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Abstract

Many successful optical flow estimation methods have

been proposed, but they become invalid when tested in

dark scenes because low-light scenarios are not considered

when they are designed and current optical flow bench-

mark datasets lack low-light samples. Even if we prepro-

cess to enhance the dark images, which achieves great vi-

sual perception, it still leads to poor optical flow results or

even worse ones, because information like motion consis-

tency may be broken while enhancing. We propose an end-

to-end data-driven method that avoids error accumulation

and learns optical flow directly from low-light noisy im-

ages. Specifically, we develop a method to synthesize large-

scale low-light optical flow datasets by simulating the noise

model on dark raw images. We also collect a new optical

flow dataset in raw format with a large range of exposure

to be used as a benchmark. The models trained on our syn-

thetic dataset can relatively maintain optical flow accuracy

as the image brightness descends and they outperform the

existing methods greatly on low-light images.

1. Introduction

Optical flow estimation can be used for motion detec-

tion, object segmentation, and so on. In real life, many of

the applications need to deal with low-light data. For ex-

ample, there are certain circumstances for a drone to fly at

night but it’s difficult to achieve the goal because optical

flow is hard to obtain in dark environments, which is use-

ful to avoid obstacles and control the speed through dense

surroundings. Current optical flow methods show poor per-

formance with low-light data. To address this problem, a

straightforward solution is to use auxiliary lighting systems
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Figure 1. A comparison between our method (e) and existing

methods (d,f,g), conducted on the well-exposed input (a), underex-

posed input (b) and the enhanced input (c) using SID [6] method.

Specifically, (a) and (b) are images of the same scene. (e,f,g) are

produced by PWC-Net [28] and (d) is produced by FlowNet2 [14]

which is 17 times larger than PWC-Net.

for drones, which would inevitably shorten the battery life.

As a result, an efficient optical flow method to process low-

light data is greatly demanded, which is the main goal of

our work.

Horn and Schunck [13] introduce an energy minimiza-

tion approach to compute optical flow and many excellent

methods adapt it and achieve better and better results. How-

ever, the optimizing problem of a complex energy function

is usually computationally expensive for real-time applica-

tions. In order to create a fast and accurate method, end-

to-end convolutional neural network frameworks are pro-
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posed, such as FlowNetS, FlowNetC [10], FlowNet2 [14],

and PWC-Net [28]. The best of them can achieve state-

of-the-art performance with both better quality and faster

speed than traditional methods. As a result, we choose

to develop our approach based on deep-learning methods.

However, they still show poor capabilities of dealing with

low-light data because low-light is a complex scenario due

to the low signal-to-noise ratio, and current optical flow

datasets, eg. KITTI [12], Sintel [4], FlyingChairs [10] and

Flyingthings3D [22], mainly consist of bright images. Low-

light is not taken into consideration when current optical

flow methods are designed.

A direct solution to get optical flow from dark images

is to enhance them before computing optical flow. Re-

searchers have proposed many techniques for denoising and

enhancing low-light images [9, 3, 6, 20]. However, the pur-

pose of these techniques is to get better visual quality of the

enhanced images, and we get limited improvement on op-

tical flow results or even worse ones. The main reason is

that many of the methods lose information while enhanc-

ing, such as brightness constancy which is fundamental for

optical flow estimation. As a result, we choose to make the

network learn optical flow directly from low-light images in

an end-to-end way that avoids information loss.

It is known that optical flow ground truth is hard to ob-

tain and neural network training needs a large scale of data,

so we decide to synthesize low-light effects on bright im-

ages and create low-light optical flow datasets. A variety of

learning-based denoising and low-light enhancing methods

synthesize their own dataset. Some of them [18, 19] use

the additive white noise (AWGN) model, which is always

criticized that they are not capable of simulating real noise

and recent denoising works [15, 2, 23] propose to simulate

camera processing features which leads to better noise mod-

els. We focus on simulating the noise on raw images, which

avoids complex characteristics due to the image processing

pipeline. Most existing noise analysis [2] is conducted on

bright noisy images [24] in which the noise is caused by

high ISO. Beside that, we mainly focus on the noise caused

by the low intensity of light, since the photons arriving at

the sensor are governed by Poisson distribution. And fi-

nally, we apply our noise model to create new optical flow

datasets for training. In order to test a model’s ability to

deal with various exposure inputs, we collect a new optical

flow dataset in low-light environments.

Contribution

1. We collect a new optical flow dataset — Various

Brightness Optical Flow (VBOF) dataset, consisting of

598 raw images of various brightness and 100 optical

flow references to evaluate the ability of an optical flow

model to deal with various exposure inputs.

2. We provide an analysis of the noise on raw images of

various brightness and reveal how the noise distribu-

tion changes as the exposure descends.

3. We apply our noise model to synthesize a low-light op-

tical flow dataset — FlyingChairs-DarkNoise (FCDN),

and the optical flow models trained on our dataset can

relatively maintain optical flow accuracy as the expo-

sure descends and they outperform the existing meth-

ods greatly on low-light images.

2. Related Work

Learning-based Optical Flow Estimation. Dosovitskiy

et al. [10] propose two CNN models for optical flow,

FlowNetS and FlowNetC, which shows the feasibility of

directly learning optical flow from images but their per-

formances are below the state of the art therein. Ilg et al.

[14] stack several FlowNetC and FlowNetS networks into a

large model, FlowNet2, which achieves state-of-the-art re-

sults and runs faster than traditional methods. However, be-

cause of the large size of its model, it always takes dozens of

days to train the whole model and it’s not feasible to be im-

plemented on mobile and embedded devices. Sun et al. [28]

design a compact but effective CNN model, PWC-Net, ac-

cording to well-established principles: pyramidal process-

ing, warping, and the use of a cost volume, which reduces

the size of CNN model and achieves better results on ex-

isting benchmarks. There are also works focusing on the

robustness of optical flow, such as Robust Flow [16] and

RainFlow [17]. They try to keep optical flow accuracy in

rainy scenes by introducing residue channels and veiling-

invariant features. However, none of these methods pays

attention to the performance of optical flow in the dark and

current optical flow datasets lack real low-light data.

Synthetic Low-light Dataset. FlyingChairs [10] is a syn-

thetic optical flow dataset containing about 22k image pairs

of chairs superimposed on random background images from

Flickr. [22] proposes the FlyingThings3D dataset which can

be seen as a three-dimensional version of the FlyingChairs.

We decide to adopt the FlyingChairs dataset and synthesize

low-light effect on it. Many approaches have been proposed

to synthesize low-light and noisy image datasets. [19, 18]

uses additive Gaussian noise and Gamma correction to sim-

ulate low-light effects. [15] simulates the degradation and

noise transformation performed by camera pipelines. Very

related to our work is [2, 23] in which they add read and

shot noise on the raw sensor data, because 8-bit jpeg im-

ages are easy to lose information when turned dark, and we

aim to derive optical flow directly from dark raw images.

In addition, we conduct our noise analysis on real raw im-

ages of various brightness, while existing noise analysis is

mostly on bright noisy images caused by various ISO.
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Low-light Imaging. A variety of techniques have been

developed for low-light imaging. Infrared information is

commonly used in low-light detection [21, 20], but infrared

sensors are not widely equipped, so our experiments focus

on RGB image enhancing. Non-local means (NLM) [3] and

BM3D [9] are denoising methods based on finding simi-

lar patches around every pixel, then average all the patches

and replace the pixel with the result. Recently, Chen et al.

[6, 5] propose a learning-based method to enhance dark im-

ages. They take raw data as input to a modified U-Net [25].

However, even if some of the methods could achieve good

perception, it’s unavoidable to lose information while post-

processing and information like brightness consistency is

critical to optical flow estimation.

3. Various Brightness Optical Flow Dataset

There are many benchmarking datasets about low-light

and optical flow, such as SID [6] and SIDD [1] that provide

low-light or noisy images with their corresponding bright

clean images, and KITTI [12] and Sintel [4] that provide

image pairs with their corresponding optical flow. How-

ever, to our knowledge, no existing dataset is able to bench-

mark the low-light performance of an optical flow model, so

we combine the two concepts above and collect a Various

Brightness Optical Flow (VBOF) dataset, which contains

598 raw images of various brightness with 100 correspond-

ing optical flow reference.

The images are taken by 3 cameras: Sony A6000 (102

images), Canon EOS M6 (297 images), Fujifilm XT2 (199

images), in which Canon and Sony have Bayer-pattern sen-

sors while Fujifilm has X-Trans sensor. We mount the cam-

era on a tripod, control it remotely to avoid vibration and

set various exposure time to get various exposure photos of

the same movement.

Various exposure image pairs share the same optical

flow. We took the raw images in about 10 different expo-

sures before and after we move the objects, then we use the

bright sharp image pair to calculate the optical flow with

[14] to serve as a reference for the dark noisy pairs. Some

samples are shown in Figure 2.

Besides the capability to evaluate the brightness robust-

ness of an optical flow model, VBOF also has other advan-

tages. First, we choose to present our data in 14-bit raw

format so that we can use various methods to demosaic and

enhance images with less information loss. Second, since

the VBOF dataset is collected using 3 cameras from differ-

ent manufacturers and raw format is unique to every camera

model, our dataset is able to evaluate the generalization abil-

ity for different cameras. Third, the VBOF dataset consists

of scenes both indoor and outdoor, with various lighting ef-

fects, so it comprehensively reflects scenes in real life.

A group of various- 
exposure images share 
 the same optical flow

Figure 2. Three samples in our Various Brightness Optical Flow

(VBOF) dataset: raw images of moving objects with a large range

of brightness with reference optical flow.

4. Method

4.1. End­to­end Optical Flow

We design an end-to-end pipeline to deal with low-light

optical flow (showed in Figure 3). The core of our solution

is to synthesize low-light raw effects on bright RGB images

in the original dataset for training optical flow models and

directly use raw as input when testing, instead of enhancing

the low-light input before estimation using models trained

on the original dataset. We get the inspiration from [27, 26],

in which they achieve great image segmentation results on

foggy input.

ConvNet

Enhanced input

Trained on 
original dataset

Raw input

ConvNet

Amplification  

ratioRaw input Optical flow output

Optical flow output

x

x

Trained on our 
synthetic dataset

Figure 3. Above: two-step pipeline using existing methods for op-

tical flow in the dark. Below: our pipeline for optical flow in the

dark.
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Figure 4. Distribution of Gauss-related parameter a and Poisson-related parameter b analyzed on Canon, Sony and Fujifilm camera of

various brightness in (a), (b) and (c) respectively, and on the See in the Dark dataset [6] and the bright Darmstadt Noise Dataset [24] in (d).

4.2. Noise Analysis

Unlike the noise in a processed image which may have

complex characteristics because of compression and other

nonlinear operations, the noise in raw sensor data is better

understood. It generally comes from two sources: photon

shot noise and thermal read noise. The number of photons

arriving the sensor varies from exposure to exposure and

from pixel to pixel, which is governed by the Poisson dis-

tribution:

P (kph, λbr) =
λ
kph

br ∗ e−λbr

kph!
(1)

where λbr is the expected number of occurrences which

rises as the image gets brighter, and kph is the number of

photons arriving. Various kph of different pixels on the sen-

sor would lead to unavoidable photon shot noise. And the

other main noise source is thermal noise in readout circuitry,

which doesn’t have a fixed pattern and the only solution to

this is cooling, so we simulate the thermal read noise using

Gaussian distribution.

Considering the two types of noise and that we want to

simulate the image noise of low-light data, we carefully col-

lect a Various Brightness Raw (VBR) dataset, setting the

brightness as the only variable. In order to reveal the chang-

ing noise pattern as the brightness descends, we fix the ex-

posure time and ISO to get invariant thermal read noise and

only change the size of the aperture to get images of dif-

ferent brightness. We also repeat the process on different

cameras to get general results. Finally, we get 1200 raw im-

ages of a large range of brightness both indoor and outdoor,

in the day and the night environments.

To analyze the noise model, we employ the noise estima-

tion method in [11] to estimate the Poisson-related parame-

ter a and the Gaussian-related parameter b. Specifically, we

assume that the noisy image z can be decomposed by the

following formula:

z(x) = y(x) + ηp(y(x)) + ηg(x) (2)

where x ∈ X ⊂ N2 is the pixel position, y is the original

noise-free image, and

(y(x)+ηp(y(x)))/a ∼ P(y(x)/a), ηg(x) ∼ N (0, b) (3)

in which P and N denote Poisson and Gaussian distribu-

tion respectively. We approximate these together as a single

heteroscedastic Gaussian:

z(x) ∼ N (µ = x, σ2 = ax+ b) (4)

The analysis result is showed in Figure 4, where we

can see that generally the noise level rises as the bright-

ness descends and that in low-intensity dark images, a and

b are more tightly coupled and Poisson-related parameter

becomes relatively larger than Gaussian-related parameter,

which means the noise is more signal-dependent. It’s also

obvious that the noise parameters analyzed on the bright

Darmstadt dataset [24] which is used in [2] are quite differ-

ent from the ones we analyze on our low-light dataset and

the See in the Dark dataset [6].

4.3. Synthesize New Optical Flow Dataset

In order to generate synthetic noisy raw images from

clean images, we first randomly invert the gamma correc-

tion of RGB channels respectively to simulate the uncor-

rected light effects and white balance on raw images, then

we randomly sample shot and read parameter a and b from

ranges that match what we observe in real data and add

noise by sampling from the distribution of Eq. 4. We choose

to perform our operations based on the FlyingChairs [10]

dataset after normalizing the 8-bit images in it to [0-1]. Note

that we don’t reduce the brightness in the 8-bit training data

to preserve information. To match the training input, when

testing we scaled the low-light 14-bit raw input to a normal

brightness since raw format can keep the weak signals.

Specifically, we sample the noise parameters from our

VBR dataset, VBOF dataset, and SID [6] dataset, so that the

parameters we sample from would cover various brightness

and ISO. Also, we deliberately arrange our synthetic dataset

to have an average distribution of noise levels. The final

training set is called FlyingChairs-DarkNoise (FCDN).
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Finally, we analyze the general variance of the real

raw data and our synthetic data using the method in [7]

showed in the table 1, in which the noise level is defined

by variance ∗ 255 of Normal distribution.

Datasets
Noise Level (variance ∗ 255)

0− 10 10− 20 20− 30 > 30

VBR-bright 266 34 0 0

VBR-dark 42 248 10 0

VBR-darker 0 46 242 12

VBR-darkest 0 32 202 66

FlyingChairs 45744 0 0 0

FCDN 17021 14214 14166 343

Table 1. Statistics of images numbers of various levels of noise

on different datasets analyzed by the method in [7]. VBR is

the dataset we collect of Various Brightness Raw images. Fly-

ingChairs is from [10] and FlyingChairs-DarkNoise (FCDN) is

the one we synthesize.

5. Experiments

5.1. Setup

To evaluate our method we use our Various Brightness

Optical Flow dataset since it’s the only dataset that is able

to benchmark brightness robustness for optical flow mod-

els so far. The performance is evaluated by End-Point Error

(EPE), which is the Euclidean norm of the difference be-

tween the estimated optical flow vector (Vest) and a refer-

ence optical flow vector (Vrf ). Vest and Vrf have the shape

of (H,W, 2) where H and W represent the size of the in-

put image, and 2 represents a 2-dimension vector for each

pixel, with its direction and length indicating the direction

and speed of the movement in that pixel.

Network Choice. We choose to use FlowNetC, FlowNetS

[10] and PWC-Net [28] to evaluate our method. The rea-

son is that they can represent the mainstream two kinds

of architectures of optical flow networks (U-Net and spa-

tial pyramid) and many other networks are based on them,

such as FlowNet2 [14] which stacks several FlowNetC and

FlowNetS networks together. And PWC-Net [28] is one of

the state-of-the-art optical flow networks. The three net-

works are all compact but effective, and they can all be

trained in a reasonable amount of time.

Training Set Synthesis. We want to use raw images as

input to avoid information loss when testing, so we need to

generate raw features on RGB images in the original train-

ing dataset, which is the core of our solution. Brooks et

al. [2] propose a method to “unprocess” RGB images to

RAW for denoising purpose, which includes adding noise,

(a) Frame 1 (b) Frame 2 (c) Unprocess (d) Ours

Figure 5. A comparison of final results using different training set

synthesizing method: “unprocess” [2] and ours. (a,b) are inputs

scaled from dark raw images. In our result, the object is painted

red and purple meaning moving to the right and upper right, which

is the correct output.

inverting tone mapping, gamma decompression, inverting

white balance and digital gain, etc. We try to synthesize

a “raw” FlyingChairs dataset using their method but after

training and evaluating, we find the final optical flow result

turns out to be inaccurate compared to our solution (See

Figure 5). We think the main reason is that we analyze the

noise and synthesize it based on multiple datasets covering

a large range of exposure and ISO, while their analysis is

on the DND dataset [24] which is relatively limited (See (d)

in Figure 4) and other operations like compression tend to

destroy signal in 8-bit images.

Bright Dark SID Enhance

Ours

Figure 6. Different inputs of the same movement and optical flow.

Our result produced directly from dark input is better than the one

produced from the SID enhanced image [6], and even better than

the one produced from the original bright image using PWC-Net

author-trained model [28].
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End-Point Error of Various Exposure Input

Evaluating Dataset Model Training Set
(0: brightest, 6: darkest)

Exp-0 Exp-1 Exp-2 Exp-3 Exp-4 Exp-5 Exp-6

VBOF

FlowNetC
FlyingChairs 5.78 6.21 6.98 7.98 9.48 12.21 14.73

FCDN 5.76 5.78 5.78 5.86 5.98 6.11 6.55

FlowNetS
FlyingChairs 11.15 11.34 11.60 11.57 10.77 10.09 9.76

FCDN 5.46 5.53 5.51 5.53 5.61 5.67 6.26

PWC-Net
FlyingChairs 7.13 7.04 7.08 7.52 7.58 9.21 10.88

FCDN 5.31 5.32 5.29 5.34 5.37 5.63 6.09

VBOF + NLM

FlowNetC
FlyingChairs 5.34 5.39 5.78 7.02 8.96 11.36 13.69

FCDN 5.89 5.95 5.92 5.92 6.04 6.12 6.55

FlowNetS
FlyingChairs 11.38 11.81 12.69 11.64 10.44 9.73 9.55

FCDN 5.80 5.93 5.98 5.83 5.72 5.64 6.25

PWC-Net
FlyingChairs 6.14 6.15 7.12 7.12 7.31 8.59 10.19

FCDN 5.50 5.57 5.51 5.50 5.48 5.57 6.04

VBOF

(only Sony part)

+

SID

(Sony model)

FlowNetC
FlyingChairs 5.61 5.75 5.75 5.97 6.40 6.40 6.81

FCDN 4.74 4.77 4.84 4.87 4.93 5.28 5.13

FlowNetS
FlyingChairs 9.28 10.05 10.31 10.65 11.27 12.43 11.83

FCDN 4.47 4.59 4.76 4.78 5.24 6.13 6.22

PWC-Net
FlyingChairs 4.27 4.41 4.58 4.99 5.35 5.58 5.48

FCDN 4.31 4.27 4.25 4.37 4.30 4.41 4.60

Table 2. Performance of our solution compared to existing solutions. The evaluation is done on our Various Brightness Optical Flow

(VBOF) dataset and the processed VBOF dataset using Non-local Means [3] and Learning to See in the Dark (SID) [6]. Because the SID

method is camera-sensitive, relevant experiments are only done on the Sony part of our VBOF dataset. We choose FlowNetC and FlowNetS

[10] and PWC-Net [28] as our optical flow model and they are trained on the FlyingChairs dataset [10] and our FlyingChairs-DarkNoise

(FCDN) dataset. The VBOF dataset is separated by multiple brightness levels, we select 7 of them listed as ‘Exp-0’ to ‘Exp-6’. From

the table we can see that models trained on our dataset always get a performance improvement almost on every brightness level and the

accuracy is much more stable while the brightness is changing.

5.2. “Bad” Enhancement

The direct solution to get optical flow from dark images

is to apply an image-enhancing method before optical flow

estimation. Scaling is the simplest way to enhance a dark

image and it is a reversible process with little information

loss. However, because the scaled raw images suffer from

serious noise and color aberration, it unsurprisingly leads to

poor optical flow results using existing methods. We then

try advanced methods — a traditional enhancing method

and a learning-based enhancing method.

We present the result of Non-local Means (NLM) [3] as a

representative of traditional enhancing methods. It searches

similar patches and averages them together to remove the

noise. From Figure 7 input block, we can see NLM doesn’t

correct the color aberration but it produces a relatively sta-

ble denoising result. From table 2, we can see that followed

by an optical flow model trained on existing FlyingChairs

dataset [10], NLM doesn’t solve the problem that optical

flow models’ performance gets worse on low-light images,

which is much worse than our result produced from VBOF

dataset without NLM processing.

We present the result of Learning to See in the Dark

(SID) [6] as a representative of learning-based enhancing

methods. Chen et al. [6] propose to use U-Net [25] to en-

hance dark raw images, and they provide their model trained

on Sony raw images, so we also use the Sony part of our

VBOF dataset to test the method, and we get visually great

images using the provided model. (See Figure 6,7) SID

does a good job on white balance and the result images are

noiseless, but if zooming in to take a closer look, one will

find the signal in the image is unstable especially for the

extremely dark images. Followed by an optical flow model

trained on the existing FlyingChairs dataset [10], SID also

doesn’t solve the problem of optical flow in the dark. Some-

times SID may lead to worse optical flow results showed in

Figure 7.
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Reference Input (for every block below)

Second Frame 

NLM / SID (Very Dark) 

First Frame Very Dark 

NLM / SID (Dark) 

Dark 

Existing Method (FlyingChairs) Our Method (FCDN)

FlowNetS

FlowNetC

PWC-Net

Dark

NLM / SID 

Very Dark 

NLM / SID 

NLM / SID 

Dark

Very Dark 

NLM / SID 

Dark 

NLM / SID 

Very Dark 

Dark

NLM / SID 

NLM / SID 

Dark

Very Dark 

NLM / SID 

NLM / SID 

Dark

NLM / SID 

Very Dark 

NLM / SID 

NLM / SID 

Very Dark 

Optical Flow

Figure 7. A detailed evaluation of existing methods and our method. The upper right block serves as the input for all the blocks below,

where we evaluate the performance of deriving optical flow from dark images and the enhanced images [3, 6] with various optical flow

models [10, 28]. The upper left block serves as a good reference with bright input images and optical flow.
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5.3. Performance Details

From Table 2 and Figure 7, we can see that for every

optical flow model, the ones trained on our FCDN dataset

always show better stability when the brightness descends

and they have better accuracy dealing with extreme low-

light image inputs.

(a) Sony outdoor ISO 1000

(b) Canon indoor ISO 3200

(c) Fujifilm outdoor ISO 2500

Figure 8. Generalization performance of our solution (right) com-

pared to existing methods (middle) evaluated with PWC-Net[28]

on images in our VBOF dataset (left) of various cameras, ISO,

indoor and outdoor.

There are some other advantages of our solution that are

worth pointing out. First, given the same optical flow net-

work and the same light condition, our method’s perfor-

mance on the underexposed input is even better than the

existing method’s performance on well-exposed input (See

Figure 6, Table 2). The reason is that a well-exposed im-

age captured with long exposure or high ISO has different

noise distribution from that of a bright one captured in a

well-illuminated condition, and the network trained on the

latter might not generalize well to the former bright image.

Through realistic noise simulation, the network trained on

our synthesized data is able to deal with various noise at

different brightness levels. Second, from Figure 7,8, we

can see that our method can generalize on different camera

models in various environments and it’s effective for multi-

ple optical flow models.

6. Discussion

Although PWC-Net [28] achieves a higher accuracy on

many of optical flow benchmark datasets using a 17 times

smaller model than the FlowNet2 model [14], large mod-

els like FlowNet2 still performs better on complex real data

like the well-exposed images in our VBOF dataset. From

this point of view and our statistics, besides achieving a

higher performance on low-light images, training a compact

model like PWC-Net on our FCDN dataset can also help

such small optical flow models learn to deal with complex

situations in real images of any exposure more accurately.

There are also works published achieving relevant goals

in the semantic image segmentation area by adapting mod-

els from daytime to nighttime [8] and from clear weather

conditions to foggy conditions [26], which bears resem-

blance to works from the broad field of transfer learning.

They mix synthetic data and real data, then gradually adapt

a model from clean easy training data to corrupted hard

training data, such as from clear weather to light synthetic

fog, and finally to dense real fog in multiple steps. We have

already proved that directly training optical flow models

on our synthetic low-light data is effective, and we believe

that training models with our data in a manner of gradually

model adaption may also lead to promising results, which

can be tried in future work.

7. Conclusion

In this paper, we have presented a data-driven solution to

improve optical flow accuracy especially in low-light en-

vironments. By synthesizing training data based on the

noise model we analyzed on raw images collected in var-

ious brightness conditions, we succeed in training optical

flow models that outperform the state-of-the-art on the real

low-light optical flow dataset — Various Brightness Opti-

cal Flow (VBOF) dataset that we collect. VBOF consists of

598 raw images of various brightness with corresponding

reference optical flow, aiming to benchmark the brightness

robustness of optical flow models. We believe the proposed

method, the noise analysis, and the VBOF dataset will be

very useful for optical flow tasks in real scenes.
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