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if higher quality is desired can be used as a starting point

for the artists to modify. Notably, our approach does not

generate shadowed sketches directly; instead it generates a

separate image of the shadow that may be composited with

the sketch. This feature is important as the artist can load

the sketch and the shadow into separate image layers and

edit them independently.

Our work uses the deep learning methodology to learn

a non-linear function which “understands” the 3D spatial

relationships implied by a 2D sketch and render the binary

shadows (Figure 1 top). The raw output from our neural net-

work is binary shadows, which may be modified by artists

in a separate layer independent of line drawings. There is no

additional post-processing and the images in our paper are

simple composites of the raw network outputs and the input

line drawings. If soft shadows are desired, artists may use

the second intermediate output from our network (Figure 2

s2). Our network also produces consistent shadows from

continuously varying lighting directions (Section 4.3), even

though we train from a discrete set of lighting directions.

Given a line drawing and a lighting direction, our model

automatically generates an image where the line drawing is

enhanced with detailed and accurate hard shadows; no ad-

ditional user input is required. We focus on 2D animation

style images (e.g. Japanese comic, Inker [36]) and the train-

ing data is composed of artistic hand-drawn line drawing in

the shape of animation characters, mecha, and mechanical

objects. We also demonstrate that our model generalizes to

line drawing of different objects such as buildings, clothes,

and animals.

The term “artistic shadow” in our work refers to binary

shadows that largely obey physics but also have artistic fea-

tures such as less shadowing of characters’ faces and rim

lighting when characters are back lit.

The main contributions of our work:

• We created a new dataset that contains 1,160 cases of

hand-drawn line drawings and shadows tagged with

lighting directions.

• We propose a network that “understands” the structure

and 3D spatial relationships implied by line drawings

and produces highly-detailed and accurate shadows.

• An end-to-end application that can generate binary or

soft shadows from arbitrary lighting directions given a

2D line drawing and designated lighting direction.

In Section 3, we will decribe the design of our genera-

tive and discriminator networks, and our loss functions. In

Section 4, we compare our results quantitatively and qual-

itatively to baseline network architectures pix2pix [15] and

U-net [27]. We also compare to the related approaches

Sketch2Normal [31] and DeepNormal [13] applied to our

shadow generation problem. Our comparisons include a

small user study to assess the perceptual accuracy of our

approach. Finally, we demonstrate the necessity of each

part of our proposed network through an ablation study and

metrics analysis. 1

2. Related Work

Non-photorealistic rendering in Computer Graph-

ics. The previous work on stylized shadows [25, 3] for cel

animation highlights that shadows play an important role in

human perception of cel animation. In particular, shadows

provide a sense of depth to the various layers of character,

foreground, and background. Lumo [16] approximates sur-

face normals directly from line drawings for cel animation

to incorprate subtle environmental illumination. Todo et al.

[34, 35] proposed a method to generate artistic shadows in

3D scenes that mimics the aesthetics of Japanese 2D anima-

tion. Ink-and-Ray [33] combined a hand-drawn character

with a small set of simple annotations to generate bas-relief

sculptures of stylized shadows. Recently, Hudon et al. [12]

proposed a semi-automatic method of cel shading that pro-

duces binary shadows based on hand-drawn objects without

3D reconstruction.

Image translation and colorization. In recent years,

the research on Generative Adversarial Networks (GANs)

[7, 23] in image translation [15] has generated impressive

synthetic images that were perceived to be the same as the

originals. Pix2pix [15] deployed the U-net [27] architec-

ture in their Generator network and demonstrated that for

the application of image translation U-net’s performance is

improved when skip connections are included. CycleGAN

[43] introduced a method to learn the mapping from an in-

put image to a stylized output image in the absence of paired

examples. Reearch on colorizing realistic gray scale images

[2, 41, 14, 42] demonstrated the feasibility of colorizing im-

ages using GANs and U-net [27] architectures.

Deep learning in line drawings. Researcher that con-

siders line drawings include line drawing colorization [38,

18, 40, 5, 4], sketch simplification [30, 28], smart inker [29],

line extraction [20], line stylization [21] and computing nor-

mal maps from sketches [31, 13]. Tag2Pix [18] seeks to

use GANs that concatenate Squeeze and Excitation [11] to

colorize line drawing. Sketch simplification [30, 28] cleans

up draft sketches, through such operations as removing dual

lines and connecting intermittent lines. Smart inker [29] im-

proves on sketch simplification by including additional user

input. Users can draw strokes indicating where they would

like to add or erase lines, then the neural network will out-

put a simplified sketch in real-time. Line extraction [20]

extracts pure lines from manga (comics) and demonstrates

that simple downscaling and upscaling residual blocks with

1Project page is at https://cal.cs.umbc.edu/Papers/

Zheng-2020-Shade/.
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skip connections have superior performance. Kalogerakis

et al. [17] proposed a machine learning method to create

hatch-shading style illustrations. Li et al. [21] proposed a

two-branch deep learning model to transform the line draw-

ings and photo to pencil drawings.

Relighting. Deep learning has also been applied to re-

lighting realistic scenes. Xu et al. [37] proposed a method

for relighting from an arbitrary directional light given im-

ages from five different directional light sources. Sun et al.

[32] proposed a method for relighting portraits given a sin-

gle input, such as a selfie. The training datasets are captured

by a multi-camera rig. This work differs from ours in that

they focus on relighting realistic images while we focus on

artistic shadowing of hand-drawn sketches.

Line drawings to normal maps. Sketch2normal [31]

and DeepNormal [13] use deep learning to compute nor-

mal maps from line drawings. Their training datasets

are rendered from 3D models with realistic rendering.

Sketch2Normal trains on line drawings of four-legged an-

imals with some annotations. DeepNormal takes as input

line drawings with a mask for the object. They solve a dif-

ferent, arguably harder, problem. However, the computed

normal maps can be used to render shadows and we com-

pare this approach to our direct shadow computation in Sec-

tion 4. Given color input images, Gao and colleagues [6]

predict normal maps and then generate shadows.

3. Learning Where to Draw Shadows

In this section we describe our data preparation, our rep-

resentation of the lighting directions, the design of our gen-

erator and discriminator networks, and our loss functions.

3.1. Data Preparation

We collect our (sketch, shadow) pairs from website posts

by artists. With help from professional artists, each (sketch,

shadow) pair is manually tagged with a lighting direction.

After pre-processing the sketches with thresholding and

morphological anti-aliasing, the line drawings are normal-

ized to obtain a consistent line width of 0.3 px in cairosvg

standard [26]. To standardize the hand-drawn sketch to the

same line width, we use a small deep learning model similar

to smart inker [29] to pre-process input data. Our dataset

contains 1,160 cases of hand-drawn line drawings. Each

line drawing matches one specific hand-drawn shadow as

ground truth and one lighting direction.

In contrast to 3D computer animation, which contains

many light sources and realistic light transport, 2D anima-

tion tends to have a single lighting direction and include

some non-physical shadows in a scene.

We observed that artists tend to choose from a relatively

small set of specific lighting directions, especially in comics

and 2D animation. For this reason, we define 26 lighting di-

rections formed by the 2×2 cube in Figure 1. We found that

it was intuitive to allow users to choose from eight lighting

directions clockwise around the 2D object and one of three

depths (in-front, in-plane, and behind) to specify the light

source. We also allow the user to choose two special loca-

tions: directly in front and directly behind. This results in

8 × 3 + 2 = 26 lighting directions. The user specifies the

light position with a three-digit string. The first digit cor-

responds to the lighting direction (1-8), the second to the

plane (1-3), and the third is ’0’ except for the special direc-

tions, which are “001” (in-front) and “002” (behind).

While users found this numbering scheme intuitive, we

obtained better training results by first converting these

strings to 26 integer triples on the cube from [−1, 1]3

((0, 0, 0) is not valid as that is the location of the object).

For example, “610” is mapped to (−1,−1,−1), “230” is

mapped to (1, 1, 1), and “210” is mapped to (1, 1,−1).

3.2. Network Architecture

Our generator incorporates the following modules:

residual blocks [8] [9], FiLM [24] residual blocks, and

Squeeze-and-Excitation (SE) blocks [11]. The general ar-

chitecture of our generator follows the architecture of U-

net with skip connections [27, 15]. Our Discriminator uses

residual blocks. Details are shown in Figure 2.

3.2.1 Generative Network

We propose a novel non-linear model with two parts -

ShapeNet, which encodes the underlying 3D structure from

2D sketches, and RenderNet, which renders artistic shadows

based on the encoded structure.

ShapeNet encodes a line drawing of an object into a high

dimensional latent space and represents the object’s 3D ge-

ometric information. We concatenate 2D coordinate chan-

nels [22] to the line drawings to assist ShapeNet in encoding

3D spatial information.

RenderNet performs reasoning about 3D shadows. Start-

ing from the bottle neck, we input the embedded lighting di-

rection using the normalization method from FiLM residual

blocks [24]. The model then starts to learn the relationship

between the lighting direction and the various high dimen-

sional features. We repeatedly add the lighting direction

into each stage of the RenderNet to enhance the reasoning of

decoding. In the bottom of each stage in RenderNet, a Self-

attention [39] layer complements the connection of holistic

features.

The shadowing problem involves holistic visual reason-

ing because shadows can be cast by distant geometry. For

this reason we deploy Self-attention layers [39] and FiLM

residual blocks [24] to enhance the visual reasoning; net-

works that consist of only residual blocks have limited re-

ceptive fields and are ill-suited to holistic visual reasoning.

The SE [11] blocks filter out unnecessary features imported
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Figure 2: Our GANs architecture. The line drawings are standardized first (same as in Section 3.1) before being inputted into the ShapeNet.

Lighting directions are repeatedly added into the FiLM residual block in each stage in RenderNet. s1 and s2 are the up-sampled intermediate

outputs from the second and the forth stage in RenderNet. In the training process, the line drawings and pure shadows are inverted from

black-on-white to white-on-black. More details are in supplementary material.

from the skipped encoder output.

We also extract two supervision intermediate outputs, s1
and s2, to facilitate backpropagation. Early stages of our

RenderNet generate continuous, soft shadow images. In the

final stage, the network transforms these images to binary

shadows. The quality of the soft shadows in the interme-

diate outputs, s1 and s2, is shown in Figure 2. We note

again that our output does not require any post processing

to generate binary shadows; the images in this paper result

directly from compositing the output our generator with the

input sketch.

3.2.2 Discriminator Network

The basic modules of our discriminator include down-

scaling residual blocks and residual blocks. Since many lo-

cal features of different shadows are similar to one another,

we deploy Self-attention layers to make our discriminator

sensitive to the distant features. In Figure 2, the last of the

discriminator consists of global average pooling, dropout

with 0.3 probabilities, and a fully connected layer with 256
filters. Because generating shadows is more difficult than

discriminating between fake and real shadows, a simple dis-

criminator is sufficient and simplifies training.

3.3. Loss Function

The adversarial loss of our Generative Adversarial Net-

work can be expressed as

LcGAN (G,D) = Ex,y,z [logD (C (x, y) , z)]

+Ex,z [log (1−D (C (x,G (x, z)) , z))] ,
(1)

where x is the sketch, y is the ground truth shadow, and z is

the lighting direction. C(·) is a function that composite the

ground truth shadow and the input sketch as a “real” image,

and composite the generated shadow and the input sketch as

a “fake” image.

The generator G aims to minimize the loss value, and the

discriminator D aims to maximize the loss value. For the

loss value of our generator network, we add MSE losses of

the two deep supervised outputs, which are the intermediate

outputs of the first and third stage in the decoder, to the loss

of the generator’s final output.

The three losses of the generator network can be ex-

pressed as

Loutput(G) = Ex,y,z

[

‖y −G(x, z)‖
2

2

]

+ ξ · TV (G(x, z)) ,

(2)

where Loutput is the loss between generated shadow and

the ground truth. Loutput consists of a total variation (TV)

regularizer and an MSE loss. The TV regularizer, weighted

by ξ, encourages smooth details around the boundaries of

shadows. We set ξ to 2 × 10−6, a 5× smaller value than

the total number of pixels in the input sketch. We will show

how the value of ξ affects the final output in the ablation

study. The deep supervised outputs are upsampled and their

losses are computed as by MSE loss from ground truth,

Lsi (G) = Ex,y,z

[

‖y −Gsi(x, z)‖
2

2

]

, i = 1, 2. (3)

Final objective is the sum of Loutput, Ls1 , Ls2 , and the

LcGAN ,

G∗ = argmin
G

max
D

λ1LcGAN (G,D)

+λ2Loutput (G) + λ3Ls1 (G) + λ4Ls2 (G) .
(4)

In our experiments, the four losses are weighted by λ1 =
0.4, λ2 = 0.5, λ3 = 0.2, and λ4 = 0.2.

4. Experiments and Evaluation

In this section, we evaluate the performance of our shad-

owing model. In particular, we discuss implementation de-

tails, provide comparisons with the baseline pix2pix [15]
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