
Fast Sparse ConvNets

Erich Elsen∗

DeepMind

London, UK

eriche@google.com

Marat Dukhan∗

Google

Mountain View, CA

maratek@google.com

Trevor Gale∗

Google

Mountain View, CA

tgale@google.com

Karen Simonyan

DeepMind

London, UK

simonyan@google.com

Abstract

Historically, the pursuit of efficient inference has been

one of the driving forces behind the research into new deep

learning architectures and building blocks. Some of the

recent examples include: the squeeze-and-excitation mod-

ule [16], depthwise separable convolutions in Xception [4],

and the inverted bottleneck in MobileNet v2 [35]. Notably,

in all of these cases, the resulting building blocks enabled

not only higher efficiency, but also higher accuracy, and

found wide adoption in the field. In this work, we further

expand the arsenal of efficient building blocks for neural

network architectures; but instead of combining standard

primitives (such as convolution), we advocate for the re-

placement of these dense primitives with their sparse coun-

terparts. While the idea of using sparsity to decrease the

parameter count is not new [42], the conventional wis-

dom is that this reduction in theoretical FLOPs does not

translate into real-world efficiency gains. We aim to cor-

rect this misconception by introducing a family of efficient

sparse kernels for several hardware platforms, which we

open-source as part of the XNNPACK library for the benefit

of the community. Equipped with our efficient implemen-

tation of sparse primitives, we show that sparse versions

of MobileNet v1, MobileNet v2 and EfficientNet architec-

tures substantially outperform strong dense baselines on the

efficiency-accuracy curve. On Snapdragon 835 our sparse

networks outperform their dense equivalents by 1.3− 2.4×
– equivalent to approximately one entire generation of im-

provement. We hope that our findings will facilitate wider

adoption of sparsity as a tool for creating efficient and ac-

curate deep learning architectures.

1. Introduction

Convolutional neural networks (CNNs) have proven to

be excellent at solving a diverse range of tasks [2]. Standard

network architectures are used in classification, segmen-

∗These authors contributed equally to this work

tation, object detection and generation tasks [31, 26, 47].

Given their wide utility, there has been significant effort to

design efficient architectures that are capable of being run

on mobile and other low power devices while still achiev-

ing high classification accuracy on benchmarks such as Im-

ageNet [34]. For example, MobileNets [15, 35] employ the

depthwise separable convolutions introduced in [36] to sig-

nificantly reduce resource requirements over previous archi-

tectures. Inference time and computational complexity in

these architectures are dominated by the 1×1 convolutions,

which directly map to matrix-matrix multiplications.

Weight sparsity is generally known to lead [3] to theoret-

ically smaller and more computationally efficient (in terms

of number of floating-point operations) models, but it is of-

ten disregarded as a practical means of accelerating models

because of the misconception that sparse operations cannot

be fast enough to achieve actual speedups during inference.

To address this misconception and firmly establish sparsity

as a tool in the deep learning practitioner’s arsenal, we intro-

duce fast kernels for Sparse Matrix-Dense Matrix Multipli-

cation (SpMM) specifically targeted at the acceleration of

sparse neural networks. The main distinction of our SpMM

kernel from prior art [30, 45] is that we focus on a differ-

ent point in the design space. While prior work focused on

extremely sparse problems (typically >99%, found in sci-

entific and graph problems), we target the sparsity range of

70-95%, more common when inducing weight sparsity in

neural networks. As a result our kernels significantly out-

perform the kernels generated by the TACO compiler [22].

Using these kernels, we demonstrate the effectiveness of

weight sparsity across three generations of MobileNet [15,

35, 40] architectures. Sparsity leads to an improvement

of approximately one whole generation in each architec-

ture, with sparse EfficientNets being significantly more ef-

ficient than all previous models. These models represent

a new generation of efficient CNNs, which reduces infer-

ence times by 1.3−2.4×, parameter counts by over 2× and

number of floating-point operations (FLOPs) by up to 3×
relative to the previous generations.

114629

102 103

MFlops

65

70

75

80

To
p1

MBv1 vs MBv2 vs EN

dense v1
90% v1
dense v2
80% v2
dense EN
80% EN

(a) Top-1 Accuracy vs. FLOPs

1 2 3 4 5 10 20
MParams

65

70

75

80

To
p1

MBv1 vs MBv2 vs EN

dense v1
90% v1
dense v2
80% v2
dense EN
80% EN

(b) Top-1 Accuracy vs. Parameter Count

Figure 1: MobileNet v1 and v2 and EfficientNet models. Sparse models: blue, dense models: red. Sparse models include the

cost of storing the location of non-zeros for sparse tensors as a bitmask converted back into parameter count. That is every

32 values in the bitmask contributes one “parameter”.

2. Related Work

Improvements in convolutional network architec-

tures [23, 37, 12, 17], as measured by increased classifica-

tion accuracy on benchmark tasks such as ImageNet [34],

have generally been concomitant with increases in model

parameter counts, FLOPs and memory requirements.

Recently this evolution has led to networks found through

neural architecture search [50, 33] which can achieve over

82% top-1 accuracy, but require nearly 25 GFLOPs for one

inference.

Given these prohibitive inference costs, there have been

many lines of work attempting to improve CNN efficiency,

which is often defined as one of three metrics:

1. Inference speedup on real hardware

2. Theoretical speedup through FLOPs reduction

3. Model size reduction

These axes are neither parallel nor orthogonal. The effect

of (3) and (2) on (1) in particular can be quite complicated

and highly varied depending on the hardware in question.

The MobileNet family of architectures [15, 35] has fo-

cused on improving efficiency by taking advantage of the

depthwise separable convolutions introduced in [36], which

can be thought of as a hand-crafted sparsification of full

convolutions with a predefined sparse topology, and which

are responsible for the parameter efficiency of these archi-

tectures. MobileNet v1 (MBv1) used layers of 1× 1 convo-

lutions followed by depthwise convolutions. MobileNet v2

(MBv2) introduced the inverted residual block which con-

sists of a 1 × 1 convolution expanding the channel count,

a depthwise convolution on the expanded channel count,

and then a 1× 1 convolution reducing the parameter count.

Across MobileNet architectures, the depthwise convolu-

tions account for only a small fraction of the total FLOPs,

parameters, and inference time of these models. In MBv1,

they account for less than 2% of the total FLOPs and in

MBv2 less than 3%.

A different line of work attempted to make more effi-

cient CNNs by directly pruning the weights of full convo-

lutional filters accompanied by the necessary inference ker-

nels [32, 24]. [32] was not able to accelerate 1× 1 convolu-

tions, [24] did not attempt it. The latter also required gen-

erating a new set of kernels for each instance of a model,

which is often impractical for deployment. Due to the dif-

ficultly of accelerating sparse computation, channel prun-

ing approaches have been preferred [10, 5, 28, 27, 41, 13].

These approaches prune away entire filters leaving the final

model dense, and function more as an architecture search

over channel counts.

Full Neural Architecture Search has also been applied

directly to architectures resembling MBv2 resulting in Mo-

bileNet v3 [39], FBNet [44], and EfficientNet [40].

Alternatively, factorizations of the 1×1 convolutions

have been considered in ShuffleNet [46] and Learnable But-

terfly Factorizations [6]. ShuffleNet factorizes the weight

matrix into a product of a permutation matrix and block di-

agonal matrix. Butterfly Factorizations factorize the weight

matrix into a sequence of permutation matrices and weight

matrices with special structure that can represent many

common O(NlogN) transforms such as Fast Fourier Trans-

forms.

14630

C
h

a
n

n
e
ls

 I
n

Channels In

C
h

a
n

n
e
ls

O

u
t

Height x Width

C
h

a
n

n
e
ls

 I
n

Channels In

C
h

a
n

n
e
ls

O

u
t

Height x Width

Figure 2: Sparse 1x1 Convolution as SpMM. Left: Unstructured sparsity (or block size 1). Right: Output channel block size

of 4

Work in Text-to-Speech (TTS) [21] demonstrated that in-

creasing sparsity and concomitant increase in state size in

RNN models lead to increased model quality for a given

non-zero parameter count. They additionally demonstrated

fast block-sparse matrix-vector (SpMV) multiplication rou-

tines necessary for RNN inference.

3. Methods

To understand how to design the most efficient convo-

lutional models, we investigate both how to construct and

train sparse MBv1, MBv2 and EfficientNet models and also

the performance of our SpMM kernels.

3.1. Sparsifying Networks

We train on the ImageNet [34] dataset with standard aug-

mentation and report top-1 accuracies on the provided 50k

example validation set. To make the networks sparse we use

the gradual magnitude pruning technique of [48].

We do not prune the first full convolution at the begin-

ning of all three networks. Its overall contribution to the pa-

rameter count, FLOP count, and runtime is small and does

not warrant introducing a new sparse operation. Instead, we

implement a dense convolutional kernel which takes as in-

put the image in the standard HWC layout and outputs the

CHW layout consumed by the sparse operations in the rest

of the network. In HWC layout, the values for different

channels corresponding to one spatial location are adjacent

in memory. In CHW layout, the values of all the spatial

locations for one channel are adjacent in memory.

We also do not prune the squeeze-excitation [16] blocks

in EfficientNet as they contribute <1% of the total FLOPs to

the dense model. The last fully-connected layer in all mod-

els also contributes insignificantly (<1%) to the total FLOP

count, but does contribute a significant fraction (20-50%)

of total parameters, especially after the rest of the model is

pruned. As we are concerned with maximizing top-1 accu-

racy for a given runtime, we do not prune the final layer in

MobileNet v1 and v2 as doing so leads to a small decrease

in top-1 accuracy. Standard EfficientNets do not scale the

number of filters in the last convolution by the width of the

model, however we find that when introducing sparsity it is

beneficial to do this; in all sparse EfficientNet models we

double the units from 1280 to 2560. We also find that it is

possible to make the fully-connected layer sparse without

loss of accuracy in EfficientNet, so we do so.

3.2. Kernel Implementation

A diagram of the 1×1 convolution as a SpMM is seen in

figure 2. Our scheme requires activation tensors be stored

in CHW format, in contrast to dense mobile inference li-

=

=

=

=

1 3

2 4

Figure 3: Visualization of the memory reads and writes of our algorithm. In step 1, we load 8 spatial locations simultaneously

for each of the non-zero weights in the first row of the weight matrix. We also prefetch the values that will be needed for

the next set of columns (shown in light yellow). We multiply each scalar weight by its corresponding row, accumulate the

results, and in the end write them out. Step 2 performs the same calculation for the next output channel. After steps 1 and

2, all values for these spatial locations are in the cache, so future loads in steps 3 and 4 will be fast, despite being random

access.

14631

11
2/

89
56

/1
76

28
/3

60
14

/7
20

7/
14

32
Spatial Extent / Channel Count

0

20

40

60

80

100

GF
LO

P/
se

c
16x1
16x4

ruy
taco

16x1 eff
16x4 eff

taco eff

(a) MB v1 ARM NEON

11
2/

22
56

/3
2

28
/4

8

14
/8

8

14
/1

36

7/
22

4

Spatial Extent / Channel Count

0

10

20

30

40

50

GF
LO

P/
se

c

16x1
16x2

ruy
taco

16x1 eff
16x2 eff

taco eff

(b) MB v2 ARM NEON

Figure 4: FLOPs with increasing layer depth. All measurements taken on a Snapdragon (SD) 835. Effective assumes 90%

sparse MBv1 and 85% sparse MBv2 models.

braries [19, 7, 20] which favor HWC.

There are three key insights enabling the high perfor-

mance of our kernels:

1. While the weight matrix is sparse, the activation matrix

is dense. This means that we can perform vector loads

from the activation matrix and process multiple spatial

locations simultaneously.

2. By processing the matrix in the right order we can keep

values that will be randomly accessed in the L1 cache,

from which random access is fast and constant time.

3. When the number of input channels is small enough,

prefetching from the activations can further reduce

cache misses.

Figure 3 shows the memory read and write patterns of a

few steps of the kernel. The figure shows 8 elements being

processed together for visualization but 16 is more natural

for the actual implementation as it corresponds to one cache

line. The outer loop is over columns and the inner loop is

over rows; this allows each strip of 16 spatial locations in

the activations to remain in the L1 cache until it is no longer

needed. In figure 3 steps 1 and 2 prime the cache, while

subsequent steps 3 and 4 load all right hand side values from

the L1 cache.

In addition to the vectorization in the HW dimension,

taking advantage of small amounts of structure in the weight

matrix can offer significant performance boosts by increas-

ing data reuse after values are loaded into registers. Con-

straining the sparsity pattern so that multiple output or input

channels all share the same zero/non-zero pattern creates

‘blocks’ in the weight matrix (see figure 3 right). Blocks in

the output channel dimension allow for more data reuse than

blocks in the input channel dimension. Experiments (see

figure 5) show that either choice has the same effect on ac-

curacy, so we implement output channel blocking with sizes

of 2 and 4. Our nomenclature for kernels is to give their

spatial vectorization width followed by the output channel

block size – 16x2 means 16 pixels and 2 output channels

are processed in the inner loop.

We implement the ARM kernels in C with NEON in-

trinsics unlike current production libraries [19, 7, 20] which

rely on expert-optimized assembly.

3.3. XNNPACK Integration

Our kernels are available as part of XNNPACK [29]. We

plan to release a TF-lite delegate that can run sparse models

trained with the model pruning library in TensorFlow [1].

This includes conversion from a dense representation to a

Block Compressed Sparse Row (BCSR)-like representation

suitable for inference. In addition to the high performance

1×1 convolutions, we also provide all supporting CHW ker-

nels – depthwise convolutions, global average pooling and

a 3 × 3 stride-2 dense convolution – necessary for running

all three generations of models. While we provide high per-

formance versions of these kernels, we do not detail them

here. They are included in end-to-end measurements.

3.4. WebAssembly

In some settings it is useful to run inference (and

even training) of deep neural networks directly in web

browsers. This is supported now by multiple frameworks

14632

Model Width Top-1 Mega Mega Time Time Time

FLOPs Params SD835 SD670 Wasm

MBv1
Dense 1.0 70.9 1120 4.30 135/116 111/108 271

Sparse 1.4 72.0 268 2.28 58 64 97

MBv1
Dense .75 68.4 636 2.59 74/69 63/65 170

Sparse 1.0 68.4 146 1.48 31 34 56

MBv1
Dense .5 63.3 290 1.34 34/35 28/33 96

Sparse .75 64.4 90 1.30 21 21 36

MBv2

Dense 1.4 75.0 1110 6.06 146/142 121/128 319

Sparse 2.0 74.5 406 4.24 93 91 155

Sparse* 1.8 74.9 411 4.13 102 108 155

MBv2
Dense 1.0 71.8 580 3.47 78/80 64/76 197

Sparse 1.4 72.0 220 2.68 54 53 95

MBv2

Dense .75 69.8 375 2.61 55/64 47/58 154

Sparse 1.15 70.2 165 2.11 40 39 74

CA Sparse‡ 1.0 69.7 119 1.73 33 35 -

MBv2
Dense .5 65.4 182 2.05 27/33 22/30 92

Sparse .80 65.2 90 1.66 26 24 41

EN
Dense EN-b0 76.8 730 5.28 142/153 140/154 -

Sparse EN-b1 76.7 220 3.07 110 118 -

Table 1: Comparison of dense and sparse model sizes, flops, and inference speeds. All input image sizes are 224x224. Sparse

MBv1 models are 90% sparse in every layer, Sparse MBv2 models are 85% sparse. In sparse MBv1 models, layer 12 uses a

block size of 4. This is almost as efficient as the models in 4.3 and matches the top-1 scores of the dense models more closely.

In sparse MBv2 models, layers 11 and onwards use a block size of 2. The finally fully connected layer in all models is dense.

All times are in milliseconds. Dense times on ARM are measured using XNNPACK with intrinsics (as the sparse kernels

are written with intrinsics) and TensorFlow Lite. Web Assembly results are measured on an Intel W-2135, dense times use

Intel’s webml-polyfill [18] library†. Sparse parameter counts include the overhead of sparsity storage as a bitmask for each

sparse layer. EN-b1 is 85% sparse and unstructured, final FC layer is sparse.

*This model is 80% sparse in all layers (except final fully-connected) and uses a block size of 1 everywhere.

‡ This is the cache aware MBv2 architecture described in section 4.4. It uses a block size of 1 throughout.
†We also tried WebDNN [14], but it does not support some operations necessary to run MobileNet and EfficientNet models.

including WebDNN [14], Tensorflow.js [38] and Webml-

polyfill [18]. Frameworks generally support using We-

bAssembly (Wasm) [11] to run on CPUs or WebGL to run

on GPUs. In this work we target web assembly backends

and show that sparse vision networks significantly outper-

form their dense counterparts in this setting. In this setting

our kernel decomposition strategy is similar, however due

to current lack of vectorization support in Wasm, they are

converted to scalar instructions. Due to the smaller regis-

ter file, we find that unrolling by 8 instead of 16 is optimal.

These kernels are available as part of XNNPACK on github.

4. Results

In the main text we mainly include results for MBv1 and

MBv2 due to space limitations. EfficientNets generally fol-

low the same trends as MBv2 models, plots for EfficientNet

can be found in the supplementary material. First we reveal

performance results for our SpMM kernels, then we show

how the networks respond to sparsity and then finally we

combine this information to find the models with the lowest

inference time.

14633

4.1. ARM Kernel Performance

We use both Ruy [20], the current TensorFlow Lite

ARM64 backend written largely in hand-coded assembly,

and dense XNNPACK with intrinsics as the dense baselines.

For a sparse baseline we use the kernel generated by the

TACO compiler [22]. We present results by plotting the

FLOPs achieved at each layer in the model, with increasing

depth to the right in figure 4. For MBv1 we use a width mul-

tiplier of 1.4 and 90% sparse and for MBV2 we use a width

multiplier of 1.4 and 85% sparse as these configurations ap-

proximately match the top-1 accuracy of the width 1 dense

models. The kernel variants that process 16 spatial locations

at a time (e.g. 16x1, etc.) are the highest performing and

all reported numbers are from these kernel variants. TACO

results should be compared with the 16x1 kernels.

The raw performance of the sparse kernels falls in the

range of 40–90% of the dense kernels. And as they must

do much less work, when taking the sparsity of the layer

into account, the effective FLOPs are in the 2–7× range. In

MBv1 performance falls significantly in the last two layers

of the model when the number of channels (1024) causes

the size of one “strip” of spatial locations to exceed the size

of the L1 cache. In MBv2 the sawtooth pattern is caused by

the alternating expand and contract operations. The perfor-

mance is higher for the expand kernels due to greater data

reuse of each “strip” that is brought into the L1 cache.

4.2. Model Performance

The hyper-parameters used to train MBv1 and MBv2 are

listed in table 2, they were found with a grid search on

dense models with a width multiplier of 1.0 to reproduce

the original results, which used RMSProp [43], with SGD

with momentum. The same hyper-parameters are used to

train sparse models. This change allows us to match or ex-

ceed the reported accuracies with only 38,000 iterations of

training.

MBv1 MBv2

learning rate .35 ∗ 16 = 5.6 .24 ∗ 16 = 3.84

momentum 0.9 0.92

l2 coefficient 5e-5 4e-5

Table 2: Hyper-parameters for MBv1 and MBv2 training.

Learning rates are specified in a reduced space and then

multiplied by a factor of 16 due to the batch size (4096).

The learning rate schedule is a linear ramp for the first 8

epochs to the maximum value followed by step-wise decay

at epochs 40, 75 and 95 by a factor of ten.

The hyper-parameters used to train EfficientNet are

largely unmodified from their code release, with the excep-

tion of extending training from 350 to 650 epochs and in-

creasing the learning rate decay exponent to .985 from .97

so that the learning rate decays more slowly. These changes

do not improve the dense baseline.

We induce sparsity in MBv1 and MBv2 by extending

training by a factor (along with learning rate anchor points)

of four, we find this increases the performance of the sparse

models, but not the baselines. We start the sparsifica-

tion process at iteration 7, 000 ∗ 4 = 28, 000 and stop at

28, 000 ∗ 4 = 112, 000 with a pruning frequency of 2,000.

For EfficientNet we start at iteration 23,000 and end at iter-

ation 105,000, also with a pruning frequency of 2,000. See

[48] for the meaning of these hyper-parameters.

We train on the ImageNet [34] dataset with standard data

augmentation. Top-1 accuracies are reported on the valida-

tion set with center single-crops.

To understand the effect of block size, we plot in figure 5

accuracy against flops for different block sizes. In these

plots, every sparse tensor in the network uses the same out-

put channel block size. The tradeoff for block sparsity only

appears to involve how many elements are in each block,

and not their configuration. For example, in MBv1, the

1×4, 4×1 and 2×2 curves all lie on top of one another. The

loss in accuracy due to blocking seems to decrease slightly

for larger width models.

To understand how the sparsity level affects the effi-

ciency of the models, we train models at 70%, 80% and

90% unstructured sparsity which is constant throughout the

model. The results are plotted in figure 6. MBv1 and MBv2

are more efficient the more sparse they become, confirming

that the results of [21] hold not just for RNNs, but also for

convolutional models as well.

In figure 1 we plot Top-1 accuracy vs. FLOPs for all

three generations of sparse and dense models. MobileNet

v1 is 90% sparse, the other models are 80% sparse. A sparse

MBv1 exceeds MBv2 in terms of FLOP and parameter ef-

ficiency; a sparse MBv2 matches EfficientNet in terms of

FLOP and parameter efficiency; and a sparse EfficientNet

exceeds all other models in both categories.

4.3. Model Design for Block Size

To design the models with the best top-1 accuracy vs.

inference time frontiers we make the following assumptions

to reduce the search space:

1. We leave the models themselves unchanged.

2. We induce the same level of sparsity in all 1 × 1 con-

volutions.

Then we do a search at width multiplier 1.4 over N mod-

els when there are N residual blocks in a model. An x-axis

location of n corresponds to a model in which the first n

residual blocks are unstructured and the last N − n resid-

ual blocks have an output channel block size of 4. We train

14634

102 103

MFlops
60.0

62.5

65.0

67.5

70.0

72.5

To
p1

baseline
90% 1x1
90% 1x2
90% 2x1
90% 2x2
1x4
4x1
4x4

(a) MBv1 90% Sparse

102 103

MFlops
65.0

67.5

70.0

72.5

75.0

77.5

To
p1 baseline

80% 1x1
80% 1x2
80% 2x1
80% 1x4
80% 4x1

(b) MBv2 80% Sparse

Figure 5: Effect of block size on top-1 accuracy. It only matters how many elements are in a block, the configuration is

unimportant.

102 103

MFlops

65.0

67.5

70.0

72.5

75.0

77.5

To
p1

baseline
70% 1x1
80% 1x1
90% 1x1

(a) MBv1

102 103

MFlops

65.0

67.5

70.0

72.5

75.0

77.5
To

p1

baseline
70% 1x1
80% 1x1
90% 1x1

(b) MBv2

Figure 6: Effect of sparsity on top-1 accuracy. The sparser a model is, the fewer flops it requires to achieve a given Top-1

accuracy.

each model, note its top-1 accuracy and then measure its

inference time. From this we can calculate the ratio of in-

ference time reduction relative to a fully unstructured model

and top-1 lost, which are plotted in figure 7. We choose the

model with the highest ratio and train models at all widths

with this choice. This amounts to making layers 6 and

deeper blocked in MBv1 models and layers 11 and deeper

blocked in MBv2.

4.4. Cache Aware Model Design

The sawtooth pattern in figure 4 is due to the large num-

ber of channels during the contract phase causing the size

of stripe to exceed the size of the L1 cache. One possible

solution, common with dense kernels, would be to split the

matrix into N pieces such that each piece only accesses a

number of channels that fit within the cache. However, the

unstructured nature of the sparsity makes this complicated

– there might load balancing issues and it would necessitate

repacking the matrix. Instead of introducing more complex-

ity into the software, we examine a simple modification to

the MBv2 architecture to make it cache aware.

The inverted residual block introduced by MBv2 ex-

pands the number of channels before the depthwise con-

volution and then reduces them afterwards. The expansion

factor is fixed at 6 for all layers. Once there are more than

512 channels, the size of the 32Kb L1 cache is exceeded.

Additionally, once there are more than 256 channels, the

data exceeds half of the cache precluding effective use of

14635

0 4 8 12
Layer

5.0

5.5

6.0

6.5

Ti
m

e
re

du
ct

io
n(

m
s)

 /
To

p1
 lo

ss

(a) MBv1

0 5 10 15
Layer

7

8

9

10

Ti
m

e
re

du
ct

io
n(

m
s)

 /
To

p1
 lo

ss

(b) MBv2

Figure 7: Efficiency of models with layer N and onward blocked. The x-axis corresponds to turning that layer and all

following layers to block size 4, the prior layers are unstructured. The y-axis is the efficiency of making this change over an

unstructured model given as a ratio where the numerator is the speedup of changing the block(s) from unstructured to block

size 4 and the denominator is the decrease in top-1 accuracy that occurs by making this change.

pre-fetching. To design an architecture that is aware of these

constraints we take MBv2 and increase the expansion fac-

tor of early layers while reducing the expansion factor as

the number of channels increases so that the number of ex-

panded channels still fits within approximately half of the

cache size. To compensate for the decrease in capacity this

would otherwise cause, we also increase the depth of the

model by adding one more layer with 32 channels, two more

with 64 channels and three more each with 96 and 160 chan-

nels. The final architecture is in table 3.

Input Operation e c n s

2242 × 3 conv2d - 16 1 2

1122 × 16 Bottleneck 1 16 1 1

1122 × 16 Bottleneck 8 24 2 2

562 × 24 Bottleneck 8 32 4 2

282 × 32 Bottleneck 4 64 6 2

142 × 64 Bottleneck 3 96 6 1

72 × 96 Bottleneck 2 160 6 2

72 × 160 Bottleneck 2 320 1 1

72 × 320 conv2d 1x1 - 1280 1 1

72 × 1280 gavgpool - - 1 -

12 × 1280 conv2d 1x1 - k 1 -

Table 3: Architecture of cache aware MBv2 optimized for

our sparse kernels. Each block is repeated n times and con-

tains c channels that are expanded by a factor of e. The

initial convolution in each block has stride s, all others have

stride 1.

Table 1 contains the timings for running our sparse mod-

els on a single big core of two different processors, a Snap-

dragon 835 and a Snapdragon 670. We compare them

with MBv1 and MBv2 models from their official reposi-

tories [8, 9] run on the dense-inference TF Lite framework

with the standard Ruy backend and also dense XNNPACK

with intrinsics. Model files for all models in table 1 are

available here.

Surprisingly, in the presence of sparsity MBv1 is approx-

imately as efficient as MBV2 suggesting that a full Neural

Architecture Search [49, 25] will likely lead to even more

efficient models, which we leave to future work.

5. Conclusion

We demonstrate that for a constant computational bud-

get, sparse convolutional networks are more accurate than

dense ones; this corroborates the findings of [21], which

demonstrated that for a set number of floating-point opera-

tions, sparse RNNs are more accurate than dense RNNs. We

enable the use of weight sparsity to accelerate state-of-the-

art convolutional networks by providing fast SpMM kernels

along with all necessary supporting kernels for ARM pro-

cessors. Combining quantization and sparsity is an inter-

esting future direction, the smaller cache footprint afforded

by quantization synergizes nicely with the sparse kernels.

On Snapdragon 835 the sparse networks we present in this

paper outperform their dense equivalents by 1.3 − 2.4× –

equivalent to approximately one entire generation of im-

provement. By overturning the misconception that “spar-

sity is slow”, we hope to open new avenues of research that

would previously not be considered.

14636

References

[1] Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene

Brevdo, Zhifeng Chen, Craig Citro, Greg S. Corrado, Andy

Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat,

Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Is-

ard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Man-

junath Kudlur, Josh Levenberg, Dan Mané, Rajat Monga,

Sherry Moore, Derek Murray, Chris Olah, Mike Schuster,

Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Tal-

war, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fer-

nanda Viégas, Oriol Vinyals, Pete Warden, Martin Watten-

berg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. Tensor-

Flow: Large-scale machine learning on heterogeneous sys-

tems, 2015. Software available from tensorflow.org. 4

[2] Ashwin Bhandare, Maithili Bhide, Pranav Gokhale, and Ro-

han Chandavarkar. Applications of convolutional neural net-

works. International Journal of Computer Science and In-

formation Technologies, 7(5):2206–2215, 2016. 1

[3] Yu Cheng, Duo Wang, Pan Zhou, and Tao Zhang. A sur-

vey of model compression and acceleration for deep neural

networks. arXiv preprint arXiv:1710.09282, 2017. 1

[4] F. Chollet. Xception: Deep learning with depthwise sepa-

rable convolutions. In 2017 IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), pages 1800–1807,

July 2017. 1

[5] Bin Dai, Chen Zhu, Baining Guo, and David Wipf. Com-

pressing neural networks using the variational information

bottleneck. In Jennifer Dy and Andreas Krause, editors, Pro-

ceedings of the 35th International Conference on Machine

Learning, volume 80 of Proceedings of Machine Learning

Research, pages 1135–1144, Stockholmsmssan, Stockholm

Sweden, 10–15 Jul 2018. PMLR. 2

[6] Tri Dao, Albert Gu, Matthew Eichhorn, Atri Rudra, and

Christopher Ré. Learning fast algorithms for linear trans-

forms using butterfly factorizations. In Proceedings of the

36th International Conference on Machine Learning, ICML

2019, 9-15 June 2019, Long Beach, California, USA, pages

1517–1527, 2019. 2

[7] Marat Dukhan, Yiming Wu, and Hao Lu. Qnnpack: Open

source library for optimized mobile deep learning, 2019. 4

[8] Google, 2018. 8

[9] Google, 2018. 8

[10] A. Gordon, E. Eban, O. Nachum, B. Chen, H. Wu, T. Yang,

and E. Choi. Morphnet: Fast simple resource-constrained

structure learning of deep networks. In 2018 IEEE/CVF

Conference on Computer Vision and Pattern Recognition,

pages 1586–1595, June 2018. 2

[11] Andreas Haas, Andreas Rossberg, Derek L. Schuff, Ben L.

Titzer, Michael Holman, Dan Gohman, Luke Wagner, Alon

Zakai, and JF Bastien. Bringing the web up to speed with we-

bassembly. In Proceedings of the 38th ACM SIGPLAN Con-

ference on Programming Language Design and Implemen-

tation, PLDI 2017, pages 185–200, New York, NY, USA,

2017. ACM. 5

[12] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep Residual Learning for Image Recognition. In 2016

IEEE Conference on Computer Vision and Pattern Recog-

nition, CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016,

pages 770–778, 2016. 2

[13] Yihui He, Ji Lin, Zhijian Liu, Hanrui Wang, Li-Jia Li, and

Song Han. AMC: automl for model compression and accel-

eration on mobile devices. In Computer Vision - ECCV 2018

- 15th European Conference, Munich, Germany, September

8-14, 2018, Proceedings, Part VII, pages 815–832, 2018. 2

[14] Masatoshi Hidaka, Yuichiro Kikura, Yoshitaka Ushiku, and

Tatsuya Harada. Webdnn: Fastest dnn execution framework

on web browser. In Proceedings of the 25th ACM interna-

tional conference on Multimedia, pages 1213–1216. ACM,

2017. 5

[15] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry

Kalenichenko, Weijun Wang, Tobias Weyand, Marco An-

dreetto, and Hartwig Adam. Mobilenets: Efficient convolu-

tional neural networks for mobile vision applications. CoRR,

abs/1704.04861, 2017. 1, 2

[16] J. Hu, L. Shen, and G. Sun. Squeeze-and-excitation net-

works. In 2018 IEEE/CVF Conference on Computer Vision

and Pattern Recognition, pages 7132–7141, June 2018. 1, 3

[17] G. Huang, Z. Liu, L. v. d. Maaten, and K. Q. Weinberger.

Densely connected convolutional networks. In 2017 IEEE

Conference on Computer Vision and Pattern Recognition

(CVPR), pages 2261–2269, July 2017. 2

[18] Intel. Webml-polyfill, 2019. 5

[19] Benoit Jacob. gemmlowp: a small self-contained low-

precision gemm library, 2017. 4

[20] Benoit Jacob. Ruy, 2019. 4, 6

[21] Nal Kalchbrenner, Erich Elsen, Karen Simonyan, Seb

Noury, Norman Casagrande, Edward Lockhart, Florian

Stimberg, Aäron van den Oord, Sander Dieleman, and Ko-

ray Kavukcuoglu. Efficient Neural Audio Synthesis. In Pro-

ceedings of the 35th International Conference on Machine

Learning, ICML 2018, Stockholmsmässan, Stockholm, Swe-

den, July 10-15, 2018, pages 2415–2424, 2018. 3, 6, 8

[22] Fredrik Kjolstad, Shoaib Kamil, Stephen Chou, David Lu-

gato, and Saman Amarasinghe. The tensor algebra com-

piler. Proceedings of the ACM on Programming Languages,

1(OOPSLA):77, 2017. 1, 6

[23] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.

Imagenet classification with deep convolutional neural net-

works. In F. Pereira, C. J. C. Burges, L. Bottou, and K. Q.

Weinberger, editors, Advances in Neural Information Pro-

cessing Systems 25, pages 1097–1105. Curran Associates,

Inc., 2012. 2

[24] Baoyuan Liu, Min Wang, Hassan Foroosh, Marshall F. Tap-

pen, and Marianna Pensky. Sparse convolutional neural net-

works. 2015 IEEE Conference on Computer Vision and Pat-

tern Recognition (CVPR), pages 806–814, 2015. 2

[25] Hanxiao Liu, Karen Simonyan, and Yiming Yang. DARTS:

Differentiable architecture search. In International Confer-

ence on Learning Representations, 2019. 8

[26] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully

convolutional networks for semantic segmentation. In Pro-

ceedings of the IEEE conference on computer vision and pat-

tern recognition, pages 3431–3440, 2015. 1

14637

[27] Christos Louizos, Max Welling, and Diederik P. Kingma.

Learning sparse neural networks through l0 regularization.

In International Conference on Learning Representations,

2018. 2

[28] Jian-Hao Luo, Jianxin Wu, and Weiyao Lin. Thinet: A Filter

Level Pruning Method for Deep Neural Network Compres-

sion. In IEEE International Conference on Computer Vision,

ICCV 2017, Venice, Italy, October 22-29, 2017, pages 5068–

5076, 2017. 2

[29] Juhyun Lee Frank Barchard Ming Guang Yong Chao Mei

Jared Duke Erich Elsen Marat Dukhan, Andri Kulik. Xn-

npack, 2019. 4

[30] Yusuke Nagasaka, Satoshi Matsuoka, Ariful Azad, and

Aydın Buluç. High-performance sparse matrix-matrix prod-

ucts on intel knl and multicore architectures. In Proceedings

of the 47th International Conference on Parallel Processing

Companion, ICPP ’18, pages 34:1–34:10, New York, NY,

USA, 2018. ACM. 1

[31] Z. Pan, W. Yu, X. Yi, A. Khan, F. Yuan, and Y. Zheng. Re-

cent progress on generative adversarial networks (gans): A

survey. IEEE Access, 7:36322–36333, 2019. 1

[32] Jongsoo Park, Sheng R. Li, Wei Wen, Hai Li, Yiran Chen,

and Pradeep Dubey. Holistic sparsecnn: Forging the trident

of accuracy, speed, and size. CoRR, abs/1608.01409, 2016.

2

[33] Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V

Le. Regularized evolution for image classifier architecture

search. In Proceedings of the AAAI Conference on Artificial

Intelligence, volume 33, pages 4780–4789, 2019. 2

[34] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-

jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,

Aditya Khosla, Michael Bernstein, Alexander C. Berg, and

Li Fei-Fei. Imagenet large scale visual recognition challenge.

Int. J. Comput. Vision, 115(3):211–252, Dec. 2015. 1, 2, 3, 6

[35] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.

Chen. Mobilenetv2: Inverted residuals and linear bottle-

necks. In 2018 IEEE/CVF Conference on Computer Vision

and Pattern Recognition, pages 4510–4520, June 2018. 1, 2

[36] Laurent Sifre and Prof Stephane Mallat. Ecole polytech-

nique, CMAP phd thesis rigid-motion scattering for image

classification, 2014. 1, 2

[37] Karen Simonyan and Andrew Zisserman. Very deep convo-

lutional networks for large-scale image recognition. In In-

ternational Conference on Learning Representations, 2015.

2

[38] Daniel Smilkov, Nikhil Thorat, Yannick Assogba, Ann

Yuan, Nick Kreeger, Ping Yu, Kangyi Zhang, Shanqing Cai,

Eric Nielsen, David Soergel, Stan Bileschi, Michael Terry,

Charles Nicholson, Sandeep N. Gupta, Sarah Sirajuddin, D.

Sculley, Rajat Monga, Greg Corrado, Fernanda B. Viegas,

and Martin Wattenberg. Tensorflow.js: Machine learning for

the web and beyond. Palo Alto, CA, USA, 2019. 5

[39] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan,

Mark Sandler, Andrew Howard, and Quoc V. Le. Mnas-

net: Platform-aware neural architecture search for mobile. In

IEEE Conference on Computer Vision and Pattern Recogni-

tion, CVPR 2019, Long Beach, CA, USA, June 16-20, 2019,

pages 2820–2828, 2019. 2

[40] Mingxing Tan and Quoc V. Le. Efficientnet: Rethinking

model scaling for convolutional neural networks. In Pro-

ceedings of the 36th International Conference on Machine

Learning, ICML 2019, 9-15 June 2019, Long Beach, Cali-

fornia, USA, pages 6105–6114, 2019. 1, 2

[41] Lucas Theis, Iryna Korshunova, Alykhan Tejani, and Fer-

enc Huszár. Faster gaze prediction with dense networks and

Fisher pruning. CoRR, abs/1801.05787, 2018. 2

[42] Georg Thimm and Emile Fiesler. Evaluating pruning meth-

ods. In National Chiao-Tung University, page 2, 1995. 1

[43] T. Tieleman and G. Hinton. Lecture 6.5—RmsProp: Di-

vide the gradient by a running average of its recent magni-

tude. COURSERA: Neural Networks for Machine Learning,

2012. 6

[44] Bichen Wu, Xiaoliang Dai, Peizhao Zhang, Yanghan Wang,

Fei Sun, Yiming Wu, Yuandong Tian, Peter Vajda, Yangqing

Jia, and Kurt Keutzer. Fbnet: Hardware-aware efficient

convnet design via differentiable neural architecture search.

In The IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), June 2019. 2

[45] Carl Yang, Aydm Buluc, and John D. Owens. Design prin-

ciples for sparse matrix multiplication on the gpu. Inter-

national European Conference on Parallel and Distributed

Computing - EURO-PAR, 8 2018. 1

[46] Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun.

Shufflenet: An extremely efficient convolutional neural net-

work for mobile devices. 2018 IEEE/CVF Conference

on Computer Vision and Pattern Recognition, pages 6848–

6856, 2017. 2

[47] Zhong-Qiu Zhao, Peng Zheng, Shou-tao Xu, and Xindong

Wu. Object detection with deep learning: A review. IEEE

transactions on neural networks and learning systems, 2019.

1

[48] Michael Zhu and Suyog Gupta. To prune, or not to prune:

Exploring the efficacy of pruning for model compression.

In International Conference on Learning Representations,

2018. 3, 6

[49] Barret Zoph and Quoc V. Le. Neural architecture search with

reinforcement learning. In 5th International Conference on

Learning Representations, ICLR 2017, Toulon, France, April

24-26, 2017, Conference Track Proceedings, 2017. 8

[50] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V.

Le. Learning transferable architectures for scalable image

recognition. 2018 IEEE/CVF Conference on Computer Vi-

sion and Pattern Recognition, pages 8697–8710, 2017. 2

14638

