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Figure 1. Unlike previous methods that rely on semantic and boundary label maps to synthesize images, our model uses panoptic maps. It

generates instances with clear separation even in cluttered scenes where multiple instances occlude each other. The forth and fifth column

show zoomed in patches from the second and third column images to highlight the boundaries between instances, where previous methods

tend to blend instances together.

Abstract

Conditional image synthesis for generating photorealis-

tic images serves various applications for content editing

to content generation. Previous conditional image synthe-

sis algorithms mostly rely on semantic maps, and often fail

in complex environments where multiple instances occlude

each other. We propose a panoptic aware image synthe-

sis network to generate high fidelity and photorealistic im-

ages conditioned on panoptic maps which unify semantic

and instance information. To achieve this, we efficiently

use panoptic maps in convolution and upsampling layers.

We show that with the proposed changes to the generator,

we can improve on the previous state-of-the-art methods by

generating images in complex instance interaction environ-

ments in higher fidelity and tiny objects in more details.

Furthermore, our proposed method also outperforms the

previous state-of-the-art methods in metrics of mean IoU

(Intersection over Union), and detAP (Detection Average

Precision).

1. Introduction

Image synthesis refers to the task of generating diverse

and photo-realistic images, where a prevalent sub-category

known as conditional image synthesis outputs images that

are conditioned on some input data. Recently, deep neural

networks have been successful at conditional image synthe-

sis [11, 4, 32, 38, 39, 37, 1] where one of the conditional

inputs is a semantic segmentation map. Extending this con-

cept, in this paper, we are interested in the generation of

photo-realistic images guided by panoptic maps. Panop-

tic maps unify semantic and instance maps. Specifically,
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they provide information about object instances for count-

able classes which are called “things” such as people, ani-

mals, and cars. Additionally, they contain the semantic in-

formation about classes that are amorphous regions and re-

peat patterns or textures such as grass, sky, and wall. These

classes are referred to as “stuff”.

We are interested in panoptic maps because semantic

maps do not provide sufficient information to synthesize

“things” (instances) especially in complex environments

with multiple of them interacting with each other. Even the

state-of-the-art baseline (SPADE [23]) which inputs bound-

ary maps to the network fails to generate high fidelity im-

ages when objects are small and instances are partially oc-

cluding. This issue can be observed in Figure 1, in the

continuous pattern extending from one zebra to the other.

This is the result of conventional convolution and upsam-

pling algorithms being independent of class and instance

boundaries. To address this problem, we replace the convo-

lution and upsampling layers in the generator with Panoptic

aware convolution and Panoptic aware upsampling layers.

We refer to this form of image synthesis as panoptic-

based image synthesis. We evaluate our proposed im-

age generator on two diverse and challenging datasets:

Cityscapes [5], and COCO-Stuff [2]. We demonstrate that

we are able to efficiently and accurately use panoptic maps

to generate higher fidelity images and improve on evalua-

tion metrics used by previous methods [4, 32, 23].

Our main contributions can be summarized as follows:

1. We propose to use Panoptic aware convolution that

re-weights convolution based on the panoptic maps in

conditional image generation setting. Similar mecha-

nisms have been previously used for other tasks [15, 7]

with binary masks and learned soft masks but not for

image synthesis with multi-class panoptic masks.

2. We propose Panoptic aware upsampling that addresses

the misalignment between the upsampled low resolu-

tion features and high resolution panoptic maps. This

ensures that the semantic and instance details are not

lost, and that we also maintain higher accuracy align-

ment between the generated images and the panoptic

maps.

3. We demonstrate that using our proposed network ar-

chitecture, not only do we see more photorealistic im-

ages, but we also observe significant improvements in

object detection scores on both Cityscapes and COCO-

Stuff datasets when evaluated with object detection

model.

2. Related Work

Generative Adversarial Networks (GANs) [6] per-

form image synthesis by modelling the natural image dis-

tribution and synthesizing new samples that are indistin-

guishable from natural images. This is achieved by using

a generator and a discriminator network that are both trying

to optimize an opposing objective function, in a zero-sum

game. Many conditional image synthesis works use GANs

to generate realistic images, and so does ours.

Conditional Image Synthesis can vary based on differ-

ent type of inputs to be conditioned upon. For example,

inputs can be text [25, 38, 34, 9], natural and synthetic im-

ages [13, 41, 17, 42, 10, 40, 14], or unsupervised landmarks

[18, 12, 28] to name a few. Recently, [24, 4, 11] use seman-

tic maps and [32, 23] use both semantic maps and boundary

maps as inputs to the generator, where the boundary maps

are obtained from the instance maps. A pixel in the bound-

ary map is set to 1 if its object identity is different from any

of its 4 neighbors, and set to 0 otherwise. This approach

does not preserve the whole information contained in an in-

stance map especially when instances are occluding each

other. The pixels that belong to the same instance may be

separated by multiple boundaries.

Content Aware Convolution. There have been many

works that learn to weight the convolution activations based

on attention mechanisms [37, 33, 35, 7]. These mechanisms

operate on feature maps to capture the spatial locations that

are related to each other while making a decision. In an-

other line of research, the spatial locations that should not

contribute to an output may be given to us by binary masks

such as in the case of image inpainting, the task of filling in

holes in an image. In this task, [16, 30] use partial convolu-

tions so that given a binary mask with holes and valid pixels,

the convolutional results depend only on the valid pixels.

Our convolution layer is similar to the one used in image

inpainting, instead of masks with holes, we have panoptic

maps given to us, and therefore we know that convolutional

results of an instance should not depend on an another in-

stance or on pixels that belong to a different semantic class.

We are not given binary masks, but we generate them effi-

ciently on-the-fly based on panoptic maps.

Content Aware Upsampling. Nearest neighbor and bi-

linear interpolations are the most commonly used upsam-

pling methods in deep learning applications. These meth-

ods use hand-crafted algorithms based on the relative posi-

tions of the pixel coordinates. There has been also great

interest in learning the upsampling weights for the tasks

of semantic segmentation [22, 29] and image and video

super-resolution [27]. Recently, [19, 31] proposed feature

guided upsampling algorithms. These methods operate on

the feature maps to encode contents, and based on the con-

tents they upsample the features. In our method, similar to

the idea in the panoptic aware convolution layer, we take

advantage of the high resolution panoptic maps to resolve

the misalignments in upsampled feature maps and panoptic

maps.
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Figure 2. Panoptic aware partial convolution layer takes a panoptic

map (colorized for visualization) and based on the center of each

sliding window it generates a binary mask, M. The pixels that

share the same identity with the center of the window are assigned

1 and the others 0.

3. Method

In this section, we first detail the Panoptic aware con-

volution and Panoptic aware upsampling layers. We then

describe the overall network architecture.

3.1. Panoptic Aware Convolution Layer

We refer to the partial convolution operation using

panoptic maps as a Panoptic aware partial convolution

layer which shares the fundamentals with other works that

use partial convolution for different tasks [7, 15]. Let W

be the convolution filter weights and b the corresponding

bias. X is the feature values, P is the panoptic map values

for the current convolution (sliding) window, and M is the

corresponding binary mask.

M defines which pixels will contribute to the output of

the convolution operation based on the panoptic maps. The

pixel coordinates which share the same identity with the

center pixel in the panoptic map are assigned 1 in the mask,

while the others are assigned 0. This is expressed as:

m(i,j) =

{

1, if P(i,j) == P(center,center)

0, otherwise
(1)

This can be implemented by first subtracting the center

pixel from the patch and clipping the absolute value to (0,

1), then subtracting the clipped output from 1 to inverse the

zeros and ones. Figure 2 depicts the construction of the

mask M.

The partial convolution at every location is expressed as:

x′ =

{

W
T (X⊙M) sum(1)

sum(M) + b, if sum(M) > 0

0, otherwise
(2)

where ⊙ denotes element-wise multiplication and 1 has

same shape as M but with all elements being 1. The scaling

factor, sum(1)/sum(M), applies normalization to account
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Figure 3. Overview of Panoptic aware upsampling module. 16×16
and 32 × 32 panoptic maps are nearest neighbor downsampled

from original 256 × 256 panoptic map. 32 × 32 upsampled map

is upsampled from 16 × 16 panoptic map using nearest neighbor

upsampling algorithm. Comparing the 32 × 32 upsampled and

32 × 32 original map, we can observe two issue: 1) Spatial mis-

alignments and 2) Appearance of new classes or instances. As

shown in Figure (top), first we correct misalignment by replicat-

ing a feature vector from a neighboring pixel that belongs to the

same panoptic instance. This operation is different from nearest

neighbor upsampling which would always replicate the top-left

feature. Second, as shown in Figure (bottom), we resolve pix-

els where new semantic or instance classes have just appeared by

encoding new features from semantic maps with Panoptic aware

convolution layer.

for varying amount of valid inputs as in [15]. With Equation

2, convolution results of an instance or stuff depend only on

the feature values that belong to the same instance or stuff.

3.2. Panoptic Aware Upsampling Layer

We propose a Panoptic aware upsampling layer as an al-

ternative to traditional upsampling layers when the higher

resolution panoptic maps are available as in the case of im-
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Figure 4. The percent of incorrectly mapped features using upsam-

pling through different layers of network.

age synthesis for content generation task. Nearest neighbor

upsampling is a popular conventional upsampling choice in

conditional image synthesis tasks as used by [1, 23, 32, 23].

However, nearest neighbor upsampling algorithm is hand-

crafted to do replication. For example, in a 2 × 2 upsam-

pling scenario, nearest neighbor algorithm will replicate the

top-left corner to the neighboring pixels in a 2× 2 window.

This creates two issues as shown in Figure 3.

First, it can create a spatial misalignment between the

high resolution panoptic map and upsampled features. Fig-

ure 3-top illustrates this issue, where the features of instance

idB are replicated and incorrectly used for instance idA fol-

lowing traditional upsampling approach. In Figure 3, we

demonstrate the misalignments in the upsampled panoptic

maps for clarity, but we are only interested in the align-

ment in feature maps. We refer to the operation for fixing

this misalignment as “Upsampling alignment” correction.

Secondly, as shown in Figure 3-bottom, the high resolution

panoptic map may contain new classes and instances that

might not exist in the lower resolution panoptic map. This

implies that new features need to be generated and replaced

in upsampled feature map. We refer to this operation as

“Hole filling”.

Figure 4 depicts how often the two issues mentioned

above occur at different layers in the network for the

Cityscapes dataset. As seen in the figure, especially in the

early layers, over 30% of pixel features among the newly

generated ones do not align with the panoptic maps, and

many pixels that belong to a new instance or semantic map

appear for the first time at the new scale.

To resolve these two issues, Panoptic aware upsam-

pling layer performs a two-step process: Upsample align-

ment correction and Hole filling as shown in Figure 3. Let

S be the semantic map, and F the feature to be upsampled.

We are interested in 2×2 upsampling as it is the most com-

mon upsampling scale used by image synthesis methods.

Let Pd be the downsampled panoptic mask. We are inter-

ested in upsampling F
d, to generate the upsampled feature

Algorithm 1 Upsampling Alignment Correction.

Initialize: Mcorrection = 0, F ′u = 0,

for i ∈ [0, 2W ); j ∈ [0, 2H) do

if Pu
i,j == P d

i//2,j//2 then

F ′u
i,j = F d

i//2,j//2

Mcorrection
i,j = 1

end if

end for

for i ∈ [0, 2W ); j ∈ [0, 2H) do

if Pu
i,j == P d

i//2+1,j//2 and Mcorrection
i,j ! = 1 then

F ′u
i,j = F d

i//2+1,j//2

Mcorrection
i,j = 1

end if

end for

for i ∈ [0, 2W ); j ∈ [0, 2H) do

if Pu
i,j == P d

i//2,j//2+1 and Mcorrection
i,j ! = 1 then

F ′u
i,j = F d

i//2,j//2+1

Mcorrection
i,j = 1

end if

end for

for i ∈ [0, 2W ); j ∈ [0, 2H) do

if Pu
i,j == P d

i//2+1,j//2+1 and Mcorrection
i,j ! = 1 then

F ′u
i,j = F d

i//2+1,j//2+1

Mcorrection
i,j = 1

end if

end for

map, F′u with the guidance from a higher scale panoptic

and semantic maps, Pu, and S
u, and a mask, Mcorrection,

that we will generate.

To correct the misalignment in the 2 × 2 upsampling

layer, we scan the four neighbors of each pixel. In the 2× 2
window, if we find a match between the corresponding pix-

els’ panoptic identity in higher resolution and a neighboring

pixels panoptic identity in lower resolution, we copy over

that neighboring feature to the corresponding indices in up-

sampled feature map. This method is depicted in Algorithm

1. Note that the first for loop would correspond to the near-

est neighbor upsampling algorithm if there was no if state-

ment in the loop. We also update the mask, Mcorrection, to

keep track of which indices have been successfully aligned.

In the subsequent for loops, for the indices that were not

aligned yet, we check if any of the other neighbors are

matching the panoptic identity with them.

After Algorithm 1, we end up with a partially filled up-

sampled feature map F
′u and a M

correction mask which

defines which coordinates found a match. After that we cal-

culate the final F′u by:

F ′u
(i,j) = F ′u

(i,j)+

(1−M correction
i,j ) ∗ fholefilling(S

u
(i,j))

︸ ︷︷ ︸

Hole Filling
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We generate fholefilling with the Panoptic aware con-

volution layer by feeding semantic map (Su) as input and

panoptic map (Pu) for guidance. We use the semantic

map to encode features from K × 2W × 2H semantic map

where K is the number of classes to a higher dimension

C × 2W × 2H with this layer.

fholefilling = PanopticAwareConvolution(Su) (3)

With Panoptic aware upsampling layer, the features that

have been tailored for a specific instance or a semantic map

are not copied over to an another one, which improves the

accuracy of the generated images.

3.3. Network Architecture

Our final proposed architecture, motivated by

SPADE [23] is described in Figure 5. Similar to SPADE,

we feed a downsampled segmentation map to the first layer

of the generator, but in our architecture, it is a Panop-

tic aware convolution layer that encodes features from

#Classes × W × H semantic map to a higher dimension

1024 × W × H . In the rest of the network, we replace all

convolution layers in the ResNet Blocks with the Panoptic

aware convolution layers and all upsampling layers with

Panoptic aware upsampling layers. Each block operates

at a different scale and we downsample the semantic and

panoptic maps to match the scale of the features.

The input to the SPADE module is kept as a semantic

map which learns denormalization parameters. Panoptic

maps are not suitable for this computation, since the convo-

lution operation expects a fixed number of channels. Hence,

we rely on SPADE to provide the network with the correct

statistics of features based on the semantic classes.

We feed panoptic maps to the panoptic aware convolu-

tion layers in order to perform convolution operation based

on the instances and classes. The original full resolution

panoptic and semantic maps are also fed to the panoptic

aware upsampling layers to perform upsampling alignment

correction and hole filling.

The panoptic aware convolution layer that is in the

first layer of the architecture which encodes features from

#Classes × W × H semantic map to a higher dimension

encoded features are shared between panoptic aware up-

sampling layers in the rest of the network. When the num-

ber of channels the partial convolution layer from the first

layer generates does not match the one expected at different

blocks, we decrease the dimension with 1 × 1 convolution

layers. This layer is depicted by green boxes in Figure 5.

Note that the green box is depicted multiple times in Figure

but they are shared between stages. By sharing the weights,

we do not introduce additional parameters to the baseline

except the negligible cost of 1 × 1 convolutions. Sharing

these weights also makes sense since the task of this layer

is common at each stage which is to generate features for

instances and semantic classes that appear for the first time

at that stage.

4. Experiments

Datasets. We conduct our experiments on Cityscapes [5]

and COCO-Stuff [2] datasets that have both instance and

semantic segmentation labels available. The Cityscapes

dataset contains 3,000 training images and 500 valida-

tion images of urban street scenes along with 35 semantic

classes and 9 instance classes. All classes are used while

synthesizing images but only 19 classes are used for seman-

tic evaluation as defined by Cityscapes evaluation bench-

mark. COCO-Stuff dataset has 118,000 training images

and 5,000 validation images from both indoor and outdoor

scenes. This dataset has 182 semantic classes and 81 in-

stance classes.

Implementation Details. We use the parameters provided

by SPADE baseline [23]. Specifically, we use synchronized

batch normalization to collect statistics across GPUs, and

apply Spectral Norm [20] to all layers in the generator and

discriminator. We train and generate images in 256 × 256
resolution for COCO-Stuff, and 256 × 512 for Cityscapes

dataset. We train 200 epochs on Cityscapes dataset with

batch size 16, and linearly decay the learning rate after 100

epochs as done by [23]. COCO-Stuff dataset is trained for

100 epochs with batch size of 48 with constant learning rate.

Initial learning rates are set to 0.0001 and 0.0004 for the

generator and discriminator respectively, and networks are

trained with ADAM solver with β1 = 0 and β2 = 0.999.

Performance Metrics. We adopt the evaluation metrics

as previous conditional image synthesis work [23, 32] plus

add another metric for detecting successfully generated ob-

ject instances. The first two metrics, mean intersection over

union (mIoU) and overall pixel accuracy (accuracy), are ob-

tained by inferring a state-of-the-art semantic segmentation

model on the synthesized images and comparing how well

the predicted segmentation mask matches the ground truth

semantic map. Additionally, we use Detection Average Pre-

cision (detAP) by using a trained object detection network

to evaluate instance detection accuracy on synthesized im-

ages.

We use the same segmentation networks used in [23]

for evaluation. Specifically, we use DeepLabV2 [3, 21] for

COCO-Stuff, and DRN-D-105 [36] for Cityscapes datasets.

For detection, we use Faster-RCNN [26] with ResNet-50

backbone. In addition to the mIoU, accuracy and detAP

performance metrics, we use the Fréchet Inception Distance

(FID) [8] to measure the distance between the distribution

of synthesized results and the distribution of real images.

Baselines. We compare our method against three popu-

lar image synthesis frameworks, namely: cascaded refine-

ment network (CRN) [4], semi-parametric image synthesis
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Figure 5. In our generator, each ResNet Block layer uses segmentation and panoptic masks to modulate the layer activations. (Left) The

generator contains a series of the residual blocks with Panoptic aware convolution and upsampling layers. (Right) Structure of residual

blocks.

Method detAP mIoU accuracy FID

CRN [4] 8.75 52.4 77.1 104.7

SIMS [24] 2.60 47.2 75.5 49.7

SPADE [23] 11.67 62.3 81.9 71.8

SPADE* 11.80 62.2 81.9 94.0

Ours 13.43 64.8 82.4 96.4
Table 1. Results on Cityscapes. Our method outperforms cur-

rent leading methods in detAP, mIoU and overall pixel accuracy.

SPADE* is trained by us.

(SIMS) [24], and spatially-adaptive denormalization model

(SPADE) [23]. CRN uses a deep network with given se-

mantic label map, it repeatedly refines the output from low

to high resolution without an adversarial training. SIMS

uses a memory bank of image segments constructed from

a training set of images and refines the boundaries via a

deep network. Both SIMS and CRN operate only on a se-

mantic map. SPADE is the current state-of-the-art condi-

tional image synthesis method, and not only uses seman-

tic map but also incorporates the instance information via

a boundary map. The pixel in the boundary map is 1 if its

object identity is different from any of its 4 neighbors, and

0 otherwise. This approach does not provide the full in-

stance information especially in cluttered scenes with lots

of objects occluding each other. We compare with SIMS on

Cityscapes dataset but not on COCO-stuff dataset as SIMS

requires queries to the training set images and it is compu-

tationally costly for a large dataset such as the COCO-stuff

dataset.

Quantitative Results. In Tables 1 and 2, we provide the re-

sults for Cityscapes and COCO-Stuff datasets, respectively.

We find that our method outperforms the current state-of-

the-art by a large margin for object detection score, mIoU

and pixel level accuracy in both datasets. Table 4 reports

mIoU for each class in Cityscapes dataset. We improve al-

Method detAP mIoU accuracy FID

CRN [4] 22.7 23.7 40.4 70.4

SPADE [23] 28.5 37.4 67.9 22.6

SPADE* 29.0 38.2 68.6 25.3

Ours 31.0 38.6 69.0 28.8
Table 2. Results on COCO-Stuff. Our method outperforms cur-

rent leading methods in detAP, mIoU and overall pixel accuracy.

SPADE* is trained by us.

most all of the classes significantly. Especially, our pro-

posed method improves mIoU for traffic sign from 44.7 to

50.0, which is a challenging class because of the small size

of the signs.

We observe a slight degradation in our FID score com-

pared to the released SPADE models, and the SPADE mod-

els we trained with the parameters provided by [23]. FID

score tries to match the variances/diversities between real

and generated images, without caring about the correspon-

dence with the conditioned semantic map and instance map.

Our results have better correspondence with the underlying

semantic and instance maps. Though this would be the de-

sired behavior, the results may get affected by human anno-

tation bias. We suspect, such annotation bias (e.g. straight

line bias, over-simplified polygonal shape bias) in the in-

puts may deteriorate the matching of variances. Also note

that SIMS produces images that have significantly lower

FID score than the other methods even though it achieves

worse detAP and mIoU scores. This is because SIMS copies

image patches from training dataset, and sometimes the

copied patch does not faithfully match the given segmen-

tation mask. This issue becomes even more apparent in de-

tAP score, as SIMS copies over patches without ensuring

the number of cars being consistent with the panoptic map.

Qualitative Comparison. In Figures 6 and 7, we provide

image synthesis results of our method and other competing
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Method road swalk build. wall fence pole tlight tsign veg. terr. sky person rider car truck bus train mbike bike

CRN [4] 96.9 79.5 76.7 29.0 10.6 34.8 39.8 44.3 68.4 54.4 91.9 63.0 39.7 87.8 25.0 56.2 31.8 14.5 52.2

SIMS [24] 93.3 66.1 73.6 33.1 34.5 30.3 27.2 39.5 73.4 46.2 56.6 42.9 31.0 70.3 35.8 42.5 37.3 20.3 43.1

SPADE [23] 97.4 80.0 87.9 50.6 47.2 35.9 39.0 44.7 88.2 66.1 91.6 62.3 38.7 88.7 65.0 70.2 41.4 28.6 58.8

Ours 97.7 82.5 89.2 60.6 54.2 35.3 39.8 50.0 89.5 69.0 92.4 63.2 38.2 90.6 66.7 72.2 48.8 31.2 59.1

Table 3. Per-class mIoU results on Cityscapes.

Panoptic Map CRN [4] SIMS [24] SPADE [23] Ours

Figure 6. Visual comparison of image synthesis results on Cityscapes dataset. We also provide the bounding box detection predictions

from Faster-RCNN. The cars in the first row images are occluded by poles which create a challenge for the image synthesis methods. CRN

generates cars that can be detected by Faster-RCNN but visually look less pleasing. SIMS loosely follows the provided semantic map, and

the cars SPADE generates are not distinctive enough to be detected by Faster-RCNN. In the third row, cars generated on the right side of

the images present a challenge for the algorithms that only use semantic maps as seen in the images from CRN and SIMS where CRN

generates two cars and SIMS generates four cars while three cars should be present. Thanks to the boundary maps used in SPADE, it

can generate the correct number of cars. However, our proposed method along with generating the correct number of car instances, also

generates more instances of persons that can be detected with higher accuracy.

methods. We also provide the bounding box detection pre-

dictions from Faster-RCNN. We especially provide exam-

ples where multiple instances occlude each other. We find

that our method produces instances with better visual qual-

ity in challenging scenarios. Specifically, we find that our

method generates distinct cars even when they are behind

poles, and can generate detectable people even when they

are far away as shown in Figure 6. As can be seen in Figure

7, we find that other methods may blend the pattern and tex-

ture of objects among neighboring instances, whereas our

method clearly separates them.

Ablation Studies. We conduct controlled experiments and

gradually add our proposed components. We start with a

baseline SPADE model [23]. We train the model three

times, and report the average results. First, we replace

the convolutions in ResNet blocks and the first layer with

panoptic aware convolution layers. Second, we additionally

replace nearest neighbor upsampling layers with panoptic

Method mIoU detAP

Baseline (SPADE) 60.00 10.97

+Panoptic-aware Partial Conv 61.24 11.50

+Panoptic-aware Upsampling 64.55 13.04
Table 4. Ablation studies on Cityscapes dataset. Results are aver-

aged over 3 runs, and they are slightly different than the results in

Table 1.

aware upsampling layers. The segmentation mIoU scores

and detAP scores of the generated images by each setup are

shown in Table 4 where each added module increases the

performance.

5. Conclusion

In conclusion, we propose a panoptic-based image syn-

thesis network that generates images with higher fidelity

to the underlying segmentation and instance information.
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Panoptic Map CRN [4] SPADE [23] Ours

Figure 7. Visual comparison of image synthesis results on the COCO-stuff dataset. We also display the bounding box detection predictions

from Faster-RCNN. Other methods generate patterns that are continues throughout instances which makes the instances indistinguishable.

Also note that in the last row our method is able to produce detectable car instances in a cluttered scene.

We show that our method is better at generating distinct

instances in challenging scenarios and outperforms previ-

ous state-of-the-art significantly in detAP metric, a metric

which has not been used to evaluate conditional image syn-

thesis results before.

Future Work. Multi-modal image synthesis and control-

lability of styles are very important for content generation

applications. The architecture in our experiments does not

support style-guided image synthesis. However, our work

can be extended to output multiple styles via an encoder-

decoder architecture as proposed in pix2pixHD [32]. Fur-

thermore, the proposed panoptic aware convolution and up-

sampling layers can be used for feature maps that decode

styles, and can provide further improvements. We leave this

as future work.
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