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Abstract

The goal of self-supervised learning from images is

to construct image representations that are semantically

meaningful via pretext tasks that do not require semantic

annotations. Many pretext tasks lead to representations that

are covariant with image transformations. We argue that,

instead, semantic representations ought to be invariant un-

der such transformations. Specifically, we develop Pretext-

Invariant Representation Learning (PIRL, pronounced as

“pearl”) that learns invariant representations based on pre-

text tasks. We use PIRL with a commonly used pretext task

that involves solving jigsaw puzzles. We find that PIRL

substantially improves the semantic quality of the learned

image representations. Our approach sets a new state-

of-the-art in self-supervised learning from images on sev-

eral popular benchmarks for self-supervised learning. De-

spite being unsupervised, PIRL outperforms supervised

pre-training in learning image representations for object

detection. Altogether, our results demonstrate the poten-

tial of self-supervised representations with good invariance

properties.

1. Introduction

Modern image-recognition systems learn image repre-

sentations from large collections of images and correspond-

ing semantic annotations. These annotations can be pro-

vided in the form of class labels [66], hashtags [46], bound-

ing boxes [16, 43], etc. Pre-defined semantic annotations

scale poorly to the long tail of visual concepts [75], which

hampers further improvements in image recognition.

Self-supervised learning tries to address these limita-

tions by learning image representations from the pixels

themselves without relying on pre-defined semantic anno-

tations. Often, this is done via a pretext task that applies a

transformation to the input image and requires the learner

to predict properties of the transformation from the trans-

formed image (see Figure 1). Examples of image trans-

formations used include rotations [20], affine transforma-

tions [33, 57, 65, 85], and jigsaw transformations [54]. As

the pretext task involves predicting a property of the image
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Figure 1: Pretext-Invariant Representation Learning (PIRL). Many

pretext tasks for self-supervised learning [20, 54, 85] involve transforming

an image I, computing a representation of the transformed image, and pre-

dicting properties of transformation t from that representation. As a result,

the representation must covary with the transformation t and may not con-

tain much semantic information. By contrast, PIRL learns representations

that are invariant to the transformation t and retain semantic information.

transformation, it encourages the construction of image rep-

resentations that are covariant to the transformations. Al-

though such covariance is beneficial for tasks such as pre-

dicting 3D correspondences [33, 57, 65], it is undesirable

for most semantic recognition tasks. Representations ought

to be invariant under image transformations to be useful for

image recognition [14, 31] because the transformations do

not alter visual semantics. In fact, invariance is one of the

core tenets of designing ‘good’ features [8, 45, 48].

Motivated by this observation, we propose a method that

learns invariant representations rather than covariant ones.

Instead of predicting properties of the image transforma-

tion, Pretext-Invariant Representation Learning (PIRL) con-

structs image representations that are similar to the repre-

sentation of transformed versions of the same image and

different from the representations of other images. We adapt

the “Jigsaw” pretext task [54] to work with PIRL and find

that the resulting invariant representations perform better

than their covariant counterparts across a range of vision

tasks. PIRL substantially outperforms all prior art in self-

supervised learning from ImageNet (Figure 2) and from un-

curated image data (Table 4). Interestingly, PIRL even out-

performs supervised pre-training in learning image repre-

sentations suitable for object detection (Table 1 & supple-

mental material).
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2. Related Work

Modeling invariances in features is a well studied con-

cept in computer vision with decades of research [48]

and plays a critical role in hand-designed features such as

SIFT [45], HOG [8], and learned representations from Con-

vNets [37, 40, 69]. Practically useful representations are de-

signed to be invariant to ‘nuisance’ factors like translations

of pixels, change in scale, color, lighting, e.g., by using data

augmentation [37] during training. In our work, we propose

to leverage the invariance to self-supervised ‘pretext tasks’.

We learn feature representations without considering a

corresponding (image-conditional) label distribution. Prior

work has studied reconstructing images from a small, inter-

mediate representation, e.g., using sparse coding [58], ad-

versarial training [12, 13, 50], autoencoders [49, 63, 76], or

probabilistic versions thereof [67].

More recently, interest has shifted to specifying pre-

text tasks [10] that require modeling a more limited set

of properties of the data distribution. For video data,

these pretext tasks learn representations by ordering video

frames [1, 18, 34, 41, 51, 79, 83], tracking [62, 77], or using

cross-modal signals like audio [2, 3, 19, 36, 60, 61].

Our work focuses on image-based pretext tasks. Prior

pretext tasks include image colorization [9, 30, 38, 39,

86, 87], orientation prediction [20], affine transform pre-

diction [85], predicting contextual image patches [10], re-

ordering image patches [5, 21, 53, 54, 56], counting visual

primitives [55], or their combinations [11]. These pretext

tasks typically involve predicting some low-level property

of an image transformation which makes the final represen-

tations covariant to image transformations. In contrast, our

work learns image representations that are invariant to the

image transformations rather than covariant.

PIRL is related to approaches that learn invariant image

representations via contrastive learning [15, 29, 68, 77, 81],

clustering [6, 7, 56, 78], or maximizing mutual informa-

tion [4, 29, 31]. PIRL is most similar to methods that learn

representations that are invariant under standard data aug-

mentation [4, 14, 29, 31, 81, 82]. PIRL learns representa-

tions that are invariant to both the data augmentation and

to the pretext image transformations. Similar to our work,

recent methods also focus on invariance [47] or decoupling

the pretext task [17] to learn representations. PIRL can be

viewed as extending the set of data augmentations to in-

clude prior pretext tasks and provides a new way to combine

pretext tasks with contrastive learning.

Finally, PIRL is also related to approaches that use a con-

trastive loss [24] in predictive learning [25, 26, 28, 59, 70,

73]. These prior approaches predict missing parts of the

data, e.g., future frames in videos [25, 59], or operate on

multiple views [73]. In contrast to those approaches, PIRL

learns invariances rather than predicting missing data.
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Figure 2: ImageNet classification with linear models. Single-crop top-1

accuracy on the ImageNet validation data as a function of the number of

parameters in the model that produces the representation (“A” represents

AlexNet). Pretext-Invariant Representation Learning (PIRL) sets a new

state-of-the-art in this setting (red marker) and uses significantly smaller

models (ResNet-50). See Section 4.2 for more details.

3. PIRL: Pretext-Invariant

Representation Learning

Our work focuses on pretext tasks for self-supervised

learning in which a known image transformation is applied

to the input image. For example, the “Jigsaw” task divides

the image into nine patches and perturbs the image by ran-

domly permuting the patches [54]. Prior work used Jigsaw

as a pretext task by predicting the permutation from the per-

turbed input image. This requires the learner to construct

a representation that is covariant to the perturbation. The

same is true for a range of other pretext tasks that have re-

cently been studied [10, 20, 51, 85]. In this work, we adopt

the existing Jigsaw pretext task in a way that encourages

the image representations to be invariant to the image patch

perturbation. While we focus on the Jigsaw pretext task in

this paper, our approach is applicable to any pretext task that

involves image transformations (see Section 5.3).

3.1. Overview of the Approach

Suppose we are given an image dataset, D =
{I1, . . . , I|D|} with In ∈ R

H×W×3, and a set of image

transformations, T . The set T may contain transformations

such as a re-shuffling of patches in the image [54], image ro-

tations [20], etc. We aim to train a convolutional network,

φθ(·), with parameters θ that constructs image representa-

tions vI = φθ(I) that are invariant to image transformations

t ∈ T . We adopt an empirical risk minimization approach

to learning the network parameters θ. Specifically, we train

the network by minimizing the empirical risk:

ℓinv(θ;D) = Et∼p(T )

[

1

|D|

∑

I∈D

L (vI,vIt)

]

, (1)

where p(T ) is some distribution over the transformations

in T , and I
t denotes image I after application of transfor-

6708



mation t, that is, It = t(I). The function L(·, ·) is a loss

function that measures the similarity between two image

representations. Minimization of this loss encourages the

network φθ(·) to produce the same representation for image

I as for its transformed counterpart It, i.e., to make repre-

sentation invariant under transformation t.
We contrast our loss function to losses [10, 20, 51, 54,

85] that learn image representations vI = φθ(I) that are

covariant to image transformations t ∈ T by minimizing:

ℓco(θ;D) = Et∼p(T )

[

1

|D|

∑

I∈D

Lco (vI, z(t))

]

, (2)

where z is a function that measures some properties of

transformation t. Such losses encourage network φθ(·)
to learn image representations that contain information on

transformation t, thereby encouraging it to maintain infor-

mation that is not semantically relevant.

Loss function. We implement ℓinv(·) using a contrastive

loss function L(·, ·) [24]. Specifically, we define a match-

ing score, s(·, ·), that measures the similarity of two image

representations and use this matching score in a noise con-

trastive estimator [23]. In our noise contrastive estimator

(NCE), each “positive” sample (I, It) has N corresponding

“negative” samples. The negative samples are obtained by

computing features from other images, I′ 6= I. The noise

contrastive estimator models the probability of the binary

event that (I, It) originates from data distribution as:

h(vI,vIt) =
exp

(

s(vI,vIt
)

τ

)

exp
(

s(vI,vIt
)

τ

)

+ |DN |/|D|
. (3)

Herein, DN ⊆ D is a set of N negative samples that are

drawn uniformly at random from dataset D, τ is a temper-

ature parameter, and s(·, ·) is the cosine similarity between

the representations.

In practice, we apply different “heads” to the features

before computing the score s(·, ·). Specifically, we apply

head f(·) on features (vI) of I and head g(·) on features

(vIt ) of It; see Figure 3 and Section 3.3. NCE then amounts

to minimizing the following loss:

LNCE

(

I, It
)

= − log [h (f(vI), g(vIt))] (4)

−
∑

I′∈DN

log
[

1− h
(

g(vt
I
), f(vI′)

)]

.

This loss encourages the representation of image I to be

similar to that of its transformed counterpart It, and the rep-

resentation of It to be dissimilar to that of other images I′.

3.2. Using a Memory Bank of Negative Samples

Prior work has found that it is important to use a large

number of negatives in the NCE loss of Equation 4 [59, 81].
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Figure 3: Overview of PIRL. Pretext-Invariant Representation Learning

(PIRL) aims to construct image representations that are invariant to the

image transformations t ∈ T . PIRL encourages the representations of the

image, I, and its transformed counterpart, It, to be similar. It achieves this

by minimizing a contrastive loss (see Section 3.1). Following [81], PIRL

uses a memory bank, M, of negative samples to be used in the contrastive

learning. The memory bank contains a moving average of representations,

mI ∈ M, for all images in the dataset (see Section 3.2).

In a mini-batch SGD optimizer, it is difficult to obtain a

large number of negatives without increasing the batch to

an infeasibly large size. To address this problem, we fol-

low [81] and use a memory bank of “cached” features.

The memory bank, M, contains a feature representation

mI for each image I in dataset D. The representation mI

is an exponential moving average of feature representations

f(vI) that were computed in prior epochs. This allows us to

replace negative samples, f(v′
I
), by their memory bank rep-

resentations, mI′ , in Equation 4 without having to increase

the training batch size. We emphasize that the representa-

tions that are stored in the memory bank are all computed

on the original images, I, without the transformation t. This

design decision gave better results.

Final loss function. A potential issue of the loss in Equa-

tion 4 is that it does not compare the representations of un-

transformed images I and I
′. We address this issue by using

a convex combination of two NCE loss functions in ℓinv(·):

L
(

I, It
)

= λLNCE(mI, g(vIt))

+(1− λ)LNCE(mI, f(vI)). (5)

Herein, the first term is simply the loss of Equation 4 but

uses memory representations mI and mI′ instead of f(vI)
and f(v′

I
), respectively. The second term does two things:

(1) it encourages the representation f(vI) to be similar to

its memory representation mI, thereby dampening the pa-

rameter updates; and (2) it encourages the representations

f(vI) and f(v′
I
) to be dissimilar. Both the first and the sec-

ond term use mI′ instead of f(v′
I
) in Equation 4. Setting

λ = 0 in Equation 5 leads to the loss used in [81]. We study

the effect of λ on the learned representations in Section 5.

3.3. Implementation Details

Although PIRL can be used with any pretext task that in-

volves image transformations, we focus on the Jigsaw pre-

text task [54] in this paper. To demonstrate that PIRL is
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more generally applicable, we also experiment with the Ro-

tation pretext task [20] and with a combination of both tasks

in Section 5.3. Below, we describe the implementation de-

tails of PIRL with the Jigsaw pretext task.

Convolutional network. We use a ResNet-50 (R-50) net-

work architecture in our experiments [27]. The network

is used to compute image representations for both I and

I
t. These representations are obtained by applying function

f(·) or g(·) on features extracted from the the network.

Specifically, we compute the representation of I, f(vI),
by extracting res5 features, average pooling, and a linear

projection to obtain a 128-dimensional representation.

To compute the representation g(vIt) of a transformed

image I
t, we closely follow [21, 54]. We: (1) extract

nine patches from image I, (2) compute an image repre-

sentation for each patch separately by extracting activations

from the res5 layer of the ResNet-50 and average pool

the activations, (3) apply a linear projection to obtain a

128-dimensional patch representations, and (4) concatenate

the patch representations in random order and apply a sec-

ond linear projection on the result to obtain the final 128-

dimensional image representation, g(vIt). Our motivation

for this design of g(vIt) is the desire to remain as close as

possible to the covariant pretext task of [20, 21, 54]. This

allows apples-to-apples comparisons between the covariant

approach and our invariant approach.

Hyperparameters. We implement the memory bank as de-

scribed in [81] and use the same hyperparameters for the

memory bank. Specifically, we set the temperature in Equa-

tion 3 to τ = 0.07, and use a weight of 0.5 to compute the

exponential moving averages in the memory bank. Unless

stated otherwise, we use λ= 0.5 in Equation 5.

4. Experiments

Following common practice in self-supervised learn-

ing [21, 87], we evaluate the performance of PIRL in

transfer-learning experiments. We perform experiments on

a variety of datasets, focusing on object detection and image

classification tasks. Our empirical evaluations cover: (1)

a learning setting in which the parameters of the convolu-

tional network are finetuned during transfer, thus evaluating

the network “initialization” obtained using self-supervised

learning and (2) a learning setting in which the parameters

of the network are fixed during transfer learning, thus using

the network as a feature extractor.

Baselines. An important baseline is the Jigsaw ResNet-50

model of [21] as it implements the covariant counterpart of

our PIRL approach with the Jigsaw pretext task.

We also compare PIRL to a range of other self-

supervised methods. An important comparison is to

NPID [81]. NPID is a special case of PIRL: setting λ = 0 in

Equation 5 leads to the loss function of NPID. We found it is

possible to improve the original implementation of NPID by

Method Network AP
all

AP
50

AP
75

∆AP
75

Supervised R-50 52.6 81.1 57.4 =0.0

Jigsaw [21] R-50 48.9 75.1 52.9 -4.5

Rotation [21] R-50 46.3 72.5 49.3 -8.1

NPID++ [81] R-50 52.3 79.1 56.9 -0.5

PIRL (ours) R-50 54.0 80.7 59.7 +2.3

MoCo [26] R-50 55.2† 81.4† 61.2†

Table 1: Object detection on VOC07+12 trainval using Faster R-CNN.

Detection AP on the VOC07 test set after finetuning Faster R-CNN mod-

els (BatchNorm fixed) with a ResNet-50 backbone pre-trained using self-

supervised learning on ImageNet. Results for supervised ImageNet pre-

training are presented for reference. Method with † finetunes BatchNorm.

PIRL significantly outperforms supervised pre-training without extra pre-

training data or changes in the network architecture. Additional results on

VOC07 in supplemental.

using more negative samples and training for more epochs

(see Section 5). We refer to our improved version of NPID

as NPID++. Comparisons between PIRL and NPID++ al-

low us to study the effect of the pretext-invariance that PIRL

aims to achieve, i.e., the effect of using λ > 0 in Equation 5.

Pre-training data. To facilitate comparisons with prior

work, we use the 1.28M images from the ImageNet [66]

train split (without labels) to pre-train our models.

Training details. We train our models using mini-batch

SGD using the cosine learning rate decay [44] scheme with

an initial learning rate of 1.2×10−1 and a final learning rate

of 1.2× 10−4. We train the models for 800 epochs using a

batch size of 1, 024 images and using N = 32, 000 negative

samples in Equation 3. We do not use data-augmentation

approaches such as Fast AutoAugment [42] because they

are the result of supervised-learning approaches. We pro-

vide a full overview of all hyperparameter settings that were

used in the supplemental material.

Transfer learning. Prior work suggests that the hyperpa-

rameters used in transfer learning can play an important role

in the evaluation of pre-trained representations [21, 35, 87].

To facilitate fair comparisons with prior work, we closely

follow the transfer-learning setup described in [21, 87].

4.1. Object Detection

Following prior work [21, 81], we perform object-

detection experiments on the the Pascal VOC dataset [16]

using the VOC07+12 trainval split. We use the Faster R-

CNN [64] C4 object-detection model implemented in De-

tectron2 [80] with a ResNet-50 (R-50) backbone. We pre-

train the ResNet-50 using PIRL to initialize the detection

model before finetuning it on the VOC training data. We use

the same training schedule as [21] for all models finetuned

on VOC and follow [21, 80] to keep the BatchNorm param-

eters fixed during finetuning. We evaluate object-detection

performance in terms of APall, AP50, and AP75 [43].

The results of our detection experiments are presented in
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Table 1. The results demonstrate the strong performance of

PIRL: it outperforms all alternative self-supervised learn-

ings in terms of all three AP measures. Compared to pre-

training on the Jigsaw pretext task, PIRL achieves AP im-

provements of 5 points. These results underscore the im-

portance of learning invariant (rather than covariant) image

representations. PIRL also outperforms NPID++, which

demonstrates the benefits of learning pretext invariance.

Interestingly, PIRL even outperforms the supervised

ImageNet-pretrained model in terms of the more conser-

vative APall and AP75 metrics. Similar to concurrent

work [26], we find that a self-supervised learner can out-

perform supervised pre-training for object detection. We

emphasize that PIRL achieves this result using the same

backbone model, the same number of finetuning epochs,

and the exact same pre-training data (but without the la-

bels). This result is a substantial improvement over prior

self-supervised approaches that obtain worse performance

than fully supervised baselines despite using orders of mag-

nitude more curated training data [21] or much larger back-

bone models [28]. In the supplemental material, we show

that PIRL also outperforms supervised pretraining when

finetuning is done on the much smaller VOC07 trainval set.

This suggests that PIRL learns image representations that

are amenable to sample-efficient supervised learning.

4.2. Image Classification with Linear Models

Next, we assess the quality of image representations by

training linear classifiers on fixed image representations.

We follow the evaluation setup from [21] and measure the

performance of such classifiers on four image-classification

datasets: ImageNet [66], VOC07 [16], Places205 [88], and

iNaturalist2018 [74]. These datasets involve diverse tasks

such as object classification, scene recognition and fine-

grained recognition. Following [21], we evaluate repre-

sentations extracted from all intermediate layers of the pre-

trained network, and report the image-classification results

for the best-performing layer in Table 2.

ImageNet results. The results on ImageNet highlight

the benefits of learning invariant features: PIRL improves

recognition accuracies by over 15% compared to its covari-

ant counterpart, Jigsaw. PIRL achieves the highest single-

crop top-1 accuracy of all self-supervised learners that use

a single ResNet-50 model.

The benefits of pretext invariance are further highlighted

by comparing PIRL with NPID. Our re-implementation of

NPID (called NPID++) substantially outperforms the re-

sults reported in [81]. Specifically, NPID++ achieves a

single-crop top-1 accuracy of 59%, which is higher or on

par with existing work that uses a single ResNet-50. Yet,

PIRL substantially outperforms NPID++. We note that

PIRL also outperforms concurrent work [26] in this setting.

Akin to prior approaches, the performance of PIRL im-

Method Parameters Transfer Dataset

ImageNet VOC07 Places205 iNat.

ResNet-50 using evaluation setup of [21]

Supervised 25.6M 75.9 87.5 51.5 45.4

Colorization [21] 25.6M 39.6 55.6 37.5 –

Rotation [20] 25.6M 48.9 63.9 41.4 23.0

NPID++ [81] 25.6M 59.0 76.6 46.4 32.4

MoCo [26] 25.6M 60.6 – – –

Jigsaw [21] 25.6M 45.7 64.5 41.2 21.3

PIRL (ours) 25.6M 63.6 81.1 49.8 34.1

Different architecture or evaluation setup

NPID [81] 25.6M 54.0 – 45.5 –

BigBiGAN [13] 25.6M 56.6 – – –

AET [85] 61M 40.6 – 37.1 –

DeepCluster [6] 61M 39.8 – 37.5 –

Rot. [35] 61M 54.0 – 45.5 –

LA [89] 25.6M 60.2† – 50.2† –

CMC [73] 51M 64.1 – – –

CPC [59] 44.5M 48.7 – – –

CPC-v2 [28] 305M 61.0 – – –

BigBiGAN-Big [13] 86M 61.3 – – –

AMDIM [4] 670M 68.1 – 55.1 –

Table 2: Image classification with linear models. Image-classification

performance on four datasets using the setup of [21]. We train linear

classifiers on image representations obtained by self-supervised learners

that were pre-trained on ImageNet (without labels). We report the perfor-

mance for the best-performing layer for each method. We measure mean

average precision (mAP) on the VOC07 dataset and top-1 accuracy on all

other datasets. Numbers for PIRL, NPID++, Rotation were obtained by

us; the other numbers were adopted from their respective papers. Num-

bers with † were measured using 10-crop evaluation. The best-performing

self-supervised learner on each dataset is boldfaced.

proves with network size. For example, CMC [73] uses a

combination of two ResNet-50 models and trains the lin-

ear classifier for longer to obtain 64.1% accuracy. We per-

formed an experiment in which we did the same for PIRL,

and obtained a top-1 accuracy of 65.7%; see “PIRL-ens.” in

Figure 2. To compare PIRL with larger models, we also per-

formed experiments in which we followed [35, 84] by dou-

bling the number of channels in ResNet-50; see “PIRL-c2x”

in Figure 2. PIRL-c2x achieves a top-1 accuracy of 67.4%,

which is close to the accuracy obtained by AMDIM [4] with

a model that has 6× more parameters.

Altogether, the results in Figure 2 demonstrate that PIRL

outperforms all prior self-supervised learners on ImageNet

in terms of the trade-off between model accuracy and size.

Indeed, PIRL even outperforms most self-supervised learn-

ers that use much larger models [28, 59].

Results on other datasets. The results on the other image-

classification datasets in Table 2 are in line with the results

on ImageNet: PIRL substantially outperforms its covariant

counterpart (Jigsaw). The performance of PIRL is within

2% of fully supervised representations on Places205, and

improves the previous best results of [21] on VOC07 by

more than 16 AP points. On the challenging iNaturalist

dataset, which has over 8, 000 classes, we obtain a gain
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Data fraction → 1% 10%

Method Backbone Top-5 Accuracy

Random initialization [81] R-50 22.0 59.0

NPID [81] R-50 39.2 77.4

Jigsaw [21] R-50 45.3 79.3

NPID++ [81] R-50 52.6 81.5

VAT + Ent Min. [22, 52] R-50v2 47.0 83.4

S4L Exemplar [84] R-50v2 47.0 83.7

S4L Rotation [84] R-50v2 53.4 83.8

PIRL (ours) R-50 57.2 83.8

Colorization [39] R-152 29.8 62.0

CPC-v2 [28] R-170 and R-11 64.0 84.9

Table 3: Semi-supervised learning on ImageNet. Single-crop top-5 ac-

curacy on the ImageNet validation set of self-supervised models that are

finetuned on 1% and 10% of the ImageNet training data, following [81].

All numbers except for Jigsaw, NPID++ and PIRL are adopted from the

corresponding papers. Best performance is boldfaced.

of 11% in top-1 accuracy over the prior best result [20].

We observe that the NPID++ baseline performs well on

these three datasets but is consistently outperformed by

PIRL. Indeed, PIRL sets a new state-of-the-art for self-

supervised representations in this learning setting on the

VOC07, Places205, and iNaturalist datasets.

4.3. Semi­Supervised Image Classification

We perform semi-supervised image classification ex-

periments on ImageNet following the experimental setup

of [28, 81, 84]. Specifically, we randomly select 1% and

10% of the ImageNet training data (with labels). We

finetune our models on these training-data subsets follow-

ing the procedure of [81]. Table 3 reports the top-5 accuracy

of the resulting models on the ImageNet validation set.

The results further highlight the quality of the image rep-

resentations learned by PIRL: finetuning the models on just

1% (∼13,000) labeled images leads to a top-5 accuracy of

57%. PIRL performs at least as well as S4L [84] and bet-

ter than VAT [22], which are both methods specifically de-

signed for semi-supervised learning. In line with earlier re-

sults, PIRL also outperforms Jigsaw and NPID++.

4.4. Pre­Training on Uncurated Image Data

Most representation learning methods are sensitive to the

data distribution used during pre-training [21, 32, 46, 71].

To study how much changes in the data distribution im-

pact PIRL, we pre-train models on uncurated images from

the unlabeled YFCC dataset [72]. Following [7, 21], we

randomly select a subset of 1 million images (YFCC-1M)

from the 100 million images in YFCC. We pre-train PIRL

ResNet-50 networks on YFCC-1M using the same proce-

dure that was used for ImageNet pre-training. We evaluate

using the setup in Section 4.2 and train linear classifiers on

fixed image representations.

Table 4 reports the top-1 accuracy of the resulting clas-

Method Dataset Transfer Dataset

ImageNet VOC07 Places205 iNat.

Jigsaw [21] YFCC1M – 64.0 42.1 –

DeepCluster [6, 7] YFCC1M 34.1 63.9 35.4 –

PIRL (ours) YFCC1M 57.8 78.8 51.0 29.7

Jigsaw [21] YFCC100M 48.3 71.0 44.8 –

DeeperCluster [7] YFCC100M 45.6 73.0 42.1 –

Table 4: Pre-training on uncurated YFCC images. Top-1 accuracy or

mAP (for VOC07) of linear image classifiers for four image-classification

tasks, using various image representations. All numbers (except those for

PIRL) are adopted from the corresponding papers. Deep(er)Cluster uses

VGG-16 rather than ResNet-50. The best performance on each dataset is

boldfaced. Top: Representations obtained by training ResNet-50 models

on a randomly selected subset of one million images. Bottom: Represen-

tations learned from about 100 million YFCC images.
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Figure 4: Invariance of PIRL representations. Distribution of l2 dis-

tances between unit-norm image representations, f(vI)/‖f(vI)‖
2, and

unit-norm representations of the transformed image, g(vIt )/‖g(vIt )‖
2.

Distance distributions are shown for PIRL and Jigsaw representations.

sifiers. In line with prior results, PIRL outperforms com-

peting self-supervised learners. In fact, PIRL even outper-

forms Jigsaw and DeeperCluster models that were trained

on 100× more data from the same distribution. Compar-

ing pre-training on ImageNet (Table 2) with pre-training

YFCC-1M (Table 4) leads to a mixed set of observations.

On ImageNet classification, pre-training (without labels) on

ImageNet works substantially better than pre-training on

YFCC-1M. In line with prior work [21, 32], however, pre-

training on YFCC-1M leads to better representations for im-

age classification on the Places205 dataset.

5. Analysis

We performed a set of experiments aimed at better un-

derstanding the properties of PIRL. To make it feasible to

train the larger number of models needed for these experi-

ments, we train the models we study in this section for fewer

epochs (400) and with fewer negatives (N = 4, 096) than

in Section 4. As a result, we obtain lower absolute perfor-

mances. Apart from that, we did not change the experimen-

tal setup or any of the other hyperparameters. Throughout

the section, we use the evaluation setup from Section 4.2

that trains linear classifiers on fixed image representations

to measure the quality of image representations.
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5.1. Analyzing PIRL Representations

Does PIRL learn invariant representations?

PIRL was designed to learn representations that are invari-

ant to image transformation t ∈ T . We analyzed whether

the learned representations actually have the desired invari-

ance properties. Specifically, we normalize the representa-

tions to have unit norm and compute l2 distances between

the (normalized) representation of image, f(vI), and the

(normalized) representation its transformed version, g(vIt).
We repeat this for all transforms t ∈ T and for a large set of

images. We plot histograms of the distances thus obtained

in Figure 4. The figure shows that, for PIRL, an image rep-

resentation and the representation of a transformed version

of that image are generally similar. This suggests that PIRL

has learned representations that are invariant to the trans-

formations. By contrast, the distances between Jigsaw rep-

resentations have a much larger mean and variance, which

suggests that Jigsaw representations covary with the image

transformations that were applied.

Which layer produces the best representations?

All prior experiments used PIRL representations that were

extracted from the res5 layer and Jigsaw representations

that were extracted from the res4 layer (which work bet-

ter for Jigsaw). Figure 5 studies the quality of representa-

tions in earlier layers of the convolutional networks. The

figure reveals that the quality of Jigsaw representations im-

proves from the conv1 to the res4 layer but that their qual-

ity sharply decreases in the res5 layer. We surmise this

happens because the res5 representations in the last layer of

the network covary with the image transformation t and are

not encouraged to contain semantic information. By con-

trast, PIRL representations are invariant to image transfor-

mations, which allows them to focus on modeling semantic

information. As a result, the best image representations are

extracted from the res5 layer of PIRL-trained networks.

Multi-task Jigsaw and NPID++. To further under-

stand PIRL, we implemented a multi-task baseline, similar

to [17], which does not learn invariance to the Jigsaw task.

This baseline uses two separate loss functions - NPID [81]

which learns invariance to data augmentation, and Jigsaw

classification which learns to predict the Jigsaw permuta-

tion applied to the input. This baseline performs similar

or worse to NPID++ (within 0.2% transfer performance on

ImageNet) showing that learning invariance to Jigsaw is im-

portant for better representations.

5.2. Analyzing the PIRL Loss Function

What is the effect of λ in the PIRL loss function?

The PIRL loss function in Equation 5 contains a hyperpa-

rameter λ that trades off between two NCE losses. All prior

experiments were performed with λ=0.5. NPID(++) [81]

is a special case of PIRL in which λ=0, effectively remov-
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Figure 5: Quality of PIRL representations per layer. Top-1 accuracy of

linear models trained to predict ImageNet classes based on representations

extracted from various layers in ResNet-50 trained using PIRL and Jigsaw.

0 0.25 0.5 0.75 1
Relative weight of loss terms ( ) in Equation 5

55

60

65

To
p-

1 
Ac

cu
ra

cy
ImageNet

Figure 6: Effect of varying the trade-off parameter λ. Top-1 accuracy

of linear classifiers trained to predict ImageNet classes from PIRL repre-

sentations as a function of hyperparameter λ in Equation 5.

100 2,000 10,000 362880
# of permutations of patches

60

65

70

75

80

m
AP PIRL Jigsaw [19]

Figure 7: Effect of varying the number of patch permutations in T .

Performance of linear image classification models trained on the VOC07

dataset in terms of mAP. Models are initialized by PIRL and Jigsaw, vary-

ing the number of image transformations, T , from 1 to 9! ≈ 3.6×105.

ing the pretext-invariance term from the loss. At λ=1, the

network does not compare untransformed images at training

time and updates to the memory bank mI are not dampened.

We study the effect of λ on the quality of PIRL represen-

tations. As before, in Figure 6, we measure representation

quality by the top-1 accuracy of linear classifiers operat-

ing on fixed ImageNet representations. The performance of

PIRL is sensitive to the setting of λ, and the best perfor-

mance is obtained by setting λ=0.5.

Effect of the number of image transforms. Both in PIRL
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Figure 8: Effect of varying the number of negatives. Top-1 accuracy

of linear classifiers trained to perform ImageNet classification using PIRL

representations as a function of the number of negative samples, N .

and Jigsaw, it is possible to vary the complexity of the task

by varying the number of permutations of the nine image

patches that are included in the set of image transforma-

tions, T . Prior work on Jigsaw suggests that increasing

the number of possible patch permutations leads to better

performance [21, 54]. However, the largest value |T | can

take is restricted because the number of learnable param-

eters in the output layer grows linearly with the number

of patch permutations in models trained to solve the Jig-

saw task. This problem does not apply to PIRL because it

never outputs the patch permutations, and thus has a fixed

number of model parameters. As a result, PIRL can use all

9! ≈ 3.6× 105 permutations in T .

We study the quality of PIRL and Jigsaw as a function

of the number of patch permutations included in T . To fa-

cilitate comparison with [21], we measure quality in terms

of image classification performance of linear models using

the VOC07 dataset, following the setup in Section 4.2. The

results are presented in Figure 7 and show that PIRL out-

performs Jigsaw for all cardinalities of T . PIRL particu-

larly benefits from being able to use very large numbers of

image transformations (i.e., large |T |) during training.

Effect of the number of negative samples. We study the

effect of the number of negative samples, N , on the qual-

ity of the learned image representations. We measure the

accuracy of linear ImageNet classifiers on fixed represen-

tations produced by PIRL as a function of the value of N
used in pre-training. The results are presented in Figure 8.

They suggest that increasing the number of negatives tends

to have a positive influence on the quality of the image rep-

resentations constructed by PIRL.

5.3. Generalizing PIRL to Other Pretext Tasks

Although we studied PIRL in the context of Jigsaw

in this paper, PIRL can be used with any set of image

transformations, T . We performed an experiment eval-

uating the performance of PIRL using the Rotation pre-

text task [20]. We define T to contain image rotations by

Method Params Transfer Dataset

ImageNet VOC07 Places205 iNat.

Rotation [20] 25.6M 48.9 63.9 41.4 23.0

PIRL (Rotation; ours) 25.6M 60.2 77.1 47.6 31.2

∆ of PIRL - +11.3 +13.2 +6.2 +8.2

Combining pretext tasks using PIRL

PIRL (Jigsaw; ours) 25.6M 62.2 79.8 48.5 31.2

PIRL (Rotation + Jigsaw; ours) 25.6M 63.1 80.3 49.7 33.6

Table 5: Using PIRL with (combinations of) different pretext tasks.

Top-1 accuracy / mAP of linear image classifiers trained on PIRL image

representations. Top: Performance of PIRL used in combination with the

Rotation pretext task [20]. Bottom: Performance of PIRL using a combi-

nation of multiple pretext tasks.

{0◦, 90◦, 180◦, 270◦}, and measure representation quality

in terms of image-classification accuracy of linear models.

The results of these experiments are presented in Table 5

(top). In line with earlier results, models trained using PIRL

(Rotation) outperform those trained using the Rotation pre-

text task of [20]. The performance gains obtained from

learning a rotation-invariant representation are substantial,

e.g. +11% top-1 accuracy on ImageNet. We also note that

PIRL (Rotation) outperforms NPID++ (see Table 2).

In a second set of experiments, we combined the pre-

text image transforms from both the Jigsaw and Rotation

tasks in the set of image transformations, T . Specifically,

we obtain I
t by first applying a rotation and then perform-

ing a Jigsaw transformation. The results of these experi-

ments are shown in Table 5 (bottom). The results demon-

strate that combining image transforms from multiple pre-

text tasks can further improve image representations.

6. Discussion and Conclusion

We studied Pretext-Invariant Representation Learning

(PIRL) for learning representations that are invariant to im-

age transformations applied in self-supervised pretext tasks.

The rationale behind PIRL is that invariance to image trans-

formations maintains semantic information in the represen-

tation. We obtain state-of-the-art results on multiple bench-

marks for self-supervised learning in image classification

and object detection. PIRL even outperforms supervised

ImageNet pre-training on object detection.

In this paper, we used PIRL with the Jigsaw and Rotation

image transformations. In future work, we aim to extend to

richer sets of transformations. We also plan to investigate

combinations of PIRL with clustering-based approaches [6,

7]. Like PIRL, those approaches use inter-image statistics

but they do so in a different way. A combination of the two

approaches may lead to even better image representations.
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