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Abstract

Binary Neural Networks (BNNs), known to be one

among the effectively compact network architectures, have

achieved great outcomes in the visual tasks. Designing ef-

ficient binary architectures is not trivial due to the binary

nature of the network. In this paper, we propose a use of

evolutionary search to facilitate the construction and train-

ing scheme when binarizing MobileNet, a compact network

with separable depth-wise convolution. Inspired by one-

shot architecture search frameworks, we manipulate the

idea of group convolution to design efficient 1-Bit Convo-

lutional Neural Networks (CNNs), assuming an approxi-

mately optimal trade-off between computational cost and

model accuracy. Our objective is to come up with a tiny

yet efficient binary neural architecture by exploring the best

candidates of the group convolution while optimizing the

model performance in terms of complexity and latency. The

approach is threefold. First, we train strong baseline binary

networks with a wide range of random group combinations

at each convolutional layer. This set-up gives the binary

neural networks a capability of preserving essential infor-

mation through layers. Second, to find a good set of hyper-

parameters for group convolutions we make use of the evo-

lutionary search which leverages the exploration of efficient

1-bit models. Lastly, these binary models are trained from

scratch in a usual manner to achieve the final binary model.

Various experiments on ImageNet are conducted to show

that following our construction guideline, the final model

achieves 60.09% Top-1 accuracy and outperforms the state-

of-the-art CI-BCNN with the same computational cost.

1. Introduction

In the last few years, Deep Convolutional Neural Net-

work (DCNN) for mobile platforms, which assumes certain

constraints on computational capacity and battery, has been

experimentally proven to be a successful approach in a wide

variety of visual tasks in machine vision [20, 16, 43, 42,

∗indicates equal contribution.
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Figure 1. XNOR binary operation at depth-wise (left), group (mid-

dle), and fully (right) convolutional layers.
⊗

denotes the XNOR

operator. Assuming all channels have the same value, the value

range of the depth-wise convolution is constrained in [−9, 9], lim-

iting the representation capability of BNNs but fast to convolve.

The full binary convolution provides a larger possible value range,

enhancing the capability of BNNs but slow to compute. The group

convolution balances both worlds: it maintains a sufficiently wide

value range to preserve the feature representation while being ef-

ficiently light-weight. The three figures in the bottom indicate the

convergence behavior of the depth-wise, group and full convolu-

tion respectively during training phase. The binary depth-wise is

prone to divergence; the full convolution effectively finds a way to

the local mimima and is slightly better than the group convolution

which steadily converges.

52, 33]. Many compressed neural networks were proposed

such as pruning [13, 12, 29, 49, 50, 31] and quantization

[1, 54, 25]. Binary Neural Networks (BNNs) recently have

attracted many interests and achieved significant improve-

ments [39, 15, 32, 3, 45]. Prior works focused on binarizing

large ConvNets which often contain several millions of pa-

rameters. On the other hand, compact neural network (e.g.,

MobileNet [16]) is among promissing network architec-
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tures for binarization. The MobileNet exploits light-weight

depth-wise and point-wise convolution layers to leverage

the network efficiency when deploying on mobile devices.

However, it is not trivial to make the depth-wise operators

capable of coping with 1-bit quantization to push the net-

work more compact.

With the depth-wise convolution, the neural network

achieves low inference latency and even more optimal when

being 1-bit quantized. However in such a binarization, input

of the convolutional layers are channel-wise multiplied and

summed. Therefore, the output values are limited within

a narrow range. For instance, a binary 3 × 3 depth-wise

filter convolving with one channel of the input yields val-

ues in [−9, 9], degrading the representation capability of

the binary neural networks. On the other hand, the binary

vanilla convolution results in a larger output value range

which allows to attain an abundant feature representation

and to effectively preserve the distribution of the data sam-

ples through network layers. Figure 1 illustrates the princi-

ple of this perspective. Although being effective, the vanilla

convolution comes with an expensive computational cost

since the filter convolves all channels of the input tensor.

Therefore, the replacement of either depth-wise or vanilla

by group convolution appears to be a promising approach

to compensate the trade-off between the neural network la-

tency, feature representation capability and computational

resource constraint.

Group convolution is a simple yet efficient operation

used in various neural networks to optimize trainable net-

work parameters as well as the computation. AlexNet [23],

ConDenseNet [17], ResNeXt [47], etc. are among pop-

ular neural architectures exploiting the group convolution

and achieving great outcomes. At its extremity appears the

depth-wise convolution. Inside the depth-wise, each chan-

nel is a separate group, or in other words the number of

groups is exactly the depth of the input tensor. Vanilla con-

volution is also a special case of group convolution where

#groups = 1. In most of the networks having group convo-

lutional layers, the number of groups is often homogeneous

at different layers in the network. From our perspective, a

heterogeneous scheme to distribute groups at different lay-

ers can help to construct an efficient and accurate neural ar-

chitecture, intuitively assuming a non-homogeneous feature

representation through network layers.

Aiming at leveraging the effectiveness of the heteroge-

neous group convolution, in this paper we propose a novel

weight-sharing mechanism to explore in group search space

optimally compact binary neural architectures that work ef-

ficiently and accurately. The key idea is to formulate the

searching as an optimization problem that seeks to create a

new genre of the compact architecture. This network is ex-

pected to be capable of performing efficiently in challeng-

ing and complicated tasks of image classification when data

volume is huge and objects are diverse in types. Instead

of conducting the search in a convolutional operation space

with high degree of intractability as in neural architecture

search (NAS) [55, 37, 48, 27], we exploit a controllable

search space of group convolution in a MobileNet struc-

ture consisting of 13 layers [16], resulting in a potentially

compact yet efficient binary architecture.

The main contributions of this paper are threefold:

• We introduce a novel construction of binary neural net-

work that is one of the first studies searching for a po-

tential architecture design via a heterogeneous combi-

nation of group convolutional layers. Our work sheds

the light on a new direction for enhancing the capabil-

ity of BNNs.

• We propose an adaptive weight-sharing training mech-

anism that automatically searches in the group space

to build efficient BNNs. More importantly, our train-

ing scheme is intuitive, flexible, and straightforward to

implement.

• We extensively conduct experiments to prove that fol-

lowing our approach, the binary neural architecture

construction achieves a significant improvement fac-

tor regarding computation saving and model accuracy,

therefore being able to attain state-of-the-art perfor-

mance on large-scale ImageNet dataset [9].

2. Related Work

We have witnessed many research interests in binary

neural networks. Courbariaux et al. [8, 7, 18] described

the very first works to constrain full-precision weights in

deep convolution neural networks to {−1, 1} by utilizing

XNOR-count operator and being able to accelerate the in-

ference stage 23× faster than standard convolutional opera-

tion and 3.4× than cuBlas [51], an efficient GPU framework

used for linear algebra computation. The work achieves

high accuracy when benchmarking on popular datasets such

as MNIST [24], CIFAR10 [22], SHVN [36]. XNOR-Net

[39] is an interesting idea making use of scaling factors

estimated from full-precision weights and achieving 44%

Top-1 accuracy on ImageNet with AlexNet architecture

[23]. The two most related approaches to our works are

Bi-RealNet [32] and MoBiNet [38]. These binary models

described a deployment of compact modules with skip con-

nection and group convolution to enhance the capability of

BNNs in terms of feature representation. The two mod-

els reach the state-of-the-art performance of 56% and 54%

Top-1 accuracy on Imagenet respectively when binarizing

both activations and weights. A recent work on BNNs [15]

introduced Binary Optimizer to remove the dependency of

binary weights from the real values, opening a new way to

improve the BNNs.
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To ameliorate the Binary Neural Network architecture,

we adopt the methodology of Neural Architecture Search

(NAS). The NAS aims at seeking to construct neural net-

works in an automatic instead of a manual manner. Many

NAS algorithms formulate the search as an optimization

problem and achieve great success [28, 5] in finding optimal

architectures, assuming constraints on network latency and

computational resource. In the following we focus on re-

viewing the neural architecture search appropriate to apply

for mobile devices. Pham et al. introduced ENAS [37] con-

sidered as one of the first efficient neural architecture search

approaches using cell-based search space. This network

trains a super-graph from which sub-optimal paths are se-

lected to create sharing parameters in sub-models. This mit-

igates the challenges when wandering in a huge exploration

space by shrinking the search process parameters. There

are other approaches outperforming manually designed net-

works. Liu et al. [28] proposed DARTS, a prominent

gradient-based method that optimizes jointly one-shot mod-

els on a continuous relaxation of the search space. However

because the models are assembled by a mixture from a set

of operations, the performance relies heavily on the set se-

lection. Another approach having the same flavor is Proxy-

lessNAS [4] which adapts 1-bit neural architecture to abate

GPU memory usage of one-shot models. The probability to

select operation edges is updated by BinaryConnect [8].

While NAS algorithms based on reinforcement learn-

ing and evolutionary methods strictly demand prohibitive

computation with thousands of GPUs [55, 27, 40, 41, 34],

single-path one-shot architecture search methods are afford-

able over a conditional exploration space. Guo et al. [11]

and Chen et al. [6] implemented the one-shot model named

SPOS and DetNAS to solve image classification and object

detection problem, respectively. SPOS [11] delves into a

random single path at every iteration to set up a super net-

work on which the algorithm applies an evolutionary search

to seek for an optimal path for neural network formation.

In the one-shot network, pre-trained output can be used to

transfer to different types of task like object detection and

segmentation. Our proposed method has a similar flavor in

training random group convolution, assuming modifications

in the neural architecture with weight sharing and searching

for the optimal group combinations.

3. Our Methodology

3.1. Binary Operation

In this section, we provide some fundamental back-

ground on binary neural network. When binarizing weights

and activations, a typical binary neural network uses a sign

function to constrain values to either −1 or +1.

x
b = Sign(x) =

{

+1, if x > 0,
−1, otherwise

(1)

where x
b is binarized value of x which can be network in-

puts or weights. Similar to float-type neural network, 1-bit

weights are intentionally computed to minimize an objec-

tive function:

w
b∗ = argmin

wb

L(fb(x,w
b), y) (2)

where L is the loss function; x, wb, y are inputs, binary

weights, and labels respectively. Because 1-bit values de-

grade the neural network capability of preserving feature

through layers, we apply scaling factors and backpropaga-

tion scheme mentioned in XNOR-Net [39] to tackle the

training divergence issue and to enhance the binary net-

work performance. Also, to compute gradient of non-

differentiable sign function, we adapt an approximation for

the derivative of the sign function with respect to the activa-

tion [32].

∂L

∂X
=

∂L

∂Xb

∂Xb

∂X
=

∂L

∂Xb

∂Sign(X)

∂X
≈

∂L

∂Xb

∂A(X)

∂X
(3)

A(·) denotes a differentiable approximation function in a

piece-wise polynomial function [32], where

A(x) =



















-1, if x < −1,

2x+ x2, if − 1 ≤ x < 0,

2x− x2, if 0 ≤ x < 1,

1, otherwise.

∂A(x)

∂x
=











2 + 2x, if − 1 ≤ x < 0,

2− 2x, if 0 ≤ x < 1,

0, otherwise.

(4)

The weights are only binarized in forward step for both

training and testing stage, then we can apply binary xnor-

popcount operator [35, 2] to accelerate the process. In back-

ward step, real weights are stored to compute the derivatives

and update new values.

3.2. Design And Search 1­Bit MobileNets

Binary neural network and neural architecture search are

two among the most potential techniques used to construct

compact yet efficient neural models. Network architecture

design usually has a great impact on the performance of

the binary networks. The main objective in our work is to

explore efficient designs of BNNs with the hope that tech-

niques in neural architecture search (NAS) can leverage the

exploration for compact structures. However, the NAS of-

ten covers a huge search space of convolutional operators

so that it is able to generate sub-optimal neural networks.

This might be very difficult and costly when directly ex-

ploring in the binary operator space. To simplify the search

space and to prevent the computation from exorbitant price,
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Figure 2. Framework overview of our proposed method. The pro-

cess consists of three steps: train binary models with random

groups (top figure, curve arrow indicates looping), apply evolu-

tionary search to explore optimal groups based on accuracy metric,

and re-train the searched group models from scratch.

we develop a novel training procedure exploiting random-

ized group convolution operators with weight sharing in the

neural networks. With this approach, the binary models be-

come robust thanks to the consideration of a wide variety

of group combinations which fosters the group search pro-

cedure. Exploring new architecture for binary neural net-

works using neural architecture search can open a potential

research direction to significantly improve the binary net-

work construction. In the next sections, we discuss how to

conduct and optimize the group convolution search with our

proposed training pipeline.

3.2.1 Evolutionary Group Convolution Search for Bi-

nary Neural Networks

To our knowledge, evolutionary algorithms, a.k.a genetic

algorithms, base on the well-known evolution of creature

species in nature. Natural selection eliminates individuals

unable to adapt to the environment. Additionally, survivals

are kept for reproduction, crossover, and mutation. Several

recent evolutionary approaches for neural architecture are

proposed [30, 46]. Instead of searching for the entire net-

work including a complete set of connections and operators

as in prior works, we conduct an evolutionary search for

group values at convolutional layers to explore suitable bi-

nary structure with a simple and effective network design.

At each layer, group candidatures consist of all possible di-

visors of the input channels. In detail, we start by sam-

pling a list of possible groups and searching on this list to

find an optimal architecture by training random groups for

every iteration. The first objective is to achieve an accu-

racy superior than a threshold. Second, in order to make

the computational cost controllable, we select binary com-

pact models satisfying certain constraint on the maximum

number of FLOPs such that

FLOP(W,G) ≤ FLOPmax (5)

where W is weight and G is a group combination for each

convolutional layer respectively. The search pipeline is pre-

sented in Algorithm 1.

Algorithm 1 Evolutionary Search for Group Convolution

Input: Candidate Group Size: S , Top Candidates: K,

#Crossovers: C, #Mutations: M, Model weights: W , and

FLOP constraint: F
Output: Optimal group combination G∗ that

yields top accuracy among the other combina-

tions.

1: G∗ ← Sample Candidates(S,F) # group candidates

2: for i=1:maxIteration do

3: Fitness← Accuracy(W,G∗) # accuracies

4: K← Select TopK(Fittness,K)
5: C← Crossover(K, C)
6: M← Mutation(C,M)
7: G∗ ← C ∪M

8: end for

3.2.2 Module Modification

MobileNets [16] with depth-wise and point-wise convolu-

tion (together known as separable depth-wise convolution

[44]) are famous for its compactness and effectiveness when

being used for designing a neural network. We modify the

MobileNet structure to facilitate the creation of efficient bi-

nary neural networks that outperform prior state-of-the-art

works regarding accuracy and memory saving. However,

training a binary depth-wise convolution is not straightfor-

ward [38] because the separate channel-wise output falls

into a small value range due to the nature of the compu-

tation, making the binary network impossible to converge.

To overcome this issue, we propose a replacement of depth-

wise convolution by group convolution to enlarge the value

range of the depth-wise convolution output. More precisely,

we search for groups of binary convolution operators of ker-

nel size 3× 3 and 1× 1. To preserve the feature representa-

tion through binary layers while assuming a low computa-

tional cost, we maintain the full precision 1×1 convolution

when perceiving a reduction in spatial dimension at a layer

13423



B: 3✕3 conv

In=Out?

Yes No

B: 1✕1 conv R: 1✕1 conv

B: 3✕3 conv

In=Out?

Yes

No

B: 1✕1 conv
B
1
: 1✕1 conv B2: 1✕1 conv

Concat

Figure 3. Illustration of network module modification.

output. In addition, block-wise and layer-wise skip connec-

tions are added in case of homogeneous dimension output to

benefit the network training. Our proposed network module

is illustrated in Figure 3. There are three principle modi-

fications that make our modules different from the vanilla

architecture of the MobileNet [16]:

• Module 1 (M1): consists of a binary 3× 3 group conv

and a binary 1 × 1 full conv. A real 1 × 1 fully conv

follows when there is a spatial dimension shrinkage.

(see Figure 3 - the left figure).

• Module 2 (M2): uses group convolution for real 1× 1
full conv to further reduce the computational cost. The

group is also searched along with the binary 3×3 group

conv.

• Module 3 (M3): is made up of two binary 1× 1 conv

layers instead of one, and then concatenate them to ob-

tain the same dimension.

In the next section, we describe a training scheme based

on randomized group through weight sharing to force the

binary neural network to converge.

3.2.3 Randomized Groups via Weight-sharing

In the search stage, a fitness function (e.g., accuracy of the

model) is computed to help explore optimal group combina-

tions. However if we naively calculate accuracy of a binary

model without training with data samples (i.e., images), it

does not guarantee that the optimal model is able to learn

the distribution of the target dataset. Therefore, to leverage

important information from a given dataset for evolutionary

search, we propose a method to train the binary model along

with randomized group combination via weight-sharing in

each training iteration. To ease the implementation, full

convolutions are initialized and cropped with randomized

groups in each iteration via weight-sharing. The weight-

sharing is depicted in Figure 4.

3.2.4 Training Procedure

Binary neural network is an active and progressive research

topic with prominent works [38, 32, 45]. Training neural

6

6

Weight-sharing with  

group=6 filters

Weight-sharing with  

group=3 filters

Weight-sharing with  

group=2 filters
No	weight-sharing

Figure 4. Illustration of a 2D weight sharing. For example, in a

6× 6 filter, weights can be shared within groups of 2, 3, and 6.

networks of 1-bit weights is a difficult task because feature

representation often has narrow value range which seems to

be impossible to fit the target large-scale dataset for classifi-

cation. XNOR-Net [39] utilizes full precision weight values

to derive real value scaling factors which play crucial role in

amplifying the magnitude of binary weights and activations.

The optimization is formulated as follows:

X
b∗,α = argmin

Xb∈{−1,1},α>0

∥

∥X−αX
b
∥

∥

2

2
(6)

X can be weights or activations and α are scaling factors.

The optimal solution for Equation 6 is Xb∗ = Sign(X) and

α = 1
(Xb)TXb |X|l1. Bi-RealNet [32] and MoBiNet [38]

make use of skip connections to enhance the performance of

binary neural networks. With that flavor, we manipulate the

skip connections together with scaling factors to facilitate

the training procedure. Here follows the summary of our

training:

• For each iteration, we train binary neural networks

with random group combinations. For instance, if the

network has 13 layers, the groups corresponding to

these layers are randomized within possible divisors of

input channels. This randomization helps 1-bit models

become robust against group changes when searching.

• Evolutionary search described in Algorithm 1 is ap-

plied to seek for optimal groups. An ablation study

is conducted in Section 4.2 to prove that our search

approach is more efficient than arbitrary randomized

groups.

• We train from scratch the final binary models with op-

timal group convolution. All steps run on large scale

ImageNet-1k [9].

The training pseudo-code is illustrated in Algorithm 2 and

visualized in Figure 2.

4. Experiments

In this section, we demonstrate the performance evalu-

ation of our proposed method. First, we describe experi-
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Algorithm 2 Overall Training BNNs

Input: Full binary neural model and inputs for evolutionary

search

Output: New optimal binary neural model with new group

structure.

1: C ins← Input Channels

2: Initialize Binary ModelsMb

3: for i=1:Iteration do

4: Gr ← Random Groups(C ins) # random group

5: Train Group(Mb,Gr)
6: end for

7: G∗ ← Search Group(Mb) # search group using Al-

gorithm 1

8: Train Group(Mb,G
∗)

ment setups and implementation details. Second, to prove

our weight-sharing group search mechanism more effective

and reasonable than naively random search we compare the

training performance with randomized groups in ablation

studies. Third, we evaluate the search groups with uniform

normal groups to investigate the fact that for each level of

feature representation, the number of groups should be dif-

ferent. Then we compare with the state-of-the-arts to see

improvement impacts of our proposed BNNs. Finally, the

computation analysis are presented. All experiments in-

cluding searching, training, and testing are conducted on

the large-scale dataset of ImageNet2012-1k. We analyzed

the results regarding three metrics: Top-1, Top-5 classifica-

tion accuracy on ImageNet dataset, and number of FLOPs.

4.1. Experimental Setups

Dataset. The image dataset we used to demonstrate the

effectiveness of our framework is ILSVRC2012 [9], a

dataset containing 1.2M and 50K image samples for train-

ing and testing respectively. The dataset has 1000 classes.

Most of the previous works such as XNOR-Net [39],

Bi-RealNet [32], CI-BCNN [45], and MoBiNet [38] also

used this dataset to evaluate their model performance.

Implementation details and setups. Our training pipeline

consists of three main stages: train binary architecture with

randomized groups, search groups for convolutional layers

via evolutionary method, and train the final models with

searched groups from scratch. We train on basic blocks

modified from MobileNet to improve the performance of

binary models, mentioned in Section 3.2.2. Each image is

scaled up to 256 × 256. In training, images are randomly

cropped to 224× 224. In testing, they are centrally cropped

to 224 × 224. When training, real-valued filters are saved

in RAM to compute update values in backpropagation via

Equation 3 and then are binarized in inference stage. In the

first stage of the training pipeline, we used batch size of 512

Figure 5. Validation accuracy on ImageNet through epochs of

modified modules (M1, M2 and M3, from top to bottom re-

spectively). Random: Groups are naively randomized for layers.

Group search: Our proposed search optimal group architecture.

images to train the 1-bit models with random groups and

learning rate of 0.001 in 64 epochs. In the search stage, the

number of populations, crossovers, mutations are 50, 25, 25
respectively and the searching runs 20 iterations to find op-

timal group structure. In the end of the pipeline, we train

the final models from scratch with batch size 512, learning

rate 0.001, number of epochs 256. All training stages use

Adam Optimizer [21], momentum 0.9, and update learning

rate through linear decay. FLOPs are calculated following

the suggestion of [32, 45] for fair comparison. Training is

conducted on four RTX 2080 Ti GPUs 24GB and searching

is on one GPU.

4.2. Our Search Group vs. Random Group Search
and Uniform Group Architectures

To investigate our hypothesis of binarizing convolution

via an evolution-based searching in MobileNet’s architec-

ture, we compare with random search and uniform group

architectures as an ablation study. The experiment is con-

ducted on the three proposed modules in Section 3.2.2. For

the Module 2, there are four full-precision 1 × 1 convo-

lutions. We also apply searched groups for such layers to

further reduce the computational cost.
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#Groups (M1) Top-1 (%) Top-5 (%) FLOPs

Groups = 1 64.51 85.14 2.13× 108

Groups = 4 60.89 82.54 1.63× 108

Groups = 16 58.49 80.66 1.50× 108

Random Group 59.05 81.22 1.58× 108

Ours 60.90 82.60 1.54×108

#Groups (M2) Top-1 (%) Top-5 (%) FLOPs

Groups = 1 64.51 85.14 2.13× 108

Groups = 4 59.59 81.67 0.67× 108

Groups = 16 54.23 77.04 0.30× 108

Random Group 58.13 80.42 0.75× 108

Ours 59.30 81.00 0.62×108

#Groups (M3) Top-1 (%) Top-5 (%) FLOPs

Groups = 1 57.56 79.85 0.87× 108

Groups = 4 49.90 73.15 0.37× 108

Groups = 16 45.29 69.38 0.24× 108

Random Group 50.07 74.11 0.38× 108

Ours 51.06 74.18 0.33×108

Table 1. Uniform grouping baselines and random group search vs

Our group search on Module M1,M2, and M3.

To compare with random group search, we report Top-1

and Top-5 accuracy for each epoch. The training perfor-

mance comparison is indicated in Figure 5, showing the re-

sult of modifications from MobileNets: Module 1, Module

2, and Module 3 (from the top to the bottom in that order).

We run the comparison experiments of randomized and

searched groups with 100 epochs, 512 for batch size and ob-

serve the Top-1 and Top-5 accuracy in ImageNet validation

set for each epoch. With respect to the first two modules,

our group search architecture training is more stable and for

all epochs, we achieve more accurate results (about 2%) in

both Top-1 and Top-5 accuracy.

Our proposed search group achieves better performance

when comparing with random groups that require more

computational cost. Table 1 reports the number of FLOPs

when running with random group and with our proposed

group search. Regardless of the fact that random architec-

tures have a larger computational cost, our search group net-

works are more accurate and efficient.

We also provide a comparison with uniform group (i.e.,

using the same number groups for all layers of Module M1,

M2, and M3) as a ablation study for investigating our hy-

pothesis. We train models with uniform groups of 1 (fully

convolution), 4, and 16. The Table 1 presents the results

of Top-1, top-5 accuracy, and number of FLOPs (computa-

tional cost).

Our reported statistics expresses a trade-off of perfor-

mance between fully convolution and depth-wise convolu-

tion. For example, in M1 and M3 our searched group mod-

els outperform comparable uniform group models (g=4 and

16) in accuracy and take less FLOPs.

M M1 M2 M3

Top-1 (%) 60.9 59.3 51.1

Top-5 (%) 82.6 81.0 74.2

FLOPs 1.54× 108 0.62× 108 0.33× 108

MaxFLOPs 1.55× 108 0.80× 108 0.50× 108

#GPU-hours 30 32 26

Table 2. The efficiency of proposed module M1, M2 and M3 in

searched group architecture. The results are conducted on large

scale of ImageNet dataset. MaxFlops is the constraint budget.

4.3. The Efficiency of Our BNNs

MobileNet architecture is a compact network working

accurately and efficiently based on light-weight module of

separable convolution layers. Binarizing such a compact

model can give us promising outcomes because it contains

less parameters thanks to the tremendous reduction of the

computational cost without incurring accuracy loss. How-

ever, as mentioned in Section 1 the networks exploiting the

separable convolutions including depth-wise scheme can-

not convergence when being binarized because of extremely

small value range that cannot adequately fit complex data

samples like images. On the contrary, groups and fully con-

volutional layers are easier to make the networks perform

well. Albeit achieving high accuracy, fully convolutional

layers are not efficient to deploy on mobile devices because

of a huge number of parameters. So, group convolutional

layers can have potential trade-off between depth-wise and

full convolution. In this work, we propose a group search

mechanism via evolutionary method to find group structure

at each convolutional layers for a binary neural network in

the MobileNet architecture.

For showing the effectiveness of our proposed search

mechanism, we conduct experiments of modified modules

with different computational budget constraints. We firstly

train binary models with random groups for each module

in 64 epochs. Then, we search for networks satisfying the

FLOP budget to derive optimal group structures. Finally,

the networks with optimal groups are trained from scratch

in 256 epochs. The other settings are mentioned in Section

4.1. Top-1, Top-5 accuracy on ImageNet-1k, FLOPs, bud-

get constraint, and number of GPU-hours of searching are

reported in the Table 2.

Compared to the full-precision MobileNet [16], our con-

structed binary neural networks accelerate approximately

4×, 9×, and 17× when using Module 1, Module 2, and

Module 3 respectively, while incurring small Top1-accuracy

loss of 10%, 11.6%, and 19.8%. We also outperform the

most related work of MoBiNet [38]. This detail is men-

tioned in Section 4.4. In addition, our search algorithm only

takes ≈ 29h on one GPU in average.

In the next section, we compare our method with other

state-of-the-art binary neural networks.
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4.4. Comparison with State­of­the­art Methods

Binary neural networks make an amazing progress when

recently achieving impressive results. However, prior works

improve binary models through training process for repre-

sentation learning while the architecture design should has

great influence as well. Our proposed method using evo-

lutionary search based on recent ideas of one-shot neural

architecture search aims at exploring the group architecture

design for BNNs improvement.

In this section, to evaluate the proposed method we com-

pare our BNNs with several recent works: Binary Connect

[8], BNNs [19], ABC-Net [26], DoReFa-Net [53], XNOR-

Net [39], etc. The metrics reported are Top-1, Top-5 ac-

curacy on ImageNet, and the number of FLOPs. BiReal-

Net and CI-BCNN are two prominent works achieving good

results. These networks binarize ResNet [14] with effi-

cient skip connection module. Here, we only consider

ResNet 18 layers versus our 13 layers for fair comparison.

CI-BCNN [45] is the state-of-the-art binary model (both

weights and activations are binarized) as it is able to achieve

59.90% Top-1 accuracy on ImageNet with very small cost

of 1.54 × 108 FLOPs. Our binary model using Module

1 outperforms the MoBiNet [38] 6% and the Bi-RealNet-

18 [32] 4% Top-1 accuracy with less computational cost.

Moreover, it also surpasses CI-BCNN [45] 1% Top-1 accu-

racy with lower number of FLOPs (ours: 1.54 × 108, CI-

BCNN: > 1.54 × 108). Also, our Module 2 and Module 3

also transcends the BiReal-Net [32] by requiring a signifi-

cant lower number of FLOPs.

On the other hand, our method significantly outperforms

the other binary neural networks regarding the accuracy and

computation metric. The accuracy results are reported in

the Table 3. Our proposed binary networks are better than

most of the prior works. For computational cost, Table 1

indicates comparisons in terms of number of FLOPs and

memory usage.

4.5. Analysis

In this section, we discuss the analysis of results and

computational complexity. For ablation study in Sec-

tion 4.2, the results of group search architecture are more

stable and have higher accuracy than naively erratic groups,

proving that having heterogeneous group structure at each

layer in MobileNet architecture yields good performance.

In addition, group convolution is flexible to increase or de-

crease the number of connections in selective layers. For

example when observing the first layers, we realize that the

search algorithm tends to assign small number of groups to

preserve essential information of the inputs. Meanwhile,

the algorithm diminishes insignificant inter-channel con-

nections (i.e., by increasing the number of groups) to en-

hance the model’s compactness and efficiency.

From Table 1 and Table 3, our module 2 and mod-

Networks W/A Top-1 Top-5

Binary Connect [8] 1/32 35.40 61.00

BWN [39] 1/32 56.80 79.40

BNNs [19] 1/1 42.20 67.10

ABC-Net [26] 1/1 42.70 67.60

DoReFa-Net [53] 1/1 43.60 -

SQ-BWN [10] 1/1 45.50 70.60

XNOR-AlexNet [39] 1/1 44.20 69.20

XNOR-ResNet-18 [39] 1/1 51.20 73.20

MoBiNet [38] 1/1 54.40 77.50

Bi-RealNet-18 [32] 1/1 56.40 79.50

CI-BCNN-18 [45] 1/1 56.73 80.12

CI-BCNN-18 (add) [45] 1/1 59.90 84.18

Ours (M3) 1/1 51.06 74.18

Ours (M2) 1/1 59.30 81.00

Ours (M1) 1/1 60.90 82.60

Table 3. The Top-1 and Top-5 accuracy comparison between the

state-of-the-art and our method. Our Module 1 (M1) outperforms

the state-of-the-art CI-BCNN [45] by 1% Top-1 accuracy.

Networks FLOPs

XNOR-AlexNet [39] 1.38× 108

XNOR-ResNet-18 [39] 1.67× 108

Bi-RealNet-18 [32] 1.63× 108

CI-BCNN-18 [45] 1.54× 108

CI-BCNN-18 (add) [45] > 1.54× 108

MoBiNet [38] 0.52× 108

Ours (M3) 0.33× 108

Ours (M2) 0.62× 108

Ours (M1) 1.54× 108

Table 4. Computational cost comparison between the state-of-the-

arts and our method.

ule 3 have higher accuracy than the two prominent works

of BiReal-Net [32] and CI-BCNN [45]. Moreover, the

modules have a much lower computational cost (≈ 33M

FLOPs), approximately 5× speed up factor when compar-

ing with BiReal-Net (163M FLOPs).

5. Conclusion

Efficient group design for BNNs can yield good out-

comes. We introduced a novel algorithm via evolution-

ary search to explore group structures aiming at optimizing

the trade-off when either using depth-wise or fully convo-

lutional layers in MobileNet. Our BNN is efficient as it

achieves highly accurate results while saving the computa-

tional cost (only single GPUs for searching) in dealing with

challenging visual classification tasks.

Acknowledgements. We thanks all anonymous reviewers

for constructive and valuable feedback.

13427



References

[1] Yiwen Guo Lin Xu Yurong Chen Aojun Zhou, Anbang Yao.

Incremental network quantization: Towards lossless cnns

with low-precision weights. In International Conference on

Learning Representations,ICLR2017, 2017.

[2] Joseph Bethge, Marvin Bornstein, Adrian Loy, Haojin Yang,

and Christoph Meinel. Training competitive binary neural

networks from scratch. ArXiv e-prints, 2018.

[3] Adrian Bulat and Georgios Tzimiropoulos. Xnor-net++: Im-

proved binary neural networks. In BMVC, 2019.

[4] Han Cai, Ligeng Zhu, and Song Han. ProxylessNAS: Direct

neural architecture search on target task and hardware. In In-

ternational Conference on Learning Representations, 2019.

[5] Xin Chen, Lingxi Xie, Jun Wu, and Qi Tan. Progressive dif-

ferentiable architecture search: Bridging the depth gap be-

tween search and evaluation. In The International Confer-

ence on Computer Vision (ICCV), October 2019.

[6] Yukang Chen, Tong Yang, Xiangyu Zhang, Gaofeng Meng,

Xinyu Xiao, and Jian Sun. Detnas: Backbone search for

object detection. In NeurIPS 2019, 2019.

[7] Matthieu Courbariaux and Yoshua Bengio. Binarynet: Train-

ing deep neural networks with weights and activations con-

strained to +1 or -1. CoRR, abs/1602.02830, 2016.

[8] Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre

David. Binaryconnect: Training deep neural networks with

binary weights during propagations. In NIPS, pages 3123–

3131, 2015.

[9] Jia Deng, Wei Dong, Richard Socher, Li jia Li, Kai Li, and Li

Fei-fei. Imagenet: A large-scale hierarchical image database.

In In CVPR, 2009.

[10] Yinpeng Dong, Renkun Ni, Jianguo Li, Yurong Chen, Hang

Su, and Jun Zhu. Stochastic quantization for learning accu-

rate low-bit deep neural networks. International Journal of

Computer Vision, Mar 2019.

[11] Zichao Guo, Xiangyu Zhang, Haoyuan Mu, Wen Heng,

Zechun Liu, Yichen Wei, and Jian Sun. Single path one-

shot neural architecture search with uniform sampling. arXiv

preprint arXiv:1904.00420, 2019.

[12] Song Han, Huizi Mao, and William J. Dally. Deep com-

pression: Compressing deep neural network with prun-

ing, trained quantization and huffman coding. CoRR,

abs/1510.00149, 2015.

[13] Song Han, Jeff Pool, John Tran, and William J. Dally. Learn-

ing both weights and connections for efficient neural net-

works. In Proceedings of the 28th International Confer-

ence on Neural Information Processing Systems - Volume 1,

NIPS’15, pages 1135–1143, Cambridge, MA, USA, 2015.

MIT Press.

[14] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In CVPR,

pages 770–778, 2016.

[15] Koen G. Helwegen, James Widdicombe, Lukas Geiger,

Zechun Liu, Kwang-Ting Cheng, and Roeland Nusselder.

Latent weights do not exist: Rethinking binarized neural net-

work optimization. ArXiv, abs/1906.02107, 2019.

[16] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry

Kalenichenko, Weijun Wang, Tobias Weyand, Marco An-

dreetto, and Hartwig Adam. Mobilenets: Efficient convolu-

tional neural networks for mobile vision applications. CoRR,

abs/1704.04861, 2017.

[17] Gao Huang, Shichen Liu, Laurens van der Maaten, and Kil-

ian Q. Weinberger. Condensenet: An efficient densenet us-

ing learned group convolutions. In The IEEE Conference on

CVPR, June 2018.

[18] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-

Yaniv, and Yoshua Bengio. Binarized neural networks. In

NIPS, pages 4107–4115, 2016.

[19] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-

Yaniv, and Yoshua Bengio. Binarized neural networks. In

D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R.

Garnett, editors, Advances in Neural Information Process-

ing Systems 29, pages 4107–4115. Curran Associates, Inc.,

2016.

[20] Forrest N. Iandola, Matthew W. Moskewicz, Khalid Ashraf,

Song Han, William J. Dally, and Kurt Keutzer. Squeezenet:

Alexnet-level accuracy with 50x fewer parameters and ¡1mb

model size. CoRR, abs/1602.07360, 2017.

[21] Diederik P. Kingma and Jimmy Ba. Adam: A method for

stochastic optimization. CoRR, abs/1412.6980, 2014.

[22] A. Krizhevsky and G. Hinton. Learning multiple layers of

features from tiny images. Master’s thesis, Department of

Computer Science, University of Toronto, 2009.

[23] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.

Imagenet classification with deep convolutional neural net-

works. In F. Pereira, C. J. C. Burges, L. Bottou, and K. Q.

Weinberger, editors, Advances in Neural Information Pro-

cessing Systems 25, pages 1097–1105. Curran Associates,

Inc., 2012.
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