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Abstract

Low-rank regions capture geometrically meaningful

structures in an image which encompass typical local fea-

tures such as edges, corners and all kinds of regular, sym-

metric, often repetitive patterns, that are commonly found in

man-made environment. While such patterns are challeng-

ing current state-of-the-art feature correspondence meth-

ods, the recovered homography of a low-rank texture read-

ily provides 3D structure with respect to a 3D plane, without

any prior knowledge of the visual information on that plane.

However, the automatic and efficient detection of the broad

class of low-rank regions is unsolved. Herein, we propose

a novel self-supervised low-rank region detection deep net-

work that predicts a low-rank likelihood map from an im-

age. The evaluation of our method on real-world datasets

shows not only that it reliably predicts low-rank regions in

the image similarly to our baseline method, but thanks to the

data augmentations used in the training phase it generalizes

well to difficult cases (e.g. day/night lighting, low contrast,

underexposure) where the baseline prediction fails.

1. Introduction

Many applications such as visual localization [20, 18,

17] or structure-from-motion (SFM) [23, 10] rely on ana-

lyzing correspondences between multiple images or images

and 3D point clouds (maps). In the case of SFM, the new
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image needs to be registered in the current reconstruction to

improve or extend the 3D point cloud, in the case of visual

localization a query image is used to estimate the location of

the camera in a given environment (map). All methods have

in common that for precise camera pose estimation (relative

between two cameras or absolute between camera and 3D

map) accurate pixel correspondences are crucial. In order to

obtain these correspondences, relevant pixels (keypoints) in

the query image and 3D points in the reference map need to

be described as uniquely as possible. These so called key-

point descriptors or local features are then used to compare

the pixels or 3D points and the pairs with the lowest de-

scriptor distance are kept for further processing. All feature

types share similar challenges: textureless areas, perspec-

tive distortion, occlusions, strong illumination changes, and

repetitive patterns. A significant amount of work on local

features and feature matching (surveys in [6, 24, 3]) was

presented in the past 20 years to overcome these challenges

and excellent results have been achieved.

However, it is not possible to establish reliable local cor-

respondences between pixels in textureless areas or within

repetitive pattern because of the inherent uncertainty in ap-

pearance (same color or pattern). Furthermore, feature

matching can only work if the two images actually show

the same scenery. If the environment changed between ref-

erence image and query image acquisition, even the best

descriptor cannot find valid correspondences.

Recent work [26, 29, 12] showed that it is possible to

rectify so called low-rank regions and to use them in order

to estimate the camera pose relative to a plane. Further-

more, knowing such a plane induced homography between

camera pairs in a camera network allows us to estimate the

relative pose of a complete camera network to a 3D plane

as shown in [16, 7, 14]. To be more precise, a planar region

in an image is low-rank if it is possible to recover a low-

rank matrix and a sparse error matrix where the first one

is a canonical view of the region obtained via a rectifying

homography. While the estimation of such a homography

would require at least 4 point correspondences in a classi-
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cal approach, the uniqueness of our approach is that we can

recover such a homography without explicit point matching

by making use of the intrinsic structure of such low-rank

textures. In an urban environment, such low rank textures

are commonly found e.g. on planar building facades (bricks,

ornaments, windows, etc.). Some examples of low-rank re-

gions are shown in Figure 1. While classical feature extrac-

tion and matching methods are challenged by such patterns,

low-rank regions provide an efficient alternative way – via

the recovered rectifying homography – to estimate relative

3D structure [16, 7] or camera intrinsics [30, 14].

Thus, automatic extraction of such regions is the key to

compute camera parameters or partial 3D structure, not only

completely without the need of local features, but also by

leveraging areas which have been avoided so far: repeti-

tive textures. This is very helpful in man-made environ-

ments such as cities because of two reasons: (i) man-made

environments contain many low-rank, regular often repet-

itive areas, (ii) the appearance of these areas change fre-

quently (e.g. day-night, decoration of storefronts, seasons)

which makes it difficult to keep them up to date in the ref-

erence map. Importantly, since using low-rank regions does

not rely on pixel-wise correspondences, there is no need for

storing visual information (images or descriptors). This sig-

nificantly reduces the practical efforts for, e.g., large-scale

camera localization where otherwise hundreds of thousands

of images would need to be stored. Instead, the map could

be a plane-based representation of the environment such as

a digital elevation map [1, 4].

This paper is motivated by the fact that, to the best of

our knowledge, there is no method available which actually

detects low-rank regions in images. Thus, the contribution

of this paper summarizes as follows:

• We propose a method which computes a low-rank like-

lihood map for an entire image by low-rank decom-

position of image patches extracted at multiple scales

(Section 3).

• We propose a self-supervised, pixel-wise probabil-

ity estimation network which estimates this likelihood

map directly from an image without solving extensive

optimization problems (Section 4).

2. Related work

Most relevant work for this paper cover detection of

repetitive structures, since they are particular cases of low-

rank textures, as well as the detection of low-rank regions

itself.

Repetitive structures. Several papers addressed the

problem of detecting repetitive patterns, which are often

based on the assumption of a single pattern repeated on a 2D

(deformed) lattice. Hays et al. [8] proposed to use a higher-

order feature matching algorithm to discover the lattices

of near-regular textures in real images, wheras Park et al.

[11] use mean-shift belief propagation for this. More pop-

ular methods are based on grouping of affine invariant lo-

cal features [22, 15]. Torii et al. [27] also consider local

feature grouping, but instead of grouping at image level

they consider the entire dataset and learn to adjust the vi-

sual word weights in the soft-assigned bag-of-visual-words

model. They then use the modified representation to bet-

ter detect these so called repttiles, i.e. repetitive patterns of

local invariant features.

The detected and rectified repetitive patterns can be used,

e.g., for single view facade rectification [5], camera pose

estimation of a query image assuming that the database of

building facades is given [22], or single-view 3D recon-

struction [28] assuming horizontal repetition or symmetry.

Low-rank structures. Peng et al. [12] propose a ro-

bust image alignment optimization framework called RASL

(Robust Alignment by Sparse and Low-rank Decomposition

for Linearly Correlated Images). RASL tries to find an op-

timal set of image domain transformations in a way that the

matrix consisting of the transformed images can be decom-

posed into the sum of a sparse error matrix and a low-rank

matrix describing the recovered aligned images. Another

way of computing the low-rank matrix is the TILT (Trans-

form Invariant Low-rank Texture) algorithm proposed by

Zhang et al. [29]. It uses an iterative convex optimization

on a given image area. TILT can be considered as a simpler

version of RASL because it only uses one image and one

domain transformation. Contrarily, RASL uses multiple

images and multiple transformations (one for each image).

TILT and RASL provide solid mathematical optimization

frameworks to estimate the low-rank matrices for given re-

gions, but none of these methods actually detects low-rank

regions. The naive solution for detection would be comput-

ing TILT (as it is the simpler method) on all possible image

patches (see examples in Figure 3). However, this is not

feasible and impossible in practice because of the process-

ing intensive optimization framework. Thus, the question

of how to detect these low-rank regions remains. In this pa-

per, we introduce two methods which provide a solution for

this.

3. TILT-based low-rank likelihood maps

Low-rank regions capture geometrically meaningful

structures in an image which encompass typical local fea-

tures such as edges and corners as well as all kinds of regu-

lar, symmetric often repetitive patterns, that are commonly

found in man-made environment. If these low-rank tex-

tures are on planar regions, it is possible to recover an in-

trinsic view I0, called Transform Invariant Low-rank Tex-
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Figure 1. Low-rank pattern examples from the Aachen Day-Night

dataset [19, 21].

ture (TILT) [29] with its corresponding rectifying projective

transformation H (described in Section 3.1).

Detection of low-rank regions differs from classical de-

tection problems because it cannot be considered as a binary

decision problem. For example, a building facade com-

posed of windows, such as the two examples in Figure 2,

is low-rank but a single window cropped from the facade

region is less low-rank (such as a single window in the top

left image) or even not low-rank at all (such as a single win-

dow in the top right image). Strictly speaking, the degree

of low-rankness depends on how much the intrinsic rank of

a region is lower than the dimension of the rectified region

containing the texture [29].

Therefore, instead of casting this as a detection problem,

we propose a method to generate a low-rank likelihood map

for a given image. A high value in this map means that

we can center a window of a minimum size at that posi-

tion such that the corresponding image region represents a

transformed low-rank texture.

To obtain such maps, we estimate a ”low-rankness”

score by using TILT [29] on a sliding window at multi-

ple scales. We then use a weighted kernel density estimate

(wKDE) to build the likelihood map.

3.1. Transform invariant low-rank textures (TILT)

The TILT algorithm uses a convex optimization tech-

nique that enables robust recovery of a high-dimensional

low-rank matrix despite gross sparse errors and, for planar

regions, the rectifying homography.

Let us assume, that our cameras see a 3D plane π with

a low-rank texture (see some examples in Figure 1) and

the world coordinate system is attached to this plane (be-

ing the Z = 0 plane). Consider a 2D texture as a func-

tion R0. According to [29], R0 is a low-rank texture,

if the family of one-dimensional functions {R0(x, y0) |
y0 2 R} span a finite low-dimensional linear subspace, i.e.

Figure 2. Images from the Aachen Day-Night dataset [19, 21]

(top), where the image was rectified with TILT based on a region

from the main facade (bottom).

dim(span{R0(x, y0)|y0 2 R})  k, for some small posi-

tive integer k compared to the region size. Given a low-rank

texture, obviously its rank is invariant under any scaling of

the function, as well as scaling or translation in the x and

y coordinates. Hence, two low-rank textures are equivalent

if they are scaled and translated versions of each other, i.e.

R0(x, y) ⇠ cR0(ax+ t1, by + t2).

In practice, we are never given the 2D texture as a con-

tinuous function in R but discretized as a matrix denoted by

R0. Furthermore, given an image, we only have a trans-

formed version of R0 denoted by R. Formally, there is a

h, such that h(R) ⇠ R0, or in the discrete case we have

HR ⇠ R0, where H 2 R
3×3 is a homography.

In a real application, the R0 pattern is unknown and, due

to occlusions and other noises, its image is a not perfectly

transformed versions of the pattern. This type of error can

be modeled with a sparse matrix S. Aiming to determine

the planar homography H, Zhang et al. [29] proposed to

solve it as a robust rank minimization problem

min
R0,S,H

rank(R0) + λkSk1

s.t. HR = R0 + S,
(1)

where R is the observed low-rank texture region, R0 is a

low-rank matrix approximating the intrinsic view R0 of the

low-rank texture, S is a sparse error matrix encoding the

difference between R0 and HR, and k.k1 is the L1 norm.

To solve this problem, [29] proposed to use an itera-

tive Augmented Lagrange Multipliers (ALM) method as de-

scribed in Algorithm 1. It contains two interleaved iterative

optimization processes which makes it rather costly. The

output of TILT is the estimation of the rectified low-rank

texture R∗

0 (also called canonical view), the error matrix S
∗

and the rectifying homography H
∗. In Figure 2 we show

examples of images rectified with H
∗ obtained from a man-

ually selected, planar low-rank region.
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Algorithm 1 The TILT Algorithm [29].

Input: Region R represented by the matrix R, and λ > 0.

Initialize: h0 with the identity (H0 = I) and t = 0.

while not converged do

Step 1: Normalize H
t
R such that kHt

RkF = 1
Step 2: Compute the Jacobian of R w.r.t. the transformation

parameters at ht.

rhR 
∂

∂h0

⇣ h0(R)

kh0(R)kF

⌘
�

�

�

h0=ht

Step 3: Solve the problem (1) using ALM described in Al-

gorithm 2 to get Rt

0, St and ∆
t

h.

Step 4: Update H
t+1 = H

t +∆
t

h.

end while

Output: Optimal solution R
⇤

0, S⇤ and H
⇤.

Figure 3. Low-rank score-maps obtained via (6) using TILT with

sliding windows on every pixel with window sizes of 50, 100, and

150 pixels (CPU times to generate these maps were between 5 and

12 days depending on window size and image content).

3.2. Building the low-rank likelihood map

Let us assume that in the ideal case we can get a likeli-

hood for each window reflecting the probability of contain-

ing a low-rank texture. Even in this case, in order to get

the likelihood map for the full image would mean that we

sample all possible windows at each pixel position (see ex-

amples obtained with different window sizes in Figure 3 for

a few test images). As already computing such a score on a

single window is costly (because of the two layer iterative

optimization used in TILT), it is quasi impossible to directly

compute this map (it took several days to obtain the maps

in Figure 3 for a single image using the Matlab implemen-

tation1 provided by the authors of [29]).

Instead, we estimate it by considering overlapping slid-

ing windows at multiple scales and predefined steps. At

each such position, we fit a local Gaussian with a ”low-

rankness” score (defined below) selecting a bandwidth de-

pending on the window size. This can be seen as a weighted

kernel density estimation (wKDE) of the targeted probabil-

ity density function. Kernel density estimation is a funda-

mental data smoothing problem where inferences about the

population are made based on a finite data sample, which is

1 We used the MATLAB code available at https://people.

eecs.berkeley.edu/˜yima/matrix-rank/tilt.html.

Algorithm 2 The ALM Solver [29].

Input: The current transformed region ht(R) represented by

Rt = H
t
R.

Input: The Jacobian Jt = rhR and its Moore-Penrose

pseudo-inverse denoted by J
†
t ;

Input: The weight λ > 0 and the element-wise shrinkage oper-

ator: σ(A, µ)(i, j) = sign(A(i, j))(|A(i, j)|� µ).
Initialize: k = 0, ρ > 1 µ0 > 0 and Y

0 = S
0 = ∆

0
h = 0.

while not converged do

(Uk,Dk,Vk) = SVD(Rt + Jt∆
k

h + µkY
k � S

k);
R

k+1

0 = Ukσ(Dk, µ
k)V>

k ;

S
k+1 = σ(Rt + J

t
∆

k

h + µkY �R
k

0 ,λµk);
∆

k+1

h
= J

†
t (�Rt +R

k+1

0 + S
k+1 � µkY

k);
Y

k+1 = Y
k + (Rt �R

k+1

0 Jt∆
k+1

h
� S

k+1)/µk;

µk+1 = µk/ρ.

end while

Output: Optimal solution R
⇤

0, S⇤ and ∆
⇤

h.

in our case the set of sampled windows. If {x1, x2, . . . , xn}
represent random samples drawn from some probability dis-

tribution q, we can approximate the shape of q by using a

kernel density estimator

Q(x|P ) =
1

n

nX

i=1

piG(wi,σ), (2)

where, in our case, the kernels are zero mean bivariate

Gaussians centered on the sampled window wi with vari-

ance σ depending on the window size. pi are the probability

weights obtained as described below.

Given any image window, considered as a matrix, the

optimization problem described in (1) can be solved effi-

ciently by ALM, yielding a triplet (R0,S,H). In case of a

quasi-planar low-rank texture, R0 is the intrinsic low-rank

structure, S is a sparse matrix, and H
−1 is the rectifying

transformation. In case of a non-low-rank region, the algo-

rithm will force to find an R0 with the lowest rank possible

at the price of an increased error making S less sparse.

In order to construct the likelihood map, we first run

TILT1 over a set of sliding windows of different sizes2 l⇥ l,
with l 2 {50, 100, 150}, and a step size of l/2 between

neighboring windows.

The algorithm provides us the following quantities for

each window wl
i: (1) Al

i – low-rank matrix, (2) Sl
i – sparse

matrix, (3) H
l
i – rectifying homography and (4) f l

i – the

residual of the factorization in (1). Using these quantities,

we can characterize the ”low-rankness” of the window wl
i

via a strictly non-negative error (or energy)

eli = rli + sli + f l
i , (3)

where rli is the rank of A
l
i divided by l and sli is the L1

norm of the sparse matrix S
l
i. The energy defined in (3)

2We considered fixed window sizes over images that were resized to fit

in 800× 1200 or 1200× 800.
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Figure 4. Top: Histogram of eli (3) for window sizes of 50, 100,

and 150. Bottom: Probability values constructed as (6) using (5)

for layers 50, 100, and 150.

is then used to define a standard exponential distribution

P l
i = exp(�eli). Note that a homogeneous region is low-

rank (providing a low eli value) but because of the lack of

intensity patterns they are useless to estimate a well-defined

rectifying homography.

Therefore, we want to impose P l
i = 0 for homogeneous

regions. To detect if the window corresponds to a homo-

geneous region we consider the binary edge map E
l
i of the

window wl
i and we check if

hl
i =

1

l2
kEl

i,jk1 (4)

is greater than a homogeneity threshold τ (set to 0.04).

Considering all eli values that are obtained from all win-

dows in our dataset processed with TILT and not rejected

by the homogeneity constraint, we build the histogram cor-

responding to various window sizes. On these histograms,

shown in Figure 4 (top), we can identify two modes: one

narrow mode with smaller eli,j values (corresponding to

low-rank region candidates) and a much wider one with

larger values. As we want to stretch the first mode in or-

der to construct a well calibrated P l
i which is suitable to

infer low-rank regions, we modify the low-rankness score

in (3) as

eli = max(0,α(rli + sli + f l
i � 1)), (5)

where we set α to 0.75. Then, pli combined with the homo-

geneity constraint becomes

pli = exp(�eli)δ(h
l
i > τ), (6)

where δ() is the Kronecker delta. Figure 4 (bottom) shows

the sorted probability values obtained over all windows.

In order to define the probability map over the entire

image, we use wKDE with Gaussian kernels to propagate

these values as

P
l =

1

N l

X

il=N l

pliG(w
l
i,σ

l), (7)

Algorithm 3 The TILT likelihood map generation.

Input: The image I and the set of window sizes l 2
{50, 100, 150}.

Pre-process: Convert the image to grayscale and resize it to get

min(width, height) = 800.

Pre-process: Build edge map E using Canny edge detector.

Initialize: The likelihood map P and P
l with zeros.

for all sliding window wl

i sampled with step l/2. do

Run Algorithm 1 to get R⇤

0, S⇤ and H
⇤

Compute eli using (5).

Compute the homogeneity hl

i for the window using (4).

Compute pli with (6).

Add pliG(w
l

i,σ
l) to P

l as described in (7).

end for

Normalize P
l for each l 2 {50, 100, 150}.

Compute P with (8).

Output: The likelihood map P obtained for I .

where N l denotes the number of windows in an image at

level l, wl
i are the sliding windows and σ

l is function of the

window size l. In order to ensure that the values of pl are

taken from the probability distribution over all images at

level l, we divide P
l by its maximum value and then mul-

tiply it by the maximum pli obtained in the whole dataset.

Finally, the probability maps, obtained at different levels

l 2 {50, 100, 150}, are averaged as

P =
1P
l
1
l

X

l

1

l
P

l. (8)

The above steps are summarized in Algorithm 3. Note

that we used a stronger weight for P
l obtained with a

smaller window size for two reasons. On the one hand we

have much more sliding windows that contributed to gen-

erate P
50 than P

100 or P
150. On the other hand, due to

the choice of our σ that depends on the window size, the

Gaussians corresponding to the window size 50 are more

localized than the Gaussians corresponding to bigger win-

dows yielding much smoother Pl maps.

4. Deep low-rank region detection network

Obtaining the probability map as described in Sec-

tion 3.2 is extremely costly3 because we have to run two

incorporated iterative optimizations in TILT and within the

ALM algorithm for every sliding window and at several

scales. Therefore, we propose to train a deep neural net-

work that learns to directly predict such maps from a given

image, trained with a set of likelihood maps generated with

the method from Section 3.2.

While these maps are only approximated probability dis-

tributions and hence cannot be considered as perfect ground

3Running the MATLAB version of TILT for all sliding windows with

step l/2 and 3 scales takes about 25 mins for an image.
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Figure 5. Modified Segnet [2].

truth, we hope that if sufficient training samples are shown

to the network, it is able to not only learn to reproduce the

map estimated with TILT, but also to generalize between the

training samples and learn to recognize implicit low-rank

non-homogeneous structures.

Willing to get a pixel level output, we considered mod-

els used for image segmentation as network architectures,

which include both down- and upscaling to obtain an out-

put feature map of the same resolution as the input image.

We experimented with two different architectures: Seg-

net [2] (see Figure 5) and Full-Resolution Residual Net-

works (FRRN) [13] (see Figure 6).

In both cases, we modified the network as follows: Since

color is not relevant for detecting low-rank regions, we first

convert the input images to single-channel grayscale. Sim-

ilarly, since we only consider a single feature map output,

we smooth the map with an average pooling layer and fi-

nally we normalize the values in the map to be between 0

and 1. Then, instead of using the cross-entropy loss as the

objective function for training the network, we use a loss

based on Kullback-Leibler (KL) divergence.

Indeed, we constructed P as a wKDE estimate of a prob-

ability distribution of low-rank regions defined over the im-

age plane via the method outlined in Section 3.2, i.e. it as-

signs a likelihood P (i, j) to each pixel (i, j) which charac-

terizes the probability of this pixel being part of a low-rank

region. Our aim is to obtain the output feature map F of

the network to be similar to P in a probabilistic closeness

sense. Therefore, as loss we use the Kullback-Leibler (KL)

divergence from the output feature map F to the input like-

lihood map P, which measures the difference between the

target probability distribution F and the reference probabil-

ity distribution P as

D(P||F) =
X

(i,j)∈I

bP(i, j) log
bP(i, j)

bF(i, j)
, (9)

where bP and bF are normalized likelihood maps such that

the sum of all values is 1, thus making the maps equiv-

alent to probability distributions conditioned on the given

image. Note that KL divergence is not a metric as it is anti-

symmetric and does not obey the triangle inequality. How-

Figure 6. Modified Full-Resolution Residual Networks

(FRRN) [13].

ever, it has important properties which makes it appropriate

to measure the difference between probability distributions.

Furthermore, it is always non-negative: D(P ||F ) � 0, be-

ing 0 only when P ⌘ F .

5. Experimental results

Training. To train our model, we used the Aachen Day-

Night dataset presented in [19, 21]. Originally proposed

for visual localization, this dataset consists of a training set

(with ground truth camera poses) and a test set (without

ground truth camera poses). We randomly split the Aachen

training set into three groups of images: 500 for validation,

500 for testing, and 3328 remain for training. In addition

to the test images from the split above, we used the im-

ages Day (milestone) and Night (nexus5x) from the official

Aachen test set for testing. In order to keep the network’s

memory consumption and training time reasonable, we re-

duced the image size to 800 ⇥ 640 by randomly alternat-

ing between re-scaling with zero-padding and random crop-

ping. Even if this strategy already introduced variability in

the training set, we additionally applied various data aug-

mentation methods such as flip, rotation, gamma, bright-

ness, contrast, and saturation change.

We built our models modifying the PyTorch implemen-

tation provided by [25]. We used the SGD optimizer with

a learning rate between 1.0e-7 and 1.0e-12, weight decay

equal to 0.0005, and a momentum of 0.99. We used small

batch sizes 2 or 4 and considered 200000 iterations evaluat-

ing the model every 500 iteration on the validation set. We

kept only the model that performed best on the validation

set, which often was obtained after around 150000 itera-

tions (if the model converged). The results shown in the

paper were obtained with a model trained with batch sizes

4 and learning rate equal to 1.0e-9.

Low-rank region detection. Following a standard proce-

dure, we used the 3328 images of our training set to train

the model, we used the validation set to select the parame-

ters, and finally we used our test set (including the official

Aachen Day-Night test images) to evaluate the model. Note

that in all our experiments, we consider the maps obtained
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Figure 7. Examples of predicted low-rank likelihood maps for test

images obtained with TILT+wKDE described in Section 3.2 (sec-

ond column), with SegNet-based deep network (third column), and

with the FRNN-based deep network (fourth column).

with TILT+wKDE as ground truth and compare the maps

obtained with the network to these maps using KL diver-

gence.

We show the average KL divergence over the validation

and test sets in Table 1 and on the Day (milestone) and Night

(nexus5x) sets in Table 2.

Table 1. Average KL divergence values on our train, val and test

splits of the Aachen Day-Night dataset.

model train val test

SegNet 0.0321 0.0364 0.0337

FRNN 0.0280 0.0315 0.0312

Table 2. Average KL divergence values on the Day (milestone) and

Night (nexus5x) set from the official Aachen-Day-Night dataset.

model Day (milestone) Night (nexus5x)

SegNet 0.09276 0.0617

FRNN 0.07752 0.0415

Furthermore, in Figures 7 and 8, we show low-rank like-

lihood maps obtained with TILT+wKDE-based likelihood

map generation described in Section 3.2, and likelihood

maps predicted by Segnet and FRNN-based deep networks.

As can be seen in Tables 1 and 2 and Figures 7 and 8,

the FRNN-based architecture provides smoother output

maps which in addition have a lower KL divergence when

comparing them to the likelihood maps obtained with

TILT+wKDE map generation.

Figure 8. Examples of predicted low-rank likelihood maps for

images from Day (milestone) and Night (nexus5x) obtained with

TILT+wKDE (second column), Segnet-based (third column) and

FRNN-based (fourth column) deep network.

Table 3. Average KL divergence values on sequences taken from

the CambridgeLandmarks dataset.

model GreatCourt (seq2) OldHospital (seq1)

SegNet 1.3846 0.8868

FRNN 1.0910 0.8240

Figure 9. Example image pair from Aachen, where the same

scene is visible day (bottom) and night (top) together with their

TILT+wKDE, SegNet and FRRN likelihood maps.

Generalization to other datasets. In order to test how the

model generalizes to other datasets, we consider sequences

from the CambridgeLandmarks dataset [9]. We show re-

sults for GreatCourt (seq2) and OldHospital (seq1) in Ta-

ble 3. Comparing these numbers with the ones from Ta-

ble 2, we see larger KL divergence values in Table 3. How-

ever, while looking at some representative results in Fig-

ure 10, both Segnet and FRRN provide relevant, consistent,

and better maps than the reference (TILT+wKDE). In order

to understand this, let us have a closer look at what is ex-
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Figure 10. Examples of predicted low-rank likelihood maps for

images from GreatCourt (seq2) (top two rows) and OldHospital

(seq1) (bottom two rows) and obtained with TILT+wKDE (second

column), Segnet-based (third column) and FRNN-based (fourth

column) deep network..

actly captured by our likelihood map outlined in Section 4.

First, the images used for TILT were not pre-processed

for exposure or contrast enhancement. Hence, when the

image is too dark and/or blurry, the edge detector provides

only a few edges yielding low hl
i in (6) and considering such

windows to be homogeneous (i.e. pli = 0) which prevents

them from contributing to the constructed likelihood map.

On the contrary, thanks to our data augmentation which

varies gamma, luminosity, and contrast, the deep model is

less affected by this and yields a better likelihood map than

TILT+wKDE (see Figure 10). As a result, the same struc-

tures under drastically different lighting conditions (see Fig-

ure 9 for a day/night example) are correctly detected as low-

rank, in spite of the extreme light changes.

Second, based on an experimental analysis of various

window sizes and resolution levels, we only considered

fixed-size sliding windows at three scales which captured

most of the low-rank properties while keeping the compu-

tational cost at a reasonable scale. Therefore, the output

of TILT+wKDE depends on the considered scales. Our

deep models are less sensitive to this, thanks to the fact that

we incorporated geometric transformations including scale

change in our data augmentation (see two bottom rows in

Figure 10). Both observations clearly show the strength of

the learned estimation over the hand-crafted computation.

Potential applications. The focus of the paper is the un-

solved problem of detection of low-rank regions by intro-

ducing the estimation of a novel likelihood map. When such

a region is correctly detected, one can easily and efficiently

get the rectifying homography. Figure 11 shows an exam-

ple of a low-rank region extracted at a local maximum of

our FRRN map together with its rectification using TILT.

As we can see, while TILT is unable to detect low-rank re-

Original image Detected BB Rectified BB

Figure 11. Low-rank region extracted at a local maximum of our

predicted FRRN map together with its rectification using TILT

(runtime: 0.8145s in Matlab).

2D image with low-rank BB Pose from homography in 3D

Figure 12. Purple: detected bounding box used for relative pose

estimation w.r.t. the 3D plane of the low-rank region. Green: GT

camera. Blue: camera factorized from the rectifying homography.

Rotation error: 2.4�, translation error: 1.5� (angle w.r.t. the GT

translation because the absolute length of the translation cannot be

obtained from an homography).

gions, it can efficiently estimate a rectifying homography

of the bounding boxes around the local maxima of our pre-

dicted likelihood maps. Such homographies have important

applications, e.g. camera pose estimation, matching, and 3D

reconstruction [7, 14, 16, 30]. An example of camera pose

estimation w.r.t. a 3D plane is shown in Figure 12.

6. Conclusion

We have shown that low-rank regions can be robustly de-

tected using a deep neural network which estimates a prob-

ability distribution. The network can be trained in a self-

supervised manner using likelihood maps computed with

TILT on an image grid at multiple scales. This is signif-

icantly faster and easier to use in practice, since the low-

rank regions are directly estimated from the image with-

out solving complex optimization problems. Furthermore,

evaluation on two real-world datasets have shown that we

can achieve very similar results to our baseline method

(TILT+wKDE). More importantly, the results show that the

learned estimation can even handle more challenging cases

where the hand-crafted computation fails. We strongly be-

lieve that this method will enable the usage of low-rank re-

gions in many applications since to date the full potential

of, e.g. camera pose estimation without depending on pixel-

wise correspondences, is not yet exploited. Furthermore,

our proposed detection network can further be extended to

directly return the rectifying homography.
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