, and Ms is the region-class

similarity matrix as it captures the similarity between re-

gions and object classes. For clarity, we omit the ReLU and

Dropout layer after the linear embedding layer throughout

Sec. 4 unless otherwise specified. The Softmax operator is

applied along the object class dimension of Ms to ensure

the class probabilities for each region sum up to 1.

We transfer detection knowledge from an off-the-shelf

detector that is pre-trained on a general source dataset, i.e.,

Visual Genome (VG) [11], to our object classifiers. We find

the nearest neighbor for each of the K object classes from

the VG object classes according to their distances in the em-

bedding space (glove vectors [21]). We then initialize Wc

and B with the corresponding classifier, i.e., the weights

and biases, from the last linear layer of the detector.

On the other hand, we represent the spatial and tempo-

ral configuration of the region as a 5-D tuple, including 4

values for the normalized spatial location and 1 value for

the normalized frame index. Then, the 5-D feature is pro-

jected to a ds = 300-D location embedding for all the re-

gions Ml ∈ R
300×N . Finally, we concatenate all three com-

ponents: i) region feature, ii) region-class similarity ma-

trix, and iii) location embedding together and project into

a lower dimension space (m-D):

R̃ = Wg[ R | Ms(R) | Ml ], (5)

where [·|·] indicates a row-wise concatenation and Wg ∈

R
m×(d+K+ds) are the embedding weights. We name R̃

the grounding-aware region encoding, corresponding to the

right portion of Fig. 3a. To further model the relations

between regions, we deploy a self-attention layer over R̃

[28, 42]. The final region encoding is fed into the region

attention module (see Fig. 3b).

So far the object classifier discriminates classes without

the prior knowledge about the semantic context, i.e., the in-

formation the language model has captured. To incorpo-

rate semantics, we condition the class probabilities on the

sentence encoding from the Attention LSTM. A memory-

efficient approach is treating attention weights αt as this

semantic prior, as formulated below:

M t
s(R,αt) = Softmax(W⊤

c R+B✶⊤ + ✶αt⊤), (6)

where the region attention weights αt are determined by

Eq. 2. Note that here the Softmax operator is applied row-

wise to ensure the probabilities on regions sum up to 1.

To learn a reasonable object classifier, we can deploy a re-

gion classification task on Ms(R) or a sentence-conditioned

grounding task on M t
s(R,αt), with the word-level ground-

ing annotations from Sec. 3. Next, we describe them both.

Region Classification. We first define a positive region as

a region that has over 0.5 intersection over union (IoU) with

an arbitrary ground-truth (GT) box. If a region matches to

multiple GT boxes, the one with the largest IoU is the final

matched GT box. Then we classify the positive region, say

region i to the same class label as in the GT box, say class

cj . The normalized class probability distribution is hence

Ms[:, i] and the cross-entropy loss on class cj is

Lcls = − logMs[j, i]. (7)

The final Lcls is the average of losses on all positive regions.

Object Grounding. Given a visually-groundable word

st+1 at time step t + 1 and the encoding of all the pre-

vious words, we aim to localize st+1 in the video as one
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or a few of the region proposals. Supposing st+1 corre-

sponds to class cj , we regress the confidence score of re-

gions M t
s [j, :] = βt+1 = [βt+1

1 , βt+1
2 , . . . , βt+1

N ] to indica-

tors γt as defined in Sec. 4.3. The grounding loss for word

st+1 is defined as:

Lgrd = −

N∑

i=1

γt
i log β

t+1
i . (8)

Note that the final loss on Lattn or Lgrd is the average

of losses on all visually-groundable words. The difference

between the attention supervision and the grounding su-

pervision is that, in the latter task, the target object cj is

known beforehand, while the attention module is not aware

of which object to seek in the scene.

5. Experiments

Datasets. We conduct most experiments and ablation stud-

ies on the newly-collected ActivityNet-Entities dataset on

video description given the set of temporal segments (i.e.

using the ground-truth events from [10]) and video para-

graph description [30]. We also demonstrate our framework

can easily be applied to image description and evaluate it on

the Flickr30k Entities dataset [22]. Note that we did not ap-

ply our method to COCO captioning as there is no exact

match between words in COCO captions and object anno-

tations in COCO (limited to only 80). We use the same pro-

cess described in Sec. 3.2 to convert NPs to object labels.

Since Flickr30k Entities contains more captions, labels that

occur at least 100 times are taken as object labels, resulting

in 480 object classes [15].

Pre-processing. For ANet-Entities, we truncate captions

longer than 20 words and build a vocabulary on words with

at least 3 occurrences. For Flickr30k Entities, since the cap-

tions are generally shorter and it is a larger corpus, we trun-

cate captions longer than 16 words and build a vocabulary

based on words that occur at least 5 times.

5.1. Compared Methods and Metrics

Compared methods. The state-of-the-art (SotA) video de-

scription methods on ActivityNet Captions include Masked

Transformer and Bi-LSTM+TempoAttn [42]. We re-train

the models on our dataset splits with the original settings.

For a fair comparison, we use exactly the same frame-wise

feature from this work for our temporal attention module.

For video paragraph description, we compare our meth-

ods against the SotA method MFT [30] with the evalua-

tion script provided by the authors [30]. For image caption-

ing, we compare against two SotA methods, Neural Baby

Talk (NBT) [15] and BUTD [1]. For a fair comparison, we

provide the same region proposal and features for both the

baseline BUTD and our method, i.e., from Faster R-CNN

pre-trained on Visual Genome (VG). NBT is specially tai-

lored for each dataset (e.g., detector fine-tuning), so we re-

tain the same feature as in the paper, i.e., from ResNet pre-

trained on ImageNet. All our experiments are performed

three times and the average scores are reported.

Metrics. To measure the object grounding and atten-

tion correctness, we first compute the localization accuracy

(Grd. and Attn. in the tables) over GT sentences follow-

ing [25, 40]. Given an unseen video, we feed the GT sen-

tence into the model and measure the localization accuracy

at each annotated object word. We compare the region with

the highest attention weight (αi) or grounding weight (βj)

against the GT box. An object word is correctly localized

if the IoU is over 0.5. We also study the attention accuracy

on generated sentences, denoted by F1all and F1loc in the

tables. In F1all, a region prediction is considered correct

if the object word is correctly predicted and also correctly

localized. We also compute F1loc, which only considers

correctly-predicted object words. See Appendix for details.

Due to the sparsity of the annotation, i.e., each object only

annotated in one frame, we only consider proposals in the

frame of the GT box when computing all the localization ac-

curacies. For the region classification task, we compute the

top-1 classification accuracy (Cls. in the tables) for positive

regions. For all metrics, we average the scores across object

classes. To evaluate the sentence quality, we use standard

language evaluation metrics, including Bleu@1, Bleu@4,

METEOR, CIDEr, and SPICE, and the official evaluation

script3. We additionally perform human evaluation to judge

the sentence quality.

5.2. Implementation Details

Region proposal and feature. We uniformly sample 10

frames per video segment (an event in ANet-Entities) and

extract region features. For each frame, we use a Faster

R-CNN detector [23] with ResNeXt-101 backbone [29] for

region proposal and feature extraction (fc6). The detector is

pretrained on Visual Genome [11]. More model and train-

ing details are in the Appendix.

Feature map and attention. The temporal feature map

is essentially a stack of frame-wise appearance and motion

features from [42, 31]. The spatial feature map is the conv4

layer output from a ResNet-101 [15, 8] model. Note that

an average pooling on the temporal or spatial feature map

gives the global feature. In video description, we augment

the global feature with segment positional information (i.e.,

total number of segments, segment index, start time and end

time), which is empirically important.

Hyper-parameters. Coefficients λα ∈ {0.05, 0.1, 0.5},

λβ ∈ {0.05, 0.1, 0.5}, and λc ∈ {0.1, 0.5, 1} vary in

the experiments as a result of model validation. We

set λα = λβ when they are both non-zero considering

the two losses have a similar functionality. The region

encoding size d = 2048, word embedding size e = 512

3https://github.com/ranjaykrishna/densevid eval
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Method λα λβ λc B@1 B@4 M C S Attn. Grd. F1all F1loc Cls.

Unsup. (w/o SelfAttn) 0 0 0 23.2 2.28 10.9 45.6 15.0 14.9 21.3 3.70 12.7 6.89

Unsup. 0 0 0 23.0 2.27 10.7 44.6 13.8 2.42 19.7 0.28 1.13 6.06

Sup. Attn. 0.05 0 0 23.7 2.56 11.1 47.0 14.9 34.0 37.5 6.72 22.7 0.42

Sup. Grd. 0 0.5 0 23.5 2.50 11.0 46.8 14.7 31.9 43.2 6.04 21.2 0.07

Sup. Cls. 0 0 0.1 23.3 2.43 10.9 45.7 14.1 2.59 25.8 0.35 1.43 14.9

Sup. Attn.+Grd. 0.5 0.5 0 23.8 2.44 11.1 46.1 14.8 35.1 40.6 6.79 23.0 0

Sup. Attn.+Cls. 0.05 0 0.1 23.9 2.59 11.2 47.5 15.1 34.5 41.6 7.11 24.1 14.2

Sup. Grd. +Cls. 0 0.05 0.1 23.8 2.59 11.1 47.5 15.0 27.1 45.7 4.79 17.6 13.8

Sup. Attn.+Grd.+Cls. 0.1 0.1 0.1 23.8 2.57 11.1 46.9 15.0 35.7 44.9 7.10 23.8 12.2

Table 2: Results on ANet-Entities val set. “w/o SelfAttn” indicates self-attention is not used for region feature encoding.

Notations: B@1 - Bleu@1, B@4 - Bleu@4, M - METEOR, C - CIDEr, S - SPICE. Attn. and Grd. are the object localization

accuracies for attention and grounding on GT sentences. F1all and F1loc are the object localization accuracies for attention

on generated sentences. Cls. is classification accuracy. All accuracies are in %. Top two scores on each metric are in bold.

Method B@1 B@4 M C S Attn. Grd. F1all F1loc Cls.

Masked Transformer [42] 22.9 2.41 10.6 46.1 13.7 – – – – –

Bi-LSTM+TempoAttn [42] 22.8 2.17 10.2 42.2 11.8 – – – – –

Our Unsup. (w/o SelfAttn) 23.1 2.16 10.8 44.9 14.9 16.1 22.3 3.73 11.7 6.41

Our Sup. Attn.+Cls. (GVD) 23.6 2.35 11.0 45.5 14.7 34.7 43.5 7.59 25.0 14.5

(a) Results on ANet-Entities test set.

vs. Unsupervised vs. [42]

Judgments Judgments

Method % ∆ % ∆

About Equal 34.9 38.9

Other is better 29.3
6.5

27.5
6.1

GVD is better 35.8 33.6

(b) Human evaluation of sentences.

Table 3: (a) Results on ANet-Entities test set. The top one score for each metric is in bold. (b) Human evaluation of sentence

quality. We present results for our supervised approach vs. our unsupervised baseline and vs. Masked Transformer [42].

and RNN encoding size m = 1024 for all methods. Other

hyper-parameters in the language module are the same as

in [15]. We use a 2-layer 6-head Transformer encoder as

the self-attention module [42].

5.3. Results on ActivityNet­Entities

5.3.1 Video Event Description

Although dense video description [11] further entails local-

izing the segments to describe on the temporal axis, in this

paper we focus on the language generation part and assume

the temporal boundaries for events are given. We name this

task Video Event Description. Results on the validation and

test splits of our ActivityNet-Entities dataset are shown in

Tab. 2 and Tab. 3a, respectively. Given the selected set of re-

gion proposals, the localization upper bound on the val/test

sets is 82.5%/83.4%, respectively.

In general, methods with some form of grounding super-

vision work consistently better than the methods without.

Moreover, combining multiple losses, i.e. stronger super-

vision, leads to higher performance. On the val set, the

best variant of supervised methods (i.e., Sup. Attn.+Cls.)

ourperforms the best variant of unsupervised methods (i.e.,

Unsup. (w/o SelfAttn)) by a relative 1-13% on all the met-

rics. On the test set, the gaps are small for Bleu@1, ME-

TEOR, CIDEr, and SPICE (within ± 2%), but the super-

vised method has a 8.8% relative improvement on Bleu@4.

The results in Tab. 3a show that adding box supervision

dramatically improves the grounding accuracy from 22.3%

to 43.5%. Hence, our supervised models can better localize

the objects mentioned which can be seen as an improve-

ment in their ability to explain or justify their own descrip-

tion. The attention accuracy also improves greatly on both

GT and generated sentences, implying that the supervised

models learn to attend on more relevant objects during lan-

guage generation. However, grounding loss alone fails with

respect to classification accuracy (see Tab. 2), and therefore

the classification loss is required in that case. Conversely,

the classification loss alone can implicitly learn grounding

and maintains a fair grounding accuracy.

Comparison to existing methods. We refer to our best

model (Sup. Attn.+Cls.) as GVD (Grounded Visual De-

scription) and show that it sets the new SotA on ActivityNet

Captions for the Bleu@1, METEOR and SPICE metrics,

with relative gains of 2.8%, 3.9% and 6.8%, respectively

over the previous best [42]. We observe slightly inferior

results on Bleu@4 and CIDEr (-2.8% and -1.4%, respec-

tively) but after examining the generated sentences (see Ap-

pendix) we see that [42] generates repeated words way more

often. This may increase the aforementioned evaluation

metrics, but the generated descriptions are of lower quality.

Another noteworthy observation is that the self-attention

context encoder (on top of R̃) brings consistent improve-

ments on methods with grounding supervision, but hurts

the performance of methods without, i.e., “Unsup.”. We

hypothesize that the extra context and region interaction in-

troduced by the self-attention confuses the region attention

module and without any grounding supervision makes it fail
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Method VG Box B@1 B@4 M C S Attn. Grd. F1all F1loc Cls.

ATT-FCN* [36] 64.7 19.9 18.5 – – – – – – –

NBT* [15] X 69.0 27.1 21.7 57.5 15.6 – – – – –

BUTD [1] X 69.4 27.3 21.7 56.6 16.0 24.2 32.3 4.53 13.0 1.84

Our Unsup. (w/o SelfAttn) X 69.2 26.9 22.1 60.1 16.1 21.4 25.5 3.88 11.7 17.9

Our GVD model X X 69.9 27.3 22.5 62.3 16.5 41.4 50.9 7.55 22.2 19.2

Table 4: Results on Flickr30k Entities test set. * indicates the results are obtained from the original papers. GVD refers to

our Sup. Attn.+Grd.+Cls. model. “VG” indicates region features are from VG pre-training. The top one score is in bold.

Method B@1 B@4 M C

MFT [30] 45.5 9.78 14.6 20.4

Our Unsup. (w/o SelfAttn) 49.8 10.5 15.6 21.6

Our GVD 49.9 10.7 16.1 22.2

Table 5: Results of video paragraph description on test set.

to properly attend to the right region, something that leads

to a huge attention accuracy drop from 14.9% to 2.42%.

Human Evaluation. Automatic metrics for evaluating gen-

erated sentences have frequently shown to be unreliable

and not consistent with human judgments, especially for

video description when there is only a single reference [27].

Hence, we conducted a human evaluation to evaluate the

sentence quality on the test set of ActivityNet-Entities. We

randomly sampled 329 video segments and presented the

segments and descriptions to the judges. From Tab. 3b, we

observe that, while they frequently produce captions with

similar quality, our GVD works better than the unsuper-

vised baseline (with a significant gap of 6.1%). We can also

see that our GVD approach works better than the Masked

Transformer [42] with a significant gap of 6.5%. We be-

lieve these results are a strong indication that our approach

is not only better grounded but also generates better sen-

tences, both compared to baselines and prior work [42].

5.3.2 Video Paragraph Description

Besides measuring the quality of each individual descrip-

tion, we also evaluate the coherence among sentences

within a video as in [30]. We obtained the result file and

evaluation script from [30] and evaluated both methods on

our test split. The results are shown in Tab. 5 and show that

we outperform the SotA method of [30] by a large margin.

The results are even more surprising given that we generate

description for each event separately, without conditioning

on previously-generated sentences. We hypothesize that the

temporal attention module can effectively model the event

context through the Bi-GRU context encoder and context

benefits the coherence of consecutive sentences.

5.4. Results on Flickr30k Entities

We show the overall results on image description in

Tab. 4 (test) and the results on the validation set are in

the Appendix. The method with the best validation CIDEr

score is the full model (Sup. Attn.+Grd.+Cls.), which we

further refer to as the GVD model in the table. The upper

bounds on the val/test sets are 90.0%/88.5%, respectively.

We see that the supervised method outperforms the unsu-

pervised baseline by a relative 1-3.7% over all the metrics.

Our GVD model sets new SotA for all the five metrics with

relative gains up to 10%. In the meantime, object local-

ization and region classification accuracies are significantly

boosted, showing that our captions can be better visually

explained and understood.

6. Conclusion

In this work, we collected ActivityNet-Entities, a novel

dataset that allows joint study of video description and

grounding. We show how to leverage the noun phrase an-

notations to generate grounded video descriptions. We also

use our dataset to evaluate how well the generated sentences

are grounded. We believe our large-scale annotations will

also allow for more in-depth analysis which have previ-

ously only been able on images, e.g. about hallucination

[24] and bias [9] as well as studying co-reference resolution.

Besides, we showed in our comprehensive experiments on

video and image description, how the box supervision can

improve the accuracy and the explainability of the gener-

ated description by not only generating sentences but also

pointing to the corresponding regions in the video frames

or image. According to automatic metrics and human eval-

uation, on ActivityNet-Entities our model performs state-

of-the-art w.r.t. description quality, both when evaluated per

sentence or on paragraph level with a significant increase

in grounding performance. We also adapted our model to

image description and evaluated it on the Flickr30k Enti-

ties dataset where our model outperforms existing methods,

both w.r.t. description quality and grounding accuracy.
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