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Abstract

In this paper, we focus on semantically multi-modal im-

age synthesis (SMIS) task, namely, generating multi-modal

images at the semantic level. Previous work seeks to use

multiple class-specific generators, constraining its usage

in datasets with a small number of classes. We instead

propose a novel Group Decreasing Network (GroupDNet)

that leverages group convolutions in the generator and pro-

gressively decreases the group numbers of the convolutions

in the decoder. Consequently, GroupDNet is armed with

much more controllability on translating semantic labels

to natural images and has plausible high-quality yields for

datasets with many classes. Experiments on several chal-

lenging datasets demonstrate the superiority of GroupDNet

on performing the SMIS task. We also show that GroupDNet

is capable of performing a wide range of interesting syn-

thesis applications. Codes and models are available at:

https://github.com/Seanseattle/SMIS.

1. Introduction

Semantic image synthesis, namely translating semantic

labels to natural images, has many real-world applications

and draws much attention from the community. It is in-

nately a one-to-many mapping problem. Countless possible

natural images correspond to one single semantic label. Pre-

vious works utilized different strategies for the task: adopt-

ing the idea of variational auto-encoder [36, 56, 2, 11], in-

troducing noise while training [19], building multiple sub-

networks [10] and including instance-level feature embed-

dings [41], etc. While these methods made exceptional

achievements in improving image quality and extending

more applications, we take a step further to particularly fo-

cus on a specific multi-modal image synthesis task that adds

more flexibility to control the generated results.

Just imagine a content creation scenario from a human

parsing map. With the help of semantics-to-image transla-

tion models, the parsing map can be converted to a real per-
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Figure 1: Demonstration of the semantically multi-modal image synthesis

(SMIS) task. Text of each column above the images indicates the semantic

area that is changing across the whole column. The first row represents the

input labels and the rest rows are generated images by our method.

son image. It looks good in general, but the upper clothes do

not suit your taste. Then comes the problem—either these

models do not support multi-modal synthesis, or when these

models change the upper clothes, other parts vary accord-

ingly. Neither of these fulfills your intention. To conclude,

this user controllable content creation scenario can be in-

terpreted as performing a task that produces multi-modal

results at the semantic level with other semantic parts un-

touched. We summarize this task as: Semantically Multi-

modal Image Synthesis (SMIS). As exemplified in Fig. 1,

for each semantics, we have its specific controller. By ad-

justing the controller of a specific class, only the corre-

sponding areas are changed accordingly.

An intuitive solution for the task is to build different gen-

erative networks for different semantics and then produce

the final image by fusing the outputs of different networks.

It is quite similar to the overall scheme of [10], which fo-

cused on portrait editing. However, this type of methods

soon face degradation in performance, a linear increase of

training time and computational resource consumption un-

der a growing number of classes.

To make the network more elegant, we unify the gen-
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eration process in only one model by creatively replacing

all regular convolutions in the generator with group con-

volutions. Our strategy is mathematically and function-

ally equivalent to [10] when the group numbers of the con-

volutions are equal to that of the classes. Another strat-

egy we adopt, however, set our paths differently—we de-

crease the number of groups in the decoder convolutions in

the forwarding progress. We observe that different classes

have internal correlations among each other, e.g., the color

of the grass and the tree leaves should be highly similar.

In this case, progressively merging the groups gives the

model enough capacity to build inter-correlations among

different classes, and consequently improves the overall im-

age quality. Besides, this strategy also considerably miti-

gates the computation consumption problem when the class

number of the dataset is substantial (e.g., ADE20K [53]).

We call the generator equipped with these two strategies

as Group Decreasing Network (GroupDNet). To evalu-

ate GroupDNet’s performance on the SMIS task, we pro-

pose two new metrics called mean Class-Specific Diver-

sity (mCSD) and mean Other-Class Diversity (mOCD). The

mCSD metric tends to hold high value and the mOCD tends

to be low when some semantic parts vary drastically but

other parts stay unchanged.

We conduct experiments on several challenging datasets:

DeepFashion [30], Cityscapes [5], and ADE20K [53]. The

results show that our GroupDNet introduces more controlla-

bility over the generation process, and thus produces seman-

tically multi-modal images. Moreover, GroupDNet main-

tains to be competitive with previous state-of-the-art meth-

ods in terms of image quality, exhibiting the superiority

of GroupDNet. Furthermore, GroupDNet introduces much

controllability over the generation process and has a vari-

ety of interesting applications such as appearance mixture,

semantic manipulation, and style morphing.

2. Related work

Generative models. Generative Adversarial Networks

(GANs) [9], comprised of a generator and a discriminator,

have the amazing ability to generate sharp images even for

very challenging datasets. [9, 21, 3, 22]. Variational auto-

encoder [24] contains an encoder and a decoder, and re-

quires the latent code yield by the encoder to conform to

Gaussian distribution. Its results usually exhibit large di-

versity. Some methods [2] combine VAE and GAN in their

models, producing realistic while diverse images.

Conditional image synthesis. Conditional Generative Ad-

versarial Networks [34] inspire a wide range of conditional

image synthesis applications, such as image-to-image trans-

lation [19, 17, 41, 55, 27, 29, 15], super resolution [26, 20],

domain adaption [14, 52], single model image synthe-

sis [54, 37, 33, 38], style transfer [16, 7, 20], person

image generation [31, 57, 11] and image synthesis from

text [48, 49] etc. We focus on transforming conditional se-

mantic labels to natural images while adding more diversity

and controllability to this task at the semantic level.

Multi-modal label-to-image synthesis. There has been a

number of works [1, 28, 40] in multi-modal label-to-image

synthesis task. Chen et. al. [4] avoided using GAN and

leveraged cascaded refinement network to generate high-

resolution images. Wang et. al. [41] added additional

instance-level feature channels to the output of the encoder

that allows object-level control on the generated results.

Wang et. al. [40] used another source of images as stylish

examples to guide the generation process. Park et. al. [36]

incorporated VAE into their network that enables the gen-

erator to yield multi-modal images. Li et. al. [28] adopted

an implicit maximum likelihood estimation framework to

alleviate the mode collapse issue of GAN, thus encouraged

diverse outputs. Bansal et. al. [1] used classic tools to match

the shape, context and parts from a gallery with the seman-

tic label input in exponential ways, producing diverse re-

sults. Different from these works, we focus on semantically

multi-modal image synthesis, which requires fine-grained

controllability at the semantic level instead of the global

level. Gu et. al. [10] built several auto-encoders for each

face component to extract different component representa-

tions which are then merged into the next foreground gen-

erator in the task of portrait editing. Our work is highly

related to this work since both methods devise to cope with

the SMIS task by treating different classes with different

parameters. However, our unique design of progressively

decreasing the group numbers in the decoder enables our

network to deal with datasets of many classes where their

method is possibly incapable of.

Group convolution. Previous works [25, 44, 51, 32, 43]

indicate that group convolutions are advantageous for re-

ducing the computational complexity and model parame-

ters, thus they have been widely used in light-weight net-

works. Ma et. al. [32] mentioned that excessive use of

group convolutions results in large Memory Access Cost

(MAC). Although it is ideal to use group convolutions with

small groups or even no group convolutions in the network,

we show in our experiments that completely avoiding group

convolutions in the decoder is problematic for the perfor-

mance on the SMIS task. Moreover, our decreasing group

numbers strategy considerately alleviates the huge MAC

problem so that it is applicable to real-world applications.

3. Semantically multi-modal image synthesis

3.1. Problem definition.

Let M denote a semantic segmentation mask. Suppose

there are C semantic classes in the dataset. H and W rep-

resent the image height and width, respectively. As a very
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straightforward manner of conducting label-to-image trans-

lation, the generator G requires M as conditional input to

generate images. However, in order to support multi-modal

generation, we need another input source to control gen-

eration diversity. Normally, we employ an encoder to ex-

tract a latent code Z as the controller inspired by VAE [24].

Upon receiving these two inputs, the image output O can

be yield through O = G(Z,M). However, in the seman-

tically multi-modal image synthesis (SMIS) task, we aim

to produce semantically diverse images by perturbing the

class-specific latent code which independently controls the

diversity of its corresponding class.

3.2. Challenge

For the SMIS task, the key is to divide the latent code

into a series of class-specific latent codes each of which

controls only a specific semantic class generation. The tra-

ditional convolutional encoder is not an optimal choice be-

cause the feature representations of all classes are internally

entangled inside the latent code. Even if we have class-

specific latent code, it is still problematic on how to utilize

the code. As we will illustrate in the experiment part, sim-

ply replacing the original latent code in SPADE [36] with

class-specific codes has limited capability to deal with the

SMIS task. This phenomenon inspires us that we need to

make some architecture modifications in both the encoder

and decoder to accomplish the task more effectively.

3.3. GroupDNet

Based on the above analysis, we now give more details

about our solution for this task—Group Decreasing Net-

work (GroupDNet). The main architecture of GroupDNet

takes design inspirations from SPADE [36], considering its

superior performance in the label-to-image generation task.

A major modification of GroupDNet is the replacement of

typical convolutions to group convolutions [25] to achieve

class-specific controllability. In the following, we will first

present a brief overview of the architecture of our network

and then describe the modifications that we made in differ-

ent components of the network.

Overview. As can be seen from Fig. 2, GroupDNet con-

tains one encoder and one decoder. Inspired by the idea

of VAE [24] and SPADE [36], the encoder E produces a

latent code Z that is supposed to follow a Gaussian distri-

bution N (0, 1) during training. While testing, the encoder

E is discarded. A randomly sampled code from the Gaus-

sian distribution substitutes for Z. To fulfill this, we use the

re-parameterization trick [24] to enable a differentiable loss

function during training. Specifically, the encoder predicts

a mean vector and a variance vector through two fully con-

nected layers to represent the encoded distribution. The gap

between the encoded distribution and Gaussian distribution

can be minimized by imposing a KL-divergence loss:

LKL = DKL(E(I)||N (0, 1)), (1)

where DKL represents the KL divergence.

Encoder. Let Mc denote the binary mask for class c and

X ∈ R
H×W be the input image. By splitting X to different

images of different semantic classes, we have

Xc = Mc ·X. (2)

This operation reduces the dependence on E to process fea-

ture disentanglement, saving more capacity to precisely en-

code the feature. The input to the encoder is the concate-

nation of these images: S = cat
c
Xc. All convolutions in-

side E have the same number of groups, that is, the total

number of classes C. From both the input and the architec-

ture side, we decouple different classes to be independent

on each other. As a result, the encoded latent code Z is com-

prised of the class-specific latent code Zc (a discrete part of

Z) of all classes. And Zc serves as the controller of class c

in the forthcoming decoding phase. Different from the gen-

eral scheme of producing two vectors as the mean and vari-

ance prediction of the Gaussian distribution, our encoder

produces a mean map and a variance map through convo-

lutional layers to massively retain structural information in

the latent code Z.

Decoder. Upon receiving the latent code Z, the decoder

transforms it to natural images with the guidance of seman-

tic labels. The question is how to leverage the semantic

labels to guide the decoding phase properly. Several ways

can serve this purpose, such as concatenating the semantic

labels to the input or conditioning on every stage of the de-

coder. The former one is not suitable for our case because

the decoder input has a very limited spatial size that will

acutely lose many structural information of the semantic la-

bels. We opt to the latter one and choose a typical advanced

model—SPADE generator [36] as the backbone of our net-

work. As mentioned in [36], SPADE is a more general form

of some conditional normalization layers [6, 16], and shows

superior ability to produce pixel-wise guidance in semantic

image synthesis. Following the general idea of using all

group convolutions in the generator, we replace the convo-

lutional layers in SPADE module with group convolutions

and call this new conditional module as Conditional Group

Normalization (CG-Norm), as depicted in Fig 2. We then

compose a network block called Conditional Group Block

(CG-Block) by dynamically merging CG-Norm and group

convolutions. The architecture of CG-Block is also demon-

strated in Fig 2.

Likewise, let Fi ∈ R
H

i×W
i

denote the feature maps of

the i-th layer of the decoder network and Gi represent the

number of groups of the i-th layer. Moreover, N , Di, Hi
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Figure 2: Architecture of our generator (GroupDNet). “GConv” means group convolution and “Sync BN” represents synchronized batch normalization. Gi

is the group number of i-th layer. Note normally Gi ≥ Gi+1 for i ≥ 1 for GroupDNet.

and W i are the batch size, number of channels, height and

width of the feature map, respectively. As demonstrated in

Fig. 2, the group convolutions inside CG-Norm will trans-

form the semantic label input to pixel-wise modulation pa-

rameters γ ∈ R
D

i×H
i×W

i

and β ∈ R
D

i×H
i×W

i

. The

feature input Fi will first go through a batch normalization

layer [18] that normalizes Fi:

BN(Fi) = γBN

(

F
i − µ(Fi)

σ(Fi)

)

+ βBN, (3)

where here γBN, βBN ∈ R
D are affine parameters learned

from data. µd and σd are computed across batch size and

spatial dimensions for each feature channel:

µd(F
i) =

1

NHiW i

N
∑

n=1

H
i

∑

h=1

W
i

∑

w=1

F
i

ndhw

σd(F
i) =

√

√

√

√

1

NHiW i

N
∑

n=1

Hi

∑

h=1

W i

∑

w=1

(Fi

ndhw
)2 − (µd(Fi))2

(4)

Afterwards, the output BN(Fi) interacts with previously

predicted pixel-wise γ and β, yielding a new feature map

F
o with semantic information inserted. Taking Eq. 3 into

account,

F
o = γ · BN(Fi) + β

= γ · γBN

(

F
i − µ(Fi)

σ(Fi)

)

+ (γ · βBN + β).
(5)

When i becomes larger, the group number is finally re-

duced to 1. After a regular convolution, the feature is

mapped to a three-channel RGB image O.

3.4. Other solutions

Aside from GroupDNet, a simple solution to perform the

SMIS task is to build a set of encoders and decoders, each of

which focus on a specific semantic class, as demonstrated

in Fig. 3 (a). The underlying idea is to treat each class

independently and then fuse the results of different sub-

networks. For simplicity, we call such networks as Multiple

Networks (MulNet). Another alternative with a similar idea

is to use group convolution [25] throughout the network. As

depicted in Fig. 3 (b), replacing all the convolutions in the

encoder and the decoder with group convolutions [25] and

setting the group number equal to the class number present

the Group Network (GroupNet). It is theoretically equiv-

alent to MulNet if the channel number in every group is

equal to those of the corresponding layer in a single net-

work of MulNet. Fig. 3 (c) illustrates our GroupDNet. The

primary difference between GroupDNet and GroupNet is

the monotonically decreasing number of groups in the de-

coder. Although this modification seems to be simple, it

brings several noticeable benefits, mainly in the following

three aspects:

Class balance. It is worth noticing that different classes

have a different number of instances [30, 5, 53] and require

different network capacity to model these classes. It is dif-

ficult for MulNet and GroupNet to find a suitable network

design to balance all the classes. More importantly, not all

the classes appear in one image. In this case, MulNet and

GroupNet inevitably waste a lot of computational resources

because they have to activate all the sub-networks or sub-

groups for all the classes during training or testing. How-

ever, in GroupDNet, unbalanced classes share parameters

with their neighbor classes, hugely alleviating the class im-

balance problem.

Class correlation. In natural worlds, a semantic class usu-

ally has relationships with other classes, e.g., the color of

grass and the color of tree leaves are similar, and buildings

influence the sunshine on the roads in their vicinity, etc. To

generate plausible results, both of MulNet and GroupNet

have a fusion module (several regular convolutions in our
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(a) MulNet (b) GroupNet (c) GroupDNet

Encoder Decoder

Figure 3: An illustration of MulNet (a), GroupNet (b) and GroupDNet (c). Note the last layers of MulNet and GroupNet are fusing modules that are

comprised of several normal convolutional layers to fuse results of different classes.

case) at the end of the decoder to merge features of different

classes into one image output. In general, the fusion mod-

ule roughly considers the correlations of different classes.

However, we argue it is not sufficient because the correla-

tion of different classes is too complex to be fully explored

by using such a simple component with restricted receptive

fields. An alternative is to use some network modules like

self-attention block to capture long-range dependencies of

the image, but its prohibitive computation hinders its usage

in such scenarios [47]. GroupDNet, however, carves these

relationships throughout the decoder; hence, it exploits the

correlations more accurately and thoroughly. As a result,

the generated images of GroupDNet are better and more re-

alistic than those generated by the other two methods.

GPU memory. In order to guarantee that every single net-

work of MulNet, or the grouped parameters for each class

in GroupNet have sufficient capacity, the channel numbers

in total will increase significantly with the increase of class

number. Up to a limit, the maximum GPU memory of a

graphics card would no longer be able to hold even one

sample. As we roughly estimate on the ADE20K dataset

[53], one Tesla V100 graphics card cannot hold the model

with sufficient capacity even when batch size is set to 1.

However, the problem is less severe in GroupDNet because

different classes share parameters, thus it is unnecessary to

set so many channels for each class.

3.5. Loss function

We adopt the same loss function as SPADE [36]:

Lfull = argmin
G

max
D

LGAN + λ1LFM + λ2LP + λ3LKL.

(6)

The LGAN is the hinge version of GAN loss, and LFM is

the feature matching loss between the real and synthesized

images. Specifically, we use a multiple-layer discrimina-

tor to extract features from real and synthesized images.

Then, we calculate the L1 distance between these paired

features. Likewise, LP is the perceptual loss proposed for

style transfer [20]. A pre-trained VGG network [39] is used

to get paired intermediate feature maps, and then we calcu-

late the L1 distance between these paired maps. LKL is the

KL-divergence loss term as Eq. 1. We set λ1 = 10, λ2 =
10, λ3 = 0.05, the same as SPADE [36].

4. Experiments

4.1. Implementation details

We apply Spectral Normalization [35] to all the lay-

ers in both the generator and discriminator. The learning

rates for the generator and discriminator are set to 0.0001

and 0.0004, respectively, following the two time-scale up-

date rule [12]. We use the Adam optimizer [23] and set

β1 = 0, β2 = 0.9. All the experiments are conducted on at

least 4 P40 GPUs. Besides, we use synchronized batch nor-

malization to synchronize the mean and variance statistics

across multiple GPUs. More details, such as the detailed

network design and more hyper-parameters, are given in the

supplementary materials.

4.2. Datasets

We conduct experiments on three very challenging

datasets, including DeepFashion [30], Cityscapes [5], and

ADE20K [53]. We choose DeepFashion because this

dataset shows lots of diversities among all semantic classes,

which is naturally suitable for assessing the model’s ability

to conduct multi-modal synthesis. Consequently, we com-

pare with several baseline models on this dataset to evaluate

the superior power of our model on the SMIS task. The size

of the images in Cityscapes are quite large, so it is proper

to test the model’s ability to produce high-resolution im-

ages on this dataset. ADE20K is extremely challenging for

its massive number of classes, and we find it hard to train

MulNet and GroupNet on ADE20K with our limited GPUs.

More details can be found in the supplementary materials.

4.3. Metrics

Mean SMIS Diversity. In order to evaluate the perfor-

mance of a model designed for the SMIS task, we intro-
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duce two new metrics named: mean Class-Specific Diver-

sity (mCSD) and mean Other-Classes Diversity (mOCD).

We design the new metrics based on the LPIPS metric [50],

which is used to assess the generation diversity of a model

by computing the weighted L2 distance between deep fea-

tures of image pairs. For the same semantic label input, we

generate n images for each semantic class by only modulat-

ing the latent code Zc for the semantic class c. Therefore,

we have a set of images S = {I11 , ..., I
n
1 , ..., I

1
C , ..., I

n

C }. Fi-

nally, mCSD and mOCD are calculated by

mCSD =
1

C

C
∑

c=1

Lc, mOCD =
1

C

C
∑

c=1

L 6=c. (7)

where Lc is the average LPIPS distance [50] of the seman-

tic area of class c between sampled m pairs and L 6=c rep-

resents the average LPIPS distance [50] in the areas of all

other classes between the same pairs. In our settings, we set

n = 100,m = 19 following [56, 17]. ImageNet pre-trained

AlexNet [25] is served as the deep feature extractor. Higher

performance on the SMIS task demands a high diversity of

the specific semantic areas (high mCSD) as well as a low

diversity of all other areas (low mOCD). Besides, we also

report the overall LPIPS distance by producing globally di-

verse results for the same semantic labels.

Human Evaluation Metrics. We further introduce human

evaluation to evaluate whether the generative model per-

forms well in the SMIS task. We recruit 20 volunteers

that have research experience in generation tasks. We show

them an input mask along with two images generated from

only one model. The two images are multi-modal results

which only vary in the areas of one random semantic class.

The volunteers judge whether the given two images only

vary in one semantic class. The percentage of pairs that

are judged to be semantically different in only one semantic

class represents the human evaluation of a model’s perfor-

mance on the SMIS task. We abbreviate this metric as SHE

(SMIS Human Evaluation). For each phase, the volunteers

are given 50 questions of unlimited answering time.

Fréchet Inception Distance. We use Fréchet Inception

Distance (FID) [13] to calculate the distance between the

distributions of synthesized results and the distribution of

real images. Lower FID generally hints better fidelity of the

generated images.

Segmentation Performance. It is reasonable that the pre-

dicted labels of the generated images are highly similar to

those of the original images if they look realistic. There-

fore, we adopt the evaluation protocol from previous work

[4, 41, 36] to measure the segmentation accuracy of the gen-

erated images. We report results on the mean Intersection-

over-Union (mIoU) and pixel accuracy (Acc) metrics with-

out considering the classes that can be ignored. Images

Change upper clothes

Change pants

Label Ground truth MulNet GroupNet VSPADEGroupEnc GroupDec OursBicycleGAN DSCGAN

Figure 4: Qualitative comparison between GroupDNet and other baseline

models. The first two rows represent the results of different models by

changing their upper-clothes latent code while the last two rows represent

their results of changing the pants latent code. Note, for those models

which have no class-specific controller such as VSPADE, we alter their

overall latent codes to generate different images.

are evaluated using well-trained segmentation models Uper-

Net101 [42] for ADE20K, DRN-D-105 [46] for Cityscapes,

off-the-shelf human parser CIHP [8] for DeepFashion.

4.4. Results

Besides the following sections, we have more justifica-

tion of our model design in the supplementary materials for

the reference of interested readers.

4.4.1 Comparison on SMIS

A basic requirement for models that potentially could be

modified for the SMIS task is that they should possess the

ability to conduct multi-modal image synthesis. We com-

pare with several methods that support multi-modal image

synthesis to demonstrate the superiority of GroupDNet:

- Variational SPADE [36] (VSPADE) has an image en-

coder processing a real image to a mean and a variance

vector where a KL divergence loss is applied to support

multi-modal image synthesis. Detailed description can

be found in their paper;

- BicycleGAN [56] maps the given image input into a

latent code, which is later combined with a label input

to produce outputs. Since the latent code is constrained

by a KL divergence loss, it could be substituted by a

random sample from the Gaussian distribution;

- DSCGAN [45] is complementary to BicycleGAN by

introducing an explicit regularization upon the genera-

tor, trying to alleviate the mode collapse issue of pre-

vious models.

Aside from MulNet and GroupNet described in Sec. 3.4,

we also conduct two further experiments by replacing the

convolutions in the encoder/decoder of the VSPADE model

to group convolutions with group numbers set equal to the

dataset class number, denoted as GroupEnc/GroupDec, re-

spectively. Note MulNet, GroupNet, GroupEnc, GroupDec
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and VSPADE are trained with the same kind of multi-scale

discriminator [41] and training settings as GroupDNet. To

fairly compare the performances, we balance the number of

parameters of these models to mitigate the suspicion that the

performance improvements are brought by using more pa-

rameters. For BicycleGAN and DSCGAN, we adopt their

original training and testing protocols.

Quantitative and qualitative results are given in Tab. 1

and Fig. 4, respectively. The quantitative results demon-

strate the overall superiority of GroupDNet. Generally,

GroupDNet exhibits the best image quality (lowest FID)

and overall diversity (highest LPIPS). In terms of the perfor-

mance on the SMIS task, MulNet and GroupNet are slightly

better than GroupDNet, given evidence that they have either

larger mCSD or lower mOCD. However, the image quality

of MulNet and GroupNet is not satisfactory (high FID) and

MulNet shows much lower FPS than GroupDNet. In terms

of the SHE metric, GroupDNet is also very competitive to

MulNet and GroupNet. Although VSPADE, has rather large

mCSD, its mOCD is also very large, indicating that it per-

forms unsatisfactorily on the SMIS task. The same phe-

nomenon is also observed in BicycleGAN and DSCGAN

and their FIDs are relatively much higher than VSPADE,

showing the advantage of the SPADE architecture. From

the high mOCD values of VSPADE and GroupDec, whose

encoders are composed from regular convolutions, we con-

clude that group encoder serves as a key to the high per-

formance of the SMIS task. However, the exceptional per-

formance of GroupDNet suggests that the group decreas-

ing modification in the decoder is also effective and brings

further performance boost when compared to GroupEnc.

Gathering these information, GroupDNet is a good trade-

off model considering the speed, visual quality and the per-

formance on the SMIS task.

According to the qualitative results, it is obvious that

MulNet, GroupNet, GroupEnc and GroupDNet are able

to generate semantically multi-modal images while others

cannot. However, the image quality of MulNet, GroupNet,

BicycleGAN and DSCGAN is far from satisfaction because

their images are visually implausible. GroupEnc is better in

image quality but it degrades in the SMIS task. It can be

seen from the first two rows in Fig. 4 that, when the up-

per clothes are changed to another style, GroupEnc slightly

changes the color of the short jeans pants as well.

4.4.2 Comparison on label-to-image translation

In this section, we mainly assess the generated image

quality of our method by comparing with some label-

to-image methods on the FID, mIoU and Accuracy met-

rics. We choose four very recent state-of-the-art meth-

ods: BicycleGAN [56], DSCGAN [45], pix2pixHD [41]

and SPADE [36], as the comparison methods. Compar-

Models FID↓ mCSD↑ mOCD↓ LPIPS↑ SHE↑ Speed↑ # Param↓
MulNet 12.07 0.0244 0.0019 0.202 79.2 6.3 105.1

GroupNet 12.58 0.0276 0.0017 0.203 83.7 8.2 97.7

Group Enc 10.83 0.0232 0.0065 0.217 69.3 19.6 105.5

Group Dec 9.84 0.0003 0.0257 0.206 26.4 12.1 111.3

VSPADE [36] 10.02 0.0304 0.1843 0.207 23.6 20.4 106.8

BicycleGAN [56] 40.07 0.0316 0.2147 0.228 24.8 66.9 58.4

DSCGAN [45] 38.40 0.0245 0.1560 0.163 27.6 67.2 58.4

GroupDNet 9.50 0.0264 0.0033 0.228 81.2 12.2 109.1

Table 1: Quantitative comparison results with baseline models. “SHE”

means human evaluation of a model’s performance on SMIS task. We use

Frame Per Second (FPS) to represent the “Speed” of the model. “# Param”

means the number of parameters, whose unit is “M”, denoting million. For

mCSD, the higher, the better. For mOCD, the lower, the better.

Mask

Ground truth

BicycleGAN

DSCGAN

pix2pixHD

SPADE

GroupDNet

DeepFashion Cityscapes ADE20K

Figure 5: Qualitative comparison with the SOTA label-to-image methods.

From top to bottom, the images represent the experiments on DeepFashion,

Cityscapes and ADE20K, respectively.

isons are performed across the DeepFashion, Cityscapes

and ADE20K datasets. We evaluate the performance of

their well-trained models downloaded from their official

GitHub repositories if they have. For those experiments not

included in their original papers, we follow their codes and

run the experiments with similar settings to GroupDNet.

Quantitative results are shown in Tab. 2. In general, as

our network is built based on SPADE, it maintains nearly

the same performance as SPADE on the DeepFashion and

Cityscapes datasets. While on the ADE20K dataset, our

method is inferior to SPADE but still outperform other

methods. This phenomenon on the one hand shows the

superiority of the SPADE architecture and on the other

hand also exposes even GroupDNet still struggles to han-

dle datasets with a huge number of semantic classes.

Qualitative comparisons on DeepFashion, Cityscapes

and ADE20K are shown in Fig. 5. In general, the images

generated by GroupDNet are more realistic and plausible

than others. These visual results consistently show the high

image quality of GroupDNet’s generated images, verifying

its efficacy on various datasets.
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Generated images through latent code extrapolation

Building to tree

Semantic masks Generated images Semantic masks Generated images

Add a bed to a room

Figure 6: Exemplar applications of the proposed method. (a) Demonstration of the semantically multi-modal image synthesis (SMIS) task. (b) Application

of our SMIS model in appearance mixture. Our model extracts styles of different semantic classes from different sources and generates a mixed image by

combining these semantic styles with the given semantic mask. (c) Application of our SMIS model in semantic manipulation. (d) Application of our SMIS

model in image extrapolation. Zoom in for better details.

Method
DeepFashion Cityscapes ADE20K

mIoU↑ Acc↑ FID↓ mIoU↑ Acc↑ FID↓ mIoU↑ Acc↑ FID↓
BicycleGAN [56] 76.8 97.8 40.07 23.3 75.4 87.74 4.78 29.6 87.85

DSCGAN [45] 81.0 98.3 38.40 37.8 86.7 67.77 10.2 58.8 83.98

pix2pixHD [41] 85.2 98.8 17.76 58.3 92.5 78.24 27.6 75.7 55.9

SPADE [36] 87.1 98.9 10.02 62.3 93.5 58.10 42.0 81.4 33.49

GroupDNet 87.3 98.9 9.50 62.3 93.7 49.81 30.4 77.1 42.17

Table 2: Quantitative comparison with label-to-image models. The num-

bers of pix2pixHD and SPADE are collected by running the evaluation on

our machine instead of their papers.

4.4.3 Applications

Since GroupDNet contributes more user controllability to

the generation process, it can also be applied to lots of ex-

citing applications in addition to the SMIS task, which are

demonstrated as follows. More results are available in the

supplementary materials.

Appearance mixture. By utilizing the encoder in

GroupDNet during inference, we can gather the distinct

styles of a person’s different body parts. Every combina-

tion of these styles presents a distinct person image, given a

human parsing mask. In this way, we can create thousands

of diverse and realistic person images given a person image

gallery. This application is demonstrated in Fig. 6(b). A

demo video can be found in our code repository.

Semantic manipulation. Similar to most label-to-image

methods [41, 36, 28], our network also supports semantic

manipulation. As exemplified in Fig. 6 (c), we can insert a

bed in the room or replace the building with trees, etc.

Style morphing. Feeding two real images to the encoder

generates two style codes of these images. By extrapolating

between these two codes, we can generate a sequence of

images that progressively vary from image a to image b,

depicted in Fig. 6 (d).

5. Conclusion and future work

In this paper, we propose a novel network for semanti-

cally multi-modal synthesis task, called GroupDNet. Our

network unconventionally adopts all group convolutions

and modifies the group numbers of the convolutions to de-

crease in the decoder, considerably improving the training

efficiency over other possible solutions like multiple gener-

ators.

Although GroupDNet performs well on semantically

multi-modal synthesis task and generates results with rel-

atively high quality, there are still some problems remained

to be solved. First, it requires more computational resources

to train compared to pix2pixHD and SPADE though it is

nearly 2 times faster than multiple generators networks.

Second, GroupDNet still has difficulty in modeling different

layouts of a specific semantic class for datasets with limited

diversity, even though it demonstrates some low-level vari-

ations like illumination, color, and texture, etc.
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