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Abstract

The problem of open-set recognition is considered.

While previous approaches only consider this problem in

the context of large-scale classifier training, we seek a uni-

fied solution for this and the low-shot classification setting.

It is argued that the classic softmax classifier is a poor solu-

tion for open-set recognition, since it tends to overfit on the

training classes. Randomization is then proposed as a solu-

tion to this problem. This suggests the use of meta-learning

techniques, commonly used for few-shot classification, for

the solution of open-set recognition. A new oPen sEt mEta

LEaRning (PEELER) algorithm is then introduced. This

combines the random selection of a set of novel classes per

episode, a loss that maximizes the posterior entropy for ex-

amples of those classes, and a new metric learning formu-

lation based on the Mahalanobis distance. Experimental

results show that PEELER achieves state of the art open set

recognition performance for both few-shot and large-scale

recognition. On CIFAR and miniImageNet, it achieves sub-

stantial gains in seen/unseen class detection AUROC for a

given seen-class classification accuracy.

1. Introduction

The introduction of deep convolutional neural networks

(CNNs) has catalyzed large advances in computer vision.

Most of these advances can be traced back to advances on

object recognition, due to the introduction of large scale

datasets, such as ImageNet [2], containing many classes and

many examples per class. Many modern computer vision

architectures are entirely or partially based on recognition

networks. In the large scale setting, CNN-based classifiers

trained by cross-entropy loss and mini-batch SGD have ex-

cellent recognition performance, achieving state of the art

results on most recognition benchmarks.

However, variations of the recognition setting can lead

Typical

Recognition Paradigms

No. of Samples

per Training Class

Supports unseen

Class in Testing?

Closed-set [13] Large No

Few-shot [25, 3, 33, 29] Small No

Open-set [5, 1] Large Yes

Few-Shot Open-set Small Yes

Table 1. Comparison between different recognition tasks.

to substantial performance degradation. Well known exam-

ples include few-shot learning [25, 3, 33, 29], where only a

few training examples are available per class, domain adap-

tation [32], where a classifier trained on a source image do-

main (e.g. synthetic images) must be deployed to a target

domain (e.g. natural images) whose statistics differ from

those of the source, long tailed recognition [18], where the

number of examples per class is highly unbalanced, or prob-

lems with label noise [20, 30]. All these alternative recog-

nition settings stress the robustness, or ability to generalize,

of the large-scale classifier .

More recently, there has been interest in endowing

CNNs with self-awareness capabilities. At the core, self-

awareness implies that, like humans, CNNs should iden-

tify what they can do and refuse what they cannot. Sev-

eral variants of this problem have been proposed, including

out-of-distribution detection [9], where the CNN rejects ex-

amples outside the training distribution (e.g. images from

other domains or adversarial attacks [11]), realistic classi-

fication [19], where it rejects examples that it deems too

hard to classify, or open-set recognition [1], where the ex-

amples to reject are from novel classes, unseen during train-

ing. While several techniques have been proposed, a pop-

ular approach is to force the CNN to produce high entropy

posterior distributions in the rejection regions. Rejections

can then be identified as examples that give rise to such dis-

tributions.

In this work, we consider open-set recognition. This has

been mostly addressed in the large-scale setting, using so-
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lutions based on the large-scale classifier . These attempt to

recognize the novel classes by post-processing the posterior

class distribution [1], defining a “reject” class trained with

examples that are either artificially generated [5] or sam-

pled from the training classes [28], or a combination of the

two. We seek to generalize open-set recognition beyond the

large-scale setting, proposing that it should target a contin-

uum of tasks that includes all the alternative recognition set-

tings. Since training over many settings can be complex, we

consider the two at the extremes of this continuum: large-

scale and few-shot recognition.

There are three main reasons for this. First, open-set

recognition is a challenge under all settings. A recognizer

trained in the few-shot regime is not less likely to face un-

seen classes. An open-set recognition technique that also

supports the few-shot setting is thus more useful than the

one that does not. Second, few-shot open-set recognition

is harder to solve than large-scale open-set recognition, due

to the scarcity of labeled data. Hence, the few-shot setting

poses a greater challenge to open-set recognition research.

Third, like open-set recognition, the main challenge of few-

shot recognition is to make accurate decisions for data un-

seen during training. Since this makes robustness the main

trait of few-shot architectures, these architectures are likely

to also excel at open-set recognition. Most notably, they are

likely to beat the large-scale classifier, which tends not to

score highly along the robustness dimension.

The main limitation of the large-scale classifier (trained

by cross-entropy) is that it tends to overfit the training

classes. Because the ideal embedding for classification

maps all examples of each class into a unique point in fea-

ture space, the large-scale classifier tends to learn embed-

dings that are only locally accurate. While the metric struc-

ture of the embedding is reflected by the semantic distances

in the neighborhood of class representatives (the parame-

ter vectors of the softmax layer), these distances are mean-

ingless away from the latter. In result, large-scale classi-

fier embeddings underperform on tasks that require gener-

alization beyond the training set, such as image retrieval [7],

face identification [17], pose invariant recognition [10], per-

son re-identification [38], or few-shot learning [33]. Em-

beddings derived from the metric learning literature [37]

or explicitly designed for problems like few-shot recogni-

tion [36] tend to capture the metric structure of the data

more broadly throughout the feature space and achieve bet-

ter performance on these generalization critical tasks. It is

thus expected that these embeddings will outperform the

large-scale classifier on the open set recognition problem.

In this work, we investigate the open-set performance of

a class of popular solutions to the few-shot problem, known

as meta-learning (ML) [33]. ML approaches replace the

traditional mini-batch CNN training by episodic training.

Episodes are generated by randomly sampling a subset of

the classes and a subset of examples per class, to produce

a support and query set to which a classification loss is ap-

plied. This randomizes the classification task for which the

embedding is optimized at each ML step, producing a more

robust embedding, less overfitted to any particular set of

classes. We generalize the idea to open-set recognition, by

randomly selecting a set of novel classes per episode, and

introducing a loss that maximizes the posterior entropy for

examples of these classes. This forces the embedding to bet-

ter account for unseen classes, producing high-entropy pos-

terior distributions beyond the regions of the target classes.

This solution has at least two strong benefits. First, be-

cause it draws on a state of the art approach to few shot

learning, it immediately extends open set recognition to

few-shot problems. Second, because ML embeddings are

robust and open set recognition is about generalization, the

performance of the latter improves even in the large-scale

setting. This is shown by extensive experiments with var-

ious open-set recognition benchmarks, where we demon-

strate significant improvements over the state of the art. We

also investigate the role of the metric used in the feature

space on open-set recognition performance, showing that a

particular form of the Mahalanobis distance enables signif-

icant gains over the commonly used Euclidean distance.

Overall, the contributions of this work can be summa-

rized as follows:

• A new ML-based formulation of open-set recognition.

This generalizes open-set to the few-shot recognition

setting.

• A new episodic training procedure, combining the

cross-entropy loss and a novel open-set loss to improve

open-set performance on both the large-scale and few-

shot settings.

• A Gaussian embedding for ML-based open-set recog-

nition.

2. Related Work

Open-Set Recognition: Open-set recognition addresses the

classification setting where inference can face samples from

classes unseen during training. The goal is to endow the

open-set classifier with a mechanism to reject such samples.

One of the first deep learning approaches was the work of

Scheirer et al. [1], which proposed an extreme value pa-

rameter redistribution method for the logits generated by

the classifier. Later works considered the problem in either

discriminative or generative models. Schlachter et al. [28]

proposed an intra-class splitting method, where a closed-

set classifier is used to split data into typical and atypi-

cal subsets, reformulating open-set recognition as a tradi-

tional classification problem. G-OpenMax [5] utilizes a

generator trained to synthesize examples from an extra class
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that represents all unknown classes. Neal et al. [21] intro-

duced counterfactual image generation, which aims to gen-

erate samples that cannot be classified into any of the seen

classes, producing an extra class for classifier training.

All these methods reduce the set of unseen classes to one

extra class. While open samples can be drawn from differ-

ent categories and have significant visual differences, they

assume that a feature extractor can map them all into a sin-

gle feature space cluster. While theoretically possible, this

is difficult. Instead, we allow a cluster per seen class and la-

bel samples that do not fall into these clusters as unseen. We

believe this is a more natural way to detect unseen classes.

Out-of-Distribution: A similar problem to open-set recog-

nition is to detect out-of-distribution (OOD) examples. Typ-

ically [9], this is formulated as the detection of samples

from a different dataset, i.e. a different distribution from

that used to train the model. While [9] solves this problem

by directly using the softmax score, later works [16, 34]

improve results by enhancing reliability. This problem dif-

fers from open-set recognition in that the OOD samples are

not necessarily from unseen classes. For examples, they

could be perturbed versions of samples from seen classes,

as is common in the adversarial attack literature. The only

constraint is that they do not belong to the training distri-

bution. Frequently, these samples are easier to detect than

samples from unseen classes. In the literature, they tend to

be classes from other datasets or even images of noise. This

is unlike open-set recognition, where unseen classes tend to

come from the same dataset.

Few-Shot Learning: Extensive research on few-shot learn-

ing [25, 3, 33, 29, 31, 26, 6, 22, 15] has emerged in re-

cent years. These methods can be broadly divided into

two branches: optimization and metric based. Optimiza-

tion based methods deal with the generalization problem

by unrolling the back-propagation procedure. Specifically,

Ravi et al. [25] proposed a learner module that is trained

to update to novel tasks. MAML [3] and its variants [4]

proposed a training procedure, where the parameters are

updated based on the loss calculated by secondary gradi-

ents. Metric based approaches attempt to compare feature

similarity between support and query samples. Vinyals et

al. [33] introduced the concept of episode training, where

the training procedure is designed to mimic the test phase,

which was used with a cosine distance to train recurrent

networks. The prototypical network [29] introduced class

prototypes constructed from support set features, by com-

bining metric learning and cross-entropy loss. The relation

network [31] explored the relationship between a pair of

support and query features implicitly with a neural network,

instead of building a metric directly on feature space.

Since a feature space metric is also useful for open-set

recognition, we mainly focus on metric based approaches to

few-shot learning. Although several methods have demon-

strated promising results for the few-shot task, it is still un-

clear whether the resulting classifiers can successfully reject

unseen samples. In this work, we explore this problem un-

der both the large-scale and few-shot scenarios.

Learning without Forgetting: Several works [6, 23, 24,

27] extend traditional few-shot to learning without for-

getting. The model is trained to work on an extra few-

shot problem and maintains its performance on the original

recognition problem. Our work will focus on the traditional

few-shot problem, this direction is beyond our scope, and

can be discussed in the future.

3. Classification tasks and meta Learning

In this section, we discuss different classification set-

tings (Sec. 3.1) and meta learning (Sect. 3.2), which moti-

vates and provides the foundation for the proposed solution

to open-set recognition in both the large-scale and few-shot

settings.

3.1. Classification settings

Softmax classification. The most popular deep learning ar-

chitecture for object recognition and image classification is

the softmax classifier. This consists of an embedding that

maps images x ∈ X into feature vectors fφ(x) ∈ F , im-

plemented by multiple neural network layers, and a soft-

max layer with linear mapping that estimates class posterior

probabilities with

p(y = k|x;φ,wk) =
exp(wT

k fφ(x))
∑

k′ exp(wT
k′fφ(x))

(1)

where φ denotes all the embedding parameters and wk is

a set of classifier weight vectors. Recent works [29] have

combined metric learning with softmax classification, im-

plementing the softmax layer with a distance function

pφ(y = k|x) =
exp(−d(fφ(x), µk))

∑

k′ exp(−d(fφ(x), µk′))
(2)

where µk = E[fφ(x)|y = k] [29]. The softmax classi-

fier is learned with a training set S = {(xs
i , y

s
i )}

ns

i=1, where

ysi ∈ C
s, ∀i, Cs is a set of training image classes, and ns

the number of training examples. This consists of finding

the classifier and embedding parameters that minimize the

cross entropy loss

LCE =
∑

(xs
i
,ys

i
)

− log p(ysi |x
s
i ) (3)

Recognition performance is evaluated on a test set T =
{(xt

i, y
t
i)}

nt

i=1, where yti ∈ C
t, ∀i, Ct is a set of test classes,

and ns the number of test examples.

Closed vs. open set classification. Under the traditional

definition of classification, the sets of training and test
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classes are identical, i.e. C
s = C

t. This is denoted as

closed set classification. Recently, there has been inter-

est in an alternative open set classification setting, where

C
t = C

s ∪ C
u. In this case, the classes in C

s are denoted

as seen (during training) classes and the classes in C
u as

unseen.

Large-scale vs few-shot recognition. In the large-scale

recognition setting, the number ns of training examples is

quite high, reaching the millions for datasets like ImageNet.

On the contrary, for few-shot recognition, this number is

quite low, usually less than twenty examples per class. A

few-shot problem with K training examples per class is

commonly known as K-shot recognition. Note that the

number nt of test examples plays no role in differentiating

these two settings. Since these examples are only used for

performance evaluation, the test set should have the same

cardinality under the two settings. As shown in Table 1, dif-

ferent combinations of properties in the scale and coverage

of the training data define different classification paradigms.

The few-shot open-set setting is largely unexplored in the

literature and the focus of this paper.

3.2. Meta­learning

Meta-learning (ML) addresses the problem of “learn-

ing to learn”. In this case, a meta-learner learns a learn-

ing algorithm by inspection of many learning problems.

For this, the meta-learner relies on a meta training set

MS = {(Ssi ,T
s
i )}

Ns

i=1, where (Ssi ,T
s
i ) are the training and

test set of the ith learning problem and Ns the number of

learning problems used for training; and a meta test set

MT = {(Sti,T
t
i)}

Nt

i=1, where (Sti,T
t
i) are the training and

test set of the ith test learning problem and N t is the num-

ber of learning problems used for testing. Given MS, the

meta-learner learns how to map a pair (S,T) into an algo-

rithm that leverages S to optimally solve T.

The procedures are as follows. At meta iteration i, a

meta-model h is initialized with the one produced by the

previous meta-iteration. Two steps are then performed.

First, the meta-learning algorithm performs the mapping

h′ = M(h, Ssi ) (4)

to produce an estimate h′ of the optimal model for training

set Ssi . The test set Ts
i is then used to find the model

h∗ = argmin
h

∑

(xk,yk)∈Ts
i

L[yk, h
′(xk)] (5)

for a suitable loss function L, e.g. cross-entropy, using

a suitable optimization procedure, e.g. back-propagation.

The resulting h∗ is finally returned as the optimal meta-

model for meta-iteration i. During testing, the final meta-

model h∗ and a training set Sti from the meta test set MT

are used by the meta-learner to produce a new model

h′′ = M(h∗, Sti) (6)

whose performance is evaluated with T
t
i.

ML for few-shot recognition. While different approaches

have been proposed to apply ML to few shot recognition, in

this work we adopt the procedure introduced by the popular

prototypical network architecture [29], which is the foun-

dation of various other approaches. In this context, ML is

mostly a randomization procedure. The pairs (Si,Ti) are

denoted episodes, the training sets Si are denoted support

sets and the test sets Ti query sets. The meta-training set

MS is generated by sampling train and test classes. In par-

ticular, the training set Ssi of the ith episode is obtained by

sampling N classes from the set of classes of the low-shot

problem, and K-examples per class. This defines a set of

K-shot learning problems and is known as the N -way K

shot problem. The model h is the softmax classifier of (2),

the meta-learning mapping of (4) implements the Gaussian

mean maximum likelihood estimator

µk =
1

|Pi,k|

∑

xj∈Pi,k

fφ(xj) (7)

where Pi,k = {xj ∈ S
s
i |yj = k) is the set of support sam-

ples from class k, and back-propagation is used in (5) to

update the embedding fφ.

Benefits of ML for open-set classification. The ML pro-

cedure is quite similar to the standard mini-batch proce-

dure for training softmax classifiers. Aside from the use

of episode training instead of the more popular mini-batch

training, there are two main differences. First, fφ is up-

dated by back-propagation from examples in T
s
i rather than

S
s
i . This is advantageous for few-shot learning due to the

consistency with meta-testing, which is not the case in the

large-scale regime. Second, mini-batches of random ex-

amples from all classes are replaced by examples from the

subset of N classes contained in S
s
i and T

s
i . Randomizing

the classification task learned per episode forces the em-

bedding fφ to generalize better to unseen data. This prop-

erty makes ML a good solution for few-shot learning, where

the training data lacks a good coverage of intra-class vari-

ations. In this case, large subsets of test samples from the

known classes are unseen during training. We propose that

the same property makes ML a good candidate for open-set

classification, where by definition the classifier must deal

with unseen samples from unseen classes. This observation

motivates us to design a unified ML-based solution to open-

set classification that supports both large-scale and few-shot

classification.
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S T

Seen

Unseen

Mh h’ h*OSML

Next Episode

Figure 1. The proposed general framework for open-set meta-

learning: a meta training set {S,T} is sampled, where T contains

classes not in S as “unseen” classes, and loss in (8) is minimized

to obtain h∗.

4. Meta Learning-based open-set recognition

In this section, we introduce the proposed ML approach

to open-set recognition. We first introduce the general pro-

cedure and then discuss the specific embedding metric used

in our PEELER implementation.

4.1. Open­Set Meta­Learning

As shown in Figure 1, open-set meta-learning (PEELER)

relies on a meta training set MS = {(Ssi ,T
s
i )}

Ns

i=1, and a

meta test set MT = {(Sti,T
t
i)}

Nt

i=1. The only difference

with respect to standard ML is that the episodes (S,T) are

open set. While the training set S is identical to the one used

in standard ML, the test set T is augmented with unseen

classes. Hence, PEELER can be addressed with a solution

similar to the ML procedure of Section 3.2. While the ML

step remains as in (4), the optimization step of (5) becomes

h∗ = argmin
h







∑

(xk,yk)∈Ts
i
|yk∈Cs

i

Lc[yk, h
′(xk)]

+ λ
∑

(xk,yk)∈Ts
i
|yk∈Cu

i

Lo[h
′(xk)]







(8)

where C
s
i (Cu

i ) is the set of seen (unseen) classes of T
s
i ,

Lc[., .] is the classification loss to apply to the seen classes

(typically the cross-entropy loss) and Lo is an open-set loss

applied to those unseen in S
s
i .

Few-shot open-set recognition. The few-shot setting re-

quires the sampling of the classes that make up the support

and query sets. Similarly to closed-set few-shot recognition,

the support set Ssi of the ith episode is obtained by sam-

pling N classes and K-examples per class. This defines the

seen classes Cs
i . However, the query set Ts

i is composed by

the combination of these classes with M additional unseen

classes Cu
i . These support and query sets are used in (8).

Large-scale open-set recognition. In the large-scale set-

ting, the seen classes have plenty of examples and are well

trained without any need for resampling. However, resam-

pling of the unseen classes is still advantageous, since it en-

ables an embedding that generalizes better to these classes.

In each episode, M classes are randomly sampled from the

class label space to form the set of unseen classes Cu
i , and

the remaining classes are used as seen classes Cs
i . Without

a support set Ssi , the meta-learning step of (4) is no longer

needed. Instead, we rely on the set of seen classes to adjust

the model to only classify samples into those classes, i.e. a

mapping

h′ = M(h,Cs
i ), (9)

with the loss function of (8) is still applied.

Open-set loss. During inference, when faced with samples

from unseen classes, the model should not assign a large

probability to any class. In this case, a sample can be re-

jected if the largest class probability maxk pφ(y = k|x)
among seen classes is small. To enable this, the learning

algorithm should minimize the probabilities on seen classes

for samples from C
u
i . This can be implemented by maxi-

mizing the entropy of seen class probabilities, i.e using the

negative entropy

Lo[x] =
∑

k∈Cs
i

p(y = k|x) log p(y = k|x) (10)

as loss function.

4.2. Gaussian Embedding

While PEELER is a general framework, in this work we

propose an implementation based on the prototypical net-

work architecture [29]. A set of class prototypes is first de-

fined and samples with a large distance to the closest class

prototype are assigned to the set of unseen classes. For low-

shot classification, the class prototypes are the class means

of (7). For large-scale classification, we assume fixed pro-

totypes that are embedded in the network and learned by

back-propagation.

Although several distances are discussed in [29], the

prototypical network is usually implemented with the Eu-

clidean distance, i.e.,

d(fφ(x), µk) = (fφ(x)− µk)
T (fφ(x)− µk). (11)

This implies that the features from each class follow a Gaus-

sian distribution with mean ck and diagonal covariance σ2I ,

where σ is shared by all classes. While sensible for closed-

set few-shot learning, where the embedding is learned to

produced such feature distributions, this can be very sub-

optimal when open-set samples are introduced. Figure 2

illustrates the problem for a setting with three seen classes

and two unseen classes. Even though, as shown in Figure 2
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(a) (b) (c) (d)
Figure 2. (a) Feature space of an open-set recognition problem with 3 seen and 2 unseen classes; (b) Optimal boundaries for closed-set

classification; (c) Each class defines an euclidean distance of equal radius. While optimal for closed-set, this is sub-optimal for open set

recognition; (d) a better set of open-set distances can be learned by allowing different Gaussian clusters of class-dependent variance along

each dimension.

(a), the embedding is such that seen classes are spherically

distributed and have the same covariance, the open-set sam-

ples, unseen during training, are still embedded onto the

feature space at random locations. Hence, although the op-

timal boundaries of the closed-set classifier, shown in Fig-

ure 2 (b), match the contours of the distance of (11), shown

in Figure 2 (c), they are not optimal for open set recognition.

In fact, as shown in Figure 2 (d), the shape of the optimal

boundary between seen and unseen classes can even vary

from one class to another.

To account for this, we assume a Gaussian distribution of

mean µk and covariance Σk for class k. The Euclidean dis-

tance of (11) is thus replaced by the Mahalanobis distance

d(fφ(x), µk) = [fφ(x)− µk]
TΣ−1

k [fφ(x)− µk]. (12)

To keep the number of parameters manageable, we as-

sume that all covariance matrices are diagonal, i.e. Σk =
diag(σk1, σk2, . . . , σkM ), and the precision matrix Ak =
Σ−1

k is used to ease calculations. Similar to the class pro-

totypes, the learning of precision matrices depends on the

recognition setting. For large-scale open-set recognition,

the Ak are network parameters learned directly by back-

propagation. In the few-shot setting, where support sam-

ples are available, we introduce a new embedding function

gϕ with learnable parameters ϕ, and define

Ak =
1

|Sk|

∑

(xi,yi)∈Sk

gϕ(xi). (13)

5. Experiments

The proposed method was compared to state-of-the-art

(SOTA) approached to open-set recognition. Following

Neal et al. [21], we evaluate both classification accuracy

and open-set detection performance. To clarify the termi-

nology, closed-set classes are the categories seen during

training and open-set classes the novel categories only used

for testing. All training is based on the training samples

from closed-set classes. For testing, we use the testing sam-

ples from both the training and open-set classes. Classi-

fication accuracy is used to measure how well the model

classifies closed-set samples, i.e., test samples from closed-

set classes. The AUROC (Area Under ROC Curve) met-

ric is used to measure how well the model detects open-set

samples, i.e., test samples from open-set classes, within all

test samples. To simplify the writing, we define the follow-

ing acronyms: our basic represents prototypical networks

with euclidean distance for open-set detection; GaussianE

represents the Gaussian Embedding introduced in Sec. 4.2;

OpLoss represents the proposed open-set loss.

5.1. Large­Scale Open­Set Recognition

Most prior works on open-set recognition are designed

for the large-scale setting. Here we evaluate PEELER on

CIFAR10 [13] and extended miniImageNet [6]. CIFAR10

consists of 60, 000 images of 10 classes. Following [21],

6 classes are first randomly selected as closed-set classes,

and the other 4 kept as open-set classes. Results are av-

eraged over 5 random partitions of closed/open-set classes.

Extended miniImageNet is designed for few-shot learning.

We use the 64 training categories and 600 images per cate-

gory as closed set training data, while the 300 extra images

of each category are used for closed set testing. Images

from 20 test categories are used for open set testing.

Training. On CIFAR10, we randomly sample 2 from the

6 closed-set classes per episode to apply the open-set loss,

the remaining 4 classes are used to train classification. On

miniImageNet, the closed/open-set partition is fixed. We

use Adam [12] with an initial learning rate of 0.001, λ =
0.5 in (8) and 10, 000 training episodes. The learning rate is

decayed by a factor of 0.1 after 6, 000 and 8, 000 episodes.

Results. We compare the proposed method to several open-

set recognition SOTA methods, including OpenMax [1],

G-OpenMax [5], and Counterfactual [21], and an out-of-

distribution SOTA method, Confidence [14]. All models

use the same CNN backbone for fair comparison. We tested

both a CNN, denoted as ConvNet, proposed by [21], and

ResNet18 [8].

Table 2 shows that, for both backbones, PEELER outper-

forms all previous approaches by a significant margin. For

a similar classification accuracy on seen classes, it achieves
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Model Accuracy(%) AUROC(%)

ConvNet on CIFAR10

Softmax 80.1 67.7

OpenMax 80.1 69.5

G-OpenMax 81.6 67.9

Counter 82.1 69.9

Confidence 82.4 73.19

Our basic 82.4 74.62

Our basic + GaussianE 82.3 75.65

Our basic + GaussianE + OpLoss 82.3 77.22

ResNet18 on CIFAR10

Softmax 94.2 78.90

OpenMax 94.2 79.02

Confidence 94.0 80.90

Our basic 94.7 82.94

Our basic + GaussianE 94.3 83.12

Our basic + GaussianE + OpLoss 94.4 83.99

ResNet18 on miniImageNet

Softmax 76.1 76.65

OpenMax 76.1 77.80

Confidence 76.5 80.67

Our basic 76.4 80.59

Our basic + GaussianE 76.1 81.06

Our basic + GaussianE + OpLoss 76.3 82.12

Table 2. Comparison to SOTAs on large-scale open-set recogni-

tion: PEELER outperforms all others in terms of open-set sample

detection AUROC, for a comparable classification accuracy.

much higher AUROCs for the detection of unseen classes.

The open-set detection performance is enhanced by both the

proposed Gaussian embedding and open-set loss.

5.2. Few­Shot Open­Set Recognition

Dataset. Few-Shot Open-Set performance is evaluated on

mini-Imagenet [33], using the splits of [25]. 64 classes are

used for training, 16 for validation and another 20 for test.

Training. The open-set problem follows the 5-way few-

shot recognition setting. During training, 10 classes are ran-

domly selected from the training set per episode, 5 are used

as closed-set classes and the other 5 as unseen. All support

set samples are from the closed-set classes. The query set

contains samples from closed-set classes, the closed-query

set, and samples from open-set classes, the open-query set.

The evaluation set is sampled from the test set with the

same strategy. The evaluation is repeated 600 times to min-

imize uncertainty. The total number of training episodes is

30, 000. The learning rate is decreased by a factor of 0.1
after 10, 000 and 20, 000 episodes.

Results. Since not all prior open-set methods support the

few-shot setting, some modifications were required. For ex-

ample, generative methods [5, 21] do not support few-shot

samples. Instead, we train the model on the pre-training set

and fine-tune it on the support set. The closed-set classifier

is as above, and a two-class classifier is further trained to de-

tect open-set samples. OpenMax [1] is easier to apply under

the few-shot setting. We apply OpenMax on the activations

of the pre-softmax layer, i.e. the negative of the distance

Model Accuracy(%) AUROC(%)

5-way 1-shot

GaussianE + OpenMax 57.89±0.59 58.92±0.59

GaussianE + Counterfactual 57.89±0.59 52.20±0.61

Our basic 56.31±0.57 58.94±0.60

Our basic + OpLoss 56.34±0.57 60.94±0.61

Our basic + GaussianE 57.89±0.59 58.66±0.60

Our basic + GaussianE + OpLoss 58.31±0.58 61.66±0.62

5-way 5-shot

GaussianE + OpenMax 75.31±0.76 67.54±0.67

GaussianE + Counterfactual 75.31±0.76 53.25±0.59

Our basic 74.19±0.75 66.00±0.67

Our basic + OpLoss 74.14±0.74 67.92±0.68

Our basic + GaussianE 75.31±0.76 66.50±0.67

Our basic + GaussianE + OpLoss 75.08±0.72 69.85±0.70

Table 3. Few-shot open-set recognition results. Comparison to

several baselines and prior open-set methods.

Model Accuracy(%) AUROC(%)

Our basic 39.61±0.40 71.32±0.70

Proto+Entropy 39.41±0.40 72.23±0.72

Our basic + GaussianE 40.18±0.40 71.31±0.70

Our basic + GaussianE + OpLoss 41.90±0.39 74.97±0.74

Table 4. 10-way 1-shot openset recognition results. The AUROC

is higher than those in 5-way.

of our Gaussian setting. All methods are implemented with

the ResNet18 [8] for fair comparison.

As shown in Table 3, both OpenMax and Counterfactual

have weaker performance than the proposed approach. Note

that a AUROC of 50% corresponds to chance performance.

The proposed open-set loss, Gaussian embedding, and their

combination all provide gains.

5.3. Ablation Studies

Sampling Strategy in Training. We study how the train-

ing sampling strategy affects open-set detection results. The

number of unseen classes used to produce open-set samples

by training episode is varied, for a fixed total number of

open-set samples. The corresponding open-set detection re-

sults are shown in Figure 3 (a). The performance variation is

minor, when compared to the average gain over the baseline

method. We hypothesize that this robustness is due to task

randomness. When the total number of training episodes is

large, the model converges well no matter how many open-

set classes are included in a single episode.

Factors in Open-set Testing. For large-scale open-set

recognition, the number of open-set samples follows from

the number of open-set classes. The difficulty of the open-

set problem is determined by the latter. We try to discover

factors that determine the difficulty of the few-shot open-

set problem. A first factor is the number of classes in the

open-query set. We vary this number from 1 to 10, while

keeping the training procedure and the total number of sam-

ples in the open-query set unchanged. Results are shown

in Figure 3 (b). A second factor is the number of samples

per class, which is changed while the number of classes re-

mains 5. Results are shown in Figure 3 (c). The figures
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Figure 3. Ablation Study: the proposed open-set loss produces consistent gain with different (a) number of training classes, (b) number of

testing classes, or (c) number of testing samples per class.

Category
VODC [35] Ours

I II III I II III

airplane 20 10 0 6 6 0

balloon 13 4 3 11 7 2

bear 3 3 2 2 2 2

cat 4 5 5 5 3 3

eagle 23 12 8 5 2 0

ferrari 11 7 6 11 3 3

figure skating 0 0 0 0 0 0

horse 5 1 1 5 4 3

parachute 14 10 2 10 2 0

single diving 18 13 5 4 2 1

Avg. 11.1 6.5 3.2 5.9 3.1 1.4

Table 5. The number of misclassified frames (lower is better) by

varying the number of annotated frames (I, II, III in the second

row).

show that variations cause small changes in AUROC per-

formance. This means that the factors have little impact in

the difficulty of the problem.

Factors in Few-Shot Testing. We compare 5-way to 10-

way classification, for a fixed open-set component of both

training and testing sets. Results are shown in Table 4. Al-

though, as expected, 10-way underperforms 5-way classi-

fication, the open-set performance improves significantly.

This shows that few-shot classification tasks with more

class diversity are more robust to open-set samples.

5.4. Weakly Supervised Object Discovery

Finally, we investigate an application of few-shot open-

set recognition. A weakly supervised object discovery prob-

lem is considered in [35]. A video of an object is given, but

some frames are irrelevant for the presence of the object.

The task is to find these irrelevant frames when the number

of annotated frames (object presented or not) is limited. For

the open-set problem, only relevant frame labels are given,

i.e. frames containing the object. The irrelevant frames are

detected as open-set samples.

The XJTU-Stevens Dataset [35] is adopted for evalua-

tion. It has 101 videos from 10 categories with different

instances, and some frames in those videos do not have the

object. During training, a 5-way 1-shot few-shot open-set

model is trained as described in Sec. 5.2. Instead of cate-

gory level classification, we perform instance level classi-

fication of each frame. During testing, only one video is

considered, using the frames annotated as relevant as the

support set. This implies that only one Gaussian class cen-

ter is provided. The unlabeled frames are labeled as seen or

unseen by their Mahalanobis distance to the center. Frames

with distance higher than a threshold are detected as irrele-

vant. The number of annotated relevant frames varies from

1 to 3. Results are shown as the number of misclassified

frames. The best VODC method in [35] is listed for com-

parison. Note that VODC requires the same number of an-

notated irrelevant frames, which PEELER does not. The

proposed method largely outperforms VODC, halving the

number of misclassified frames in all three settings. This

shows that its feature embedding is a better solution for

open-set detection.

6. Conclusion

In this work, we have revisited the open-set recognition

problem in the context of few-shot learning. We proposed

an extension of meta-learning that includes an open-set loss,

and a better metric learning design. The resulting classifiers

provide a new stat-of-the-art for few-shot open-set recogni-

tion, on mini-Imagenet. It was shown that, with few mod-

ifications, the approach can also be applied to large-scale

recognition, where it outperforms state of the art methods

for open-set recognition. Finally, the XJTU-Stevens Dataset

was used to demonstrante the effectiveness of the proposed

model on a weakly supervised object discovery task.
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