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Abstract

Manually labeling datasets with object masks is extremely

time consuming. In this work, we follow the idea of Polygon-

RNN [4] to produce polygonal annotations of objects in-

teractively using humans-in-the-loop. We introduce sev-

eral important improvements to the model: 1) we design

a new CNN encoder architecture, 2) show how to effectively

train the model with Reinforcement Learning, and 3) signifi-

cantly increase the output resolution using a Graph Neural

Network, allowing the model to accurately annotate high-

resolution objects in images. Extensive evaluation on the

Cityscapes dataset [8] shows that our model, which we refer

to as Polygon-RNN++, significantly outperforms the origi-

nal model in both automatic (10% absolute and 16% relative

improvement in mean IoU) and interactive modes (requiring

50% fewer clicks by annotators). We further analyze the

cross-domain scenario in which our model is trained on one

dataset, and used out of the box on datasets from varying

domains. The results show that Polygon-RNN++ exhibits

powerful generalization capabilities, achieving significant

improvements over existing pixel-wise methods. Using sim-

ple online fine-tuning we further achieve a high reduction

in annotation time for new datasets, moving a step closer

towards an interactive annotation tool to be used in practice.

1. Introduction

Detailed reasoning about structures in images is a neces-

sity for numerous computer vision applications. For exam-

ple, it is crucial in the domain of autonomous driving to

localize and outline all cars, pedestrians, and miscellaneous

static and dynamic objects [1, 18, 12]. For mapping, there

is a need to obtain detailed footprints of buildings and roads

from aerial/satellite imagery [34], while medical/healthcare

domains require automatic methods to precisely outline cells,

tissues and other relevant structures [15, 11].

Neural networks have proven to be an effective way of

inferring semantic [6, 19] and object instance segmentation
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Figure 1: We introduce Polygon-RNN++, an interactive object an-

notation tool. We make several advances over [4], allowing us

to annotate objects faster and more accurately. Furthermore, we

exploit a simple online fine-tuning method to adapt our model from

one dataset to efficiently annotate novel, out-of-domain datasets.

information [12, 18] in challenging imagery. It is well known

that the amount and variety of data that the networks see

during training drastically affects their performance at run

time. Collecting ground truth instance masks, however, is an

extremely time consuming task, typically requiring human

annotators to spend 20-30 seconds per object in an image.

To this end, in [4], the authors introduced Polygon-RNN,

a conceptual model for semi-automatic and interactive label-

ing to help speed up object annotation. Instead of producing

pixel-wise segmentation of an object as in existing interac-

tive tools such as Grabcut [30], [4] predicts the vertices of

a polygon that outlines the object. The benefits of using a

polygon representation are three-fold, 1) it is sparse (only a

few vertices represent regions with a large number of pix-

els), 2) it is easy for an annotator to interact with, and 3)

it allows for efficient interaction, typically requiring only a

few corrections from the annotator [4]. Using their model,

the authors have shown high annotation speed-ups on two

autonomous driving datasets [8, 10].

In this work, we introduce several improvements to the

Polygon-RNN model. In particular, we 1) make a few

changes to the neural network architecture, 2) propose a bet-

ter learning algorithm to train the model using reinforcement

learning, and 3) show how to significantly increase the out-
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put resolution of the polygon (one of the main limitations of

the original model) using a Graph Neural Network [31, 17].

We analyze the robustness of our approach to noise, and its

generalization capabilities to out-of-domain imagery.

In the fully automatic mode (no annotator in the loop),

our model achieves significant improvements over the orig-

inal approach, outperforming it by 10% mean IoU on the

Cityscapes dataset [8]. In interactive mode, our approach re-

quires 50% fewer clicks as compared to [4]. To demonstrate

generalization, we use a model trained on the Cityscapes

dataset to annotate a subset of a scene parsing dataset [41],

aerial imagery [33], and two medical datasets [15, 11]. The

model significantly outperforms strong pixel-wise labeling

baselines, showcasing that it inherently learns to follow ob-

ject boundaries, thus generalizing better. We further show

that a simple online fine-tuning approach achieves high an-

notation speed-ups on out-of-domain dataset annotation.

2. Related Work

Interactive annotation. Since object instance segmenta-

tion is time consuming to annotate manually, several works

have aimed at speeding up this process using interactive

techniques. In seminal work, [2] used scribbles to model the

appearance of foreground/background, and performed seg-

mentation via graph-cuts [3]. This idea was extended by [20]

to use multiple scribbles on both the object and background,

and was demonstrated in annotating objects in videos. Grab-

Cut [30] exploited 2D bounding boxes provided by the an-

notator, and performed pixel-wise foreground/background

labeling using EM. [25] combined GrabCut with CNNs to

annotate structures in medical imagery. Most of these works

operate on the pixel level, and typically have difficulties in

cases where foreground and background have similar color.

In [4], the authors used polygons instead. The main power

of using such a representation is that it is sparse; only a few

vertices of a polygon represent large image regions. This al-

lows the user to easily introduce corrections, by simply mov-

ing the wrong vertices. An RNN also effectively captures

typical shapes of objects as it forms a non-linear sequential

representation of shape. This is particularly important in

ambiguous regions, ie shadows and saturation, where bound-

aries cannot be observed. We follow this line of work, and

introduce several important modifications to the architec-

ture and training. Furthermore, the original model was only

able to make prediction at a low resolution (28× 28), thus

producing blocky polygons for large objects. Our model

significantly increases the output resolution (112× 112).

Object instance segmentation. Most approaches to ob-

ject instance segmentation [16, 29, 39, 37, 21, 22, 12, 1, 18]

operate on the pixel-level. Many rely on object detection,

and use a convnet over a box proposal to perform the label-

ing [21, 22, 12]. In [38, 33], the authors produce a polygon

around an object. These approaches first detect boundary

fragments, followed by finding an optimal cycle linking the

boundaries into object regions. [9] produce superpixels in

the form of small polygons which are further combined into

an object. Here, as in [4] we use neural networks to produce

polygons, and in particular tackle the interactive labeling

scenario which has not been explored in these works.

3. Polygon-RNN++

In this section, we introduce Polygon-RNN++. Follow-

ing [4], our model expects an annotator to provide a bbox

around the object of interest. We extract an image crop

enclosed by the 15% enlarged box. We use a CNN+RNN

architecture as in [4], with a CNN serving as an image fea-

ture extractor, and the RNN decoding one polygon vertex at

a time. Output vertices are represented as locations in a grid.

The full model is depicted in Fig. 2. Our redesigned

encoder produces image features that are used to predict

the first vertex. The first vertex and the image features are

then fed to the recurrent decoder. Our RNN exploits visual

attention at each time step to produce polygon vertices. A

learned evaluator network selects the best polygon from a set

of candidates proposed by the decoder. Finally, a graph neu-

ral network re-adjusts polygons, augmented with additional

vertices, at a higher resolution.

This model naturally incorporates a human in the loop,

allowing the annotator to correct an erroneously predicted

vertex. This vertex is then fed back to the model, helping the

model to correct its prediction in the next time steps.

3.1. Residual Encoder with Skip Connections

Most networks perform repeated down-sampling oper-

ations at consecutive layers of a CNN, which impacts the

effective output resolution in tasks such as image segmen-

tation [6, 23]. In order to alleviate this issue, we follow [7]

and modify the ResNet-50 architecture [13] by reducing the

stride of the network and introducing dilation factors. This

allows us to increase the resolution of the output feature map

without reducing the receptive field of individual neurons.

We also remove the original average pooling and FC layers.

We further add a skip-layer architecture [19, 40] which

aims to capture both, low-level details such as edges and cor-

ners, as well as high-level semantic information. In [4], the

authors perform down-sampling in the skip-layer architec-

ture, built on top of VGG, before concatenating the features

from different layers. Instead, we concatenate all the outputs

of the skip layers at the highest possible resolution, and use

a combination of conv layers and max-pooling operations

to obtain the final feature map. We employ conv filters with

a kernel size of 3× 3, batch normalization [14] and ReLU

non-linearities. In cases where the skip-connections have

different spatial dimensions, we use bilinear upsampling be-

fore concatenation. The architecture is shown in Fig. 4. We

refer to the final feature map as the skip features.
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Figure 2: Polygon-RNN++ model (figures best viewed in color)
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Figure 3: Evaluator Network predicting the quality

of a polygon output by the RNN decoder
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Figure 4: Residual Encoder architecture. Blue tensor is fed to GNN, while

the orange tensor is input to the RNN decoder.

3.2. Recurrent Decoder

As in [4], we use a Recurrent Neural Network to model

the sequence of 2D vertices of the polygon outlining an ob-

ject. In line with previous work, we also found that the use of

Convolutional LSTM [36] is essential: 1) to preserve spatial

information and 2) to reduce the number of parameters to be

learned. In our RNN, we further add an attention mechanism,

as well as predict the first vertex within the same network

(unlike [4] which has two separate networks).

We use a two-layer ConvLTSM with a 3× 3 kernel with

64 and 16 channels, respectively. We apply batch norm [14]

at each time step, without sharing mean/variance estimates

across time steps. We represent our output at time step t as

a one-hot encoding of (D ×D) + 1 elements, where D is

the resolution at which we predict. In our experiments, D is

set to 28. The first D×D dimensions represent the possible

vertex positions and the last dimension corresponds to the

end-of-seq token that signals that the polygon is closed.

Attention Weighted Features: In our RNN, we exploit a

mechanism akin to attention. In particular, at time step t, we

compute the weighted feature map as,

αt = softmax(fatt(x, f1(h1,t−1), f2(h2,t−1)))

Ft = x ◦ αt

(1)

where ◦ is the Hadamard product, x is the skip feature tensor,

and h1,t, h2,t are the hidden state tensors from the two-

layer ConvLSTM. Here, f1 and f2 map h1,t and h2,t to

R
D×D×128 using one fully-connected layer. fatt takes the

sum of its inputs and maps it to D × D through a fully

connected layer, giving one “attention” weight per location.

Intuitively, we use the previous RNN hidden state to gate

certain locations in the image feature map, allowing the RNN

to focus only on the relevant information in the next time

step. The gated feature map Ft is then concatenated with

one-hot encodings of the two previous vertices yt−1, yt−2

and the first vertex y0, and passed to the RNN at time step t.

First Vertex: Given a previous vertex and an implicit di-

rection, the next vertex of a polygon is always uniquely

defined, except for the first vertex. To tackle this problem,

the authors in [4] treated the first vertex as a special case and

used an additional architecture (trained separately) to predict

it. In our model, we add another branch from the skip-layer

architecture, constituting of two layers each of dimension

D ×D. Following [4], the first layer predicts edges, while

the second predicts the vertices of the polygon. At test time,

the first vertex is sampled from the final layer of this branch.

3.3. Training using Reinforcement Learning

In [4], the authors trained the model using the cross-

entropy loss at each time step. However, such training has

two major limitations: 1) MLE over-penalizes the model (for

example when the predicted vertex is on an edge of the GT

polygon but is not one of the GT vertices), and 2) it optimizes

a metric that is very different from the final evaluation metric

(i.e. IoU). Further, the model in [4] was trained following a

typical training regime where the GT vertex is fed to the next

time step instead of the model’s prediction. This training

regime, called teacher forcing creates a mismatch between

training and testing known as the exposure bias problem [26].

In order to mitigate these problems, we only use MLE

training as an initialization stage. We then reformulate the

polygon prediction task as a reinforcement learning problem

and fine-tune the network using RL. During this phase, we

let the network discover policies that optimize the desirable,

yet non-differentiable evaluation metric (IoU) while also

exposing it to its own predictions during training.

3.3.1 Problem formulation

We view our recurrent decoder as a sequential decision mak-

ing agent. The parameters θ of our encoder-decoder architec-

ture define its policy pθ for selecting the next vertex vt. At

the end of the sequence, we obtain a reward r. We compute

our reward as the IoU between the mask enclosed by the gen-

erated polygon and the ground-truth mask m. To maximize

the expected reward, our loss function becomes

L(θ) = −Evs∼pθ
[r(vs,m)] (2)

where vs = (vs
1
, ..., vsT ), and vst is the vertex sampled from

the model at time t. Here, r = IoU(mask(vs),m).
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3.3.2 Self-Critical Training with Policy Gradients

Using the REINFORCE trick [35] to compute the gradients

of the expectation, we have

∇L(θ) = −Evs∼pθ
[r(vs,m)∇ log pθ(v

s)] (3)

In practice, the expected gradient is computed using simple

Monte-Carlo sampling with a single sample. This procedure

is known to exhibit high variance and is highly unstable

without proper context-dependent normalization. A natural

way to deal with this is to use a learned baseline which is

subtracted from the reward. In this work, we follow the self-

critical method [28] and use the test-time inference reward

of our model as the baseline. Accordingly, we reformulate

the gradient of our loss function to be

∇L(θ) = −[(r(vs,m)− r(v̂s,m))∇ log pθ(v
s)] (4)

where r(v̂s,m) is the reward obtained using greedy decod-

ing. To control the level of randomness in the vertices ex-

plored by the model, we introduce a temperature parameter

τ in the softmax of the policy. This ensures that the sampled

vertices lead to well behaved polygons. We set τ = 0.6.

3.4. Evaluator Network

Smart choice of the first vertex is crucial as it biases the

initial predictions of the RNN, when the model does not

have a strong history to reason about the object to annotate.

This is particularly important in cases of occluding objects.

It is desirable for the first vertex to be far from the occlusion

boundaries so that the model follows the object of interest. In

RNNs, beam search is typically used to prune off improbable

sequences. However, since classical beam search uses log

probabilities to evaluate beams, it does not directly apply

to our model which aims to optimize IoU. A point on an

occlusion boundary generally exhibits a strong edge and

thus would have a high log probability during prediction,

reducing the chances of it being pruned by beam search.

In order to solve this problem, we propose to use an

evaluator network at inference time, aiming to effectively

choose among multiple candidate polygons. Our evaluator

network takes as input the skip features, the last state tensor

of the ConvLSTM, and the predicted polygon, and tries

to estimate its quality by predicting its IoU with GT. The

network has two 3×3 convolutional layers followed by a FC

layer, forming another branch in the model. Fig. 3 depicts its

architecture. While the full model can be trained end-to-end

during the RL step, we choose to train the evaluator network

separately after the RL fine-tuning has converged.

During training, we minimize the mean squared error

L(φ) = [p(φ, vs)− IoU(mvs ,m)]2 (5)

where p is the network’s predicted IoU, mvs is the mask for

the sampled vertices and m is the ground-truth mask. To

ensure diversity in the vertices seen, we sample polygons

with τ = 0.3. We emphasize that we do not use this network

as a baseline estimator during the RL training step since we

found that the self-critical method produced better results.

Inference: At test time, we take K top scoring first vertex

predictions. For each of these, we generate polygons via

classical beam-search (using log prob with a beam-width B).

This yields K different polygons, one for each first vertex

candidate. We use the evaluator network to choose the best

polygon. In our experiments, we use K = 5. While one

could use the evaluator network instead of beam-search at

each time step, this would lead to impractically long infer-

ence times. Our faster full model (using B = K = 1) runs

at 295ms per object instance on a Titan XP.

Annotator in the Loop: We follow the same protocol as

in [4], where the annotator corrects the vertices in sequential

order. Each correction is then fed back to the model, which

re-predicts the rest of the polygon.

3.5. Upscaling with a Graph Neural Network

The model described above produces polygons at a reso-

lution of D ×D, where we set D to be 28 to satisfy mem-

ory bounds and to keep the cardinality of the output space

amenable. In this section, we exploit a Gated Graph Neural

Network (GGNN) [17], in order to generate polygons at a

much higher resolution. GNN has been proven efficient for

semantic segmentation [24], where it was used at pixel-level.

Note that when training the RNN decoder, the GT poly-

gons are simplified at their target resolution (co-linear ver-

tices are removed) to alleviate the ambiguity of the prediction

task. Thus, at a higher resolution, the object may have addi-

tional vertices, thus changing the topology of the polygon.

Our upscaling model takes as input the sequence of ver-

tices generated by the RNN decoder. We treat these vertices

as nodes in a graph. To model finer details at a higher resolu-

tion, we add a node in between two consecutive nodes, with

its location being in the middle of their corresponding edge.

We also connect the last and the first vertex, effectively con-

verting the sequence into a cycle. We connect neighboring

nodes using 3 different types of edges, as shown in Fig. 5.

GGNN defines a propagation model that extends RNNs

to arbitrary graphs, effectively propagating information be-

tween nodes, before producing an output at each node. Here,

we aim to predict the relative offset of each node (vertex) at

a higher resolution. The model is visualized in Fig. 5.

Gated Graph Neural Network: For completeness, we

briefly summarize the GGNN model [17]. GGNN uses a

graph {V,E}, where V and E are the sets of nodes and edges,

respectively. It consists of a propagation model performing

message passing in the graph, and an output model for pre-

diction tasks. We represent the initial state of a node v as xv

and the hidden state of node v at time step t as ht
v . The basic
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prediction from RNN GGNN prediction from GGNN

Figure 5: GGNN model: We take predicted polygon from RNN (orange

vertices), and add midpoints (in blue) between every pair of consecutive

vertices (orange). Our GGNN has three types of edges (red, blue, green),

each having its own weights for message propagation. Black dashed arrows

pointing out of the nodes (middle diagram) indicate that the GGNN aims to

predict the relative location for each of the nodes (vertices), after completing

propagation. Right is the high resolution polygon output by the GGNN.

recurrence of the propagation model is

h0

v = [x⊤
v , 0]

⊤

atv = A⊤
v: [h

t−1

1

⊤
, ..., ht−1

|V |

⊤
]⊤ + b

ht
v = fGRU (h

t−1

v , atv)

(6)

The matrix A ∈ R
|V |×2N |V | determines how the nodes in

the graph communicate with each other, where N represents

the number of different edge types. Messages are propagated

for T steps. The output for node v is then defined as

hv = tan(f1(h
T
v ))

outv = f2(hv)
(7)

Here, f1 and f2 are MLP, and outv is v’s desired output.

PolygonRNN++ with GGNN: To get observations for our

GGNN model, we add another branch on top of our skip-

layer architecture, specifically, from the 112 × 112 × 256
feature map (marked in blue in Fig. 4). We exploit a conv

layer with 256 filters of size 15×15, giving us a feature map

of size 112× 112× 256. For each node v in the graph, we

extract a S × S patch around the scaled (vx, vy) location,

giving us the observation vector xv. After propagation, we

predict the output of a node v as a location in a D′ ×D′ spa-

tial grid. We make this grid relative to the location (vx, vy),
rendering the prediction task to be a relative displacement

with respect to its initial position. This prediction is treated

as a classification task and the model is trained with the cross

entropy loss. In particular, in order to train our model, we

first take predictions from the RNN decoder, and correct a

wrong prediction if it deviates from the ground-truth vertex

by more than a threshold. The targets for training our GGNN

are then the relative displacements of each of these vertices

with respect to their corresponding ground-truth vertices.

Implementation details: We set S to 1 and D′ to 112.

While our model supports much higher output resolutions,

we found that larger D′ did not improve results. The hidden

state of the GRU in the GGNN has 256 dimensions. We

use T = 5 propagation steps. In the output model, f1 is

a 256 × 256 FC layer and f2 is a 256 × 15 × 15 MLP. In

training, we take the predictions from the RNN, and replace

vertices with GT vertices if they deviate by more than 3 cells.

3.6. Annot. New Domains via Online Fine­Tuning

We now also tackle the scenario in which our model

is trained on one dataset, and is used to annotate a novel

dataset. As the new data arrives, the annotator uses our

model to annotate objects and corrects wrong predictions

when necessary. We propose a simple approach to fine-tune

our model in such a scenario, in an online fashion.

Let us denote C as the number of chunks the new data

is divided into, CS as the chunk size, NEV as the number

of training steps for the evaluator network and NMLE , NRL

as the number of training steps for each chunk with MLE

and RL, respectively. Our online fine-tuning is described

in Algorithm 1 where PredictAndCorrect refers to the

(simulated) annotator in the loop. Because we train on cor-

rected data, we smooth our targets for MLE training with a

manhattan distance transform truncated at distance 2.

Algorithm 1: Online Fine Tuning on New Datasets

bestPoly = cityscapesPoly;

while currChunk in (1..C) do

rawData = readChunk(currChunk);

data = PredictAndCorrect(rawData, bestPoly);

data += SampleFromSeenData(CS);

newPoly = TrainMLE (data, NMLE , bestPoly);

newPoly = TrainRL(data, NRL, newPoly);

newPoly = TrainEV (data, NEV , newPoly);

bestPoly = newPoly;

end

4. Experimental Results

In this section, we provide an extensive evaluation of our

model. We report both automatic and interactive instance an-

notation results on the challenging Cityscapes dataset [8] and

compare with strong pixel-wise methods. We then character-

ize the generalization capability of our model with evaluation

on the KITTI dataset [10] and four out-of-domain datasets

spanning general scenes [41], aerial [33], and medical im-

agery [15, 11]. Finally, we evaluate our online fine-tuning

scheme, demonstrating significant decrease in annotation

time for novel datasets. Note that as in [4], we assume that

user-provided ground-truth boxes around objects are given.

We further analyze robustness of our model to noise with

respect to these boxes, mimicking noisy annotators.

4.1. In­Domain Annotation

We first evaluate our approach in training and evaluating

on the same domain. This mimics the scenario where one

takes an existing dataset, and uses it to annotate novel images

from the same domain. In particular, we use the Cityscapes

dataset [8], which is currently one of the most comprehensive

benchmarks for instance segmentation. It contains 2975

training, 500 validation and 1525 test images with 8 semantic

classes. To ensure a fair comparison, we follow the same

alternative split proposed by [4]. As in [4], we preprocess
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Model Bicycle Bus Person Train Truck Motorcycle Car Rider Mean

Square Box 35.41 53.44 26.36 39.34 54.75 39.47 46.04 26.09 40.11

DeepMask [21] 47.19 69.82 47.93 62.20 63.15 47.47 61.64 52.20 56.45

SharpMask [22] 52.08 73.02 53.63 64.06 65.49 51.92 65.17 56.32 60.21

Polygon-RNN [4] 52.13 69.53 63.94 53.74 68.03 52.07 71.17 60.58 61.40

Residual Polygon-RNN 54.86 69.56 67.05 50.20 66.80 55.37 70.05 63.40 62.16

+ Attention 56.47 73.57 68.15 53.31 74.08 57.34 75.13 65.42 65.43

+ RL 57.38 75.99 68.45 59.65 76.31 58.26 75.68 65.65 67.17

+ Evaluator Network 62.34 79.63 70.80 62.82 77.92 61.69 78.01 68.46 70.21

+ GGNN 63.06 81.38 72.41 64.28 78.90 62.01 79.08 69.95 71.38

Table 1: Performance (IoU in % in val test) on all the Cityscapes classes in automatic mode. All methods exploit GT boxes.
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Figure 8: Interactive mode on KITTI

the ground-truth polygons according to depth ordering to

obtain polygons for only the visible regions of each instance.

Evaluation Metrics: We utilize two quantitative measures

to evaluate our model. 1) We use the intersection over union

(IoU) metric to evaluate the quality of the generated polygons

and 2) we calculate the number of annotator clicks required

to correct the predictions made by the model. We describe

the correction protocol in detail in a subsequent section.

Baselines: Following [4], we compare with Deep-

Mask [21], SharpMask [22], as well as Polygon-RNN [4] as

state-of-the-art baselines. Note that the first two approaches

are pixel-wise methods and errors in their output cannot eas-

ily be corrected by an annotator. To be fair, we only compare

our automatic mode with their approaches. In their original

approach, [21, 22] exhaustively sample patches at different

scales over the entire image. Here, we evaluate [21, 22]

by providing exact ground-truth boxes to their models. As

per [4], we also include SquareBox, which considers the

provided bounding box as its prediction.

Automatic Mode: We compare Polygon-RNN++ to the

baselines in Table 1, and ablate the use of each of the com-

ponents in our model. Here, Residual Polygon-RNN refers

to the original model with our image encoder instead of

VGG. Our full approach outperforms all competitors by 10%

IoU, and achieves best performance for each class. More-

over, Polygon-RNN++ surpasses the reported human agree-

ment [4] of 78.6% IoU on cars, on average. Using human

agreement on cars as a proxy, we observe that the model also

obtains human-level performance for truck and bus.

Interactive Mode: The interactive mode aims to minimize

annotation time while obtaining high quality annotations.

Following the simulation proposed in [4], we calculate the

number of annotator clicks required to correct predictions

from the model. The annotator corrects a prediction if it

deviates from the corresponding GT vertex by a min distance

of T , where the hyperparameter T governs the quality of

the produced annotations. For fair comparison, distances

are computed using manhattan distance at the model output

resolution using distance thresholds T ∈ [1, 2, 3, 4], as in [4].

We introduce another threshold T2, defined as the IoU

between the predicted polygon and the GT mask. We con-

sider polygons with agreement above T2 unnecessary for

the annotator to interfere. We use this threshold due to the

somewhat unsatisfactory correction simulation above: for

example, if the predicted vertex falls along a GT edge, this

vertex is in fact correct and should not be corrected. Note

that when T2 = 1, simulation is equivalent to the one above.

In Fig. 6, we compare the average number of clicks per

instance required to annotate all classes on the Cityscapes

val set with different values of T2. Using T2 = 1, we see

that our model outperforms [4], requiring fewer clicks to

obtain the same IoU. Even at T2 = 0.8 our model is still

more accurate than [4] at T2 = 1.0. At T2 = 0.7, we achieve

over 80% mIoU with only 5 clicks per object on average,

which is a reduction of more than 50% over [4]. Fig. 7 shows

frequency of required corrections for different T at T2 = 0.8.

In Sec.4.4, we show results with real human annotators.

Robustness to bbox noise: We analyze the effect of noise

in the bbox provided to the model. We randomly expand

the box by a percentage of its width and height. Results

in Table 4 illustrates that our model is very robust to some

amount of noise (0-5%). Even in the presence of moderate

and large noise (5-10%,10-15%), it outperforms the reported

performance of previous baselines which use perfect boxes.

4.1.1 Instance-Level Segmentation

We evaluate our model on (automatic) full-image instance

segmentation, by exploiting FasterRCNN [27] to detect ob-

jects. Polygon-RNN++ with FasterRCNN achieves 22.8%
AP and 42.6% AP50 on Cityscapes test. Following [18],

we also add semantic segmentation [40] to post-process the

results. We simply perform a logical “and" operation be-
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Model ADE Rooftop Cardiac MR ssTEM

SquareBox (Expansion) 42.95 40.71 62.10 42.24

Ellipse (Expansion) 48.53 47.51 73.63 51.04

Square Box (Perfect) 69.35 62.11 79.11 66.53

Ellipse (Perfect) 69.53 66.82 92.44 71.32

DeepMask[21] 59.74 15.82 60.70 31.21

SharpMask[22] 61.66 18.53 69.33 46.67

Ours w/o GGNN 70.21 65.03 80.55 53.77

Ours w/ GGNN 71.82 65.67 80.63 53.12

Table 2: Out-of-domain automatic mode performance

Model IoU (%)

DeepMask [21] 78.3

SharpMask [22] 78.8

Beat The MTurkers [5] 73.9

Polygon-RNN [4] 74.22

Ours w/o GGNN 81.40

Ours w/ GGNN 83.14

Table 3: Car annot. results on KITTI in

automatic mode (no fine-tuning, 0 clicks)

Bbox Noise IoU (%)

0% 71.38

0-5% 70.54

5-10% 68.07

10-15% 64.80

Table 4: Robustness to Bound-

ing Box noise on Cityscapes (in

% of side length at each vertex)
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Figure 9: Percentage clicks saved with online fine-tuning on out-of-domain datasets (Plots share legend and y axis)

tween the predicted class-semantic map and our prediction.

We achieve 25.49% AP and 45.47% AP50 on the test set.

4.2. Cross­Domain Evaluation

Here we analyze performance on different datasets that

capture both shifts in environment (KITTI) and domain (gen-

eral scenes, aerial, medical). We first use our model trained

on Cityscapes without any fine-tuning on these datasets.

KITTI [10]: We use Polygon-RNN++ to annotate 741

instances of KITTI [10] provided by [5]. The results in auto-

matic mode are reported in Table 3 and the performance with

a human in the loop is illustrated in Fig. 8. Our method out-

performs all baselines showcasing its robustness to change

in environment while being in a similar domain. With an

annotator in the loop, our model requires on average 5 fewer

clicks than [4] to achieve the same IoU. It achieves human

level agreement of 85% as reported by [5] by requiring only

2 clicks on average by the (simulated) annotator.

Out-of-Domain Imagery We consider datasets with a

large domain shift wrt the Cityscapes dataset in order to

evaluate the generalization capabilities of our model.

ADE20K [41]: The ADE20K dataset is a challenging gen-

eral scene parsing dataset containing 20,210 images in the

training set, 2,000 images in the validation set, and 3,000

images in the testing set. We select the following subset of

categories from the validation set: television receiver, bus,

car, oven, person and bicycle in our evaluation.

Aerial [33]: Rooftop dataset consists of 65 aerial images

of rural scenes containing several building rooftops, a ma-

jority of which exhibit fairly complex polygonal geometry.

Performance for this dataset is reported for the test set.

Medical Imagery [15, 32, 11]: We use two medical seg-

mentation datasets [15, 32] and [11] for our experiments.

The former, used in the Left Ventricle Segmentation Chal-

lenge [32], divides the data of 200 patients equally in the

training and validation sets. We report the performance

on a subset of the validation set which only includes the

outer contours that segment the epicardium. The latter pro-

vides two image stacks (training and testing) each containing

20 sections from serial section Transmission Electron Mi-

croscopy (ssTEM) images of the ventral nerve cord. We use

the mitochondria and synapse segmentations from this data

to test our model. Since ground-truth instances for the test

set are not publicly available, we evaluate on the training set.

Quantitative Results: For out-of-domain datasets, we in-

troduce a baseline (named Ellipse) which fits an ellipse into

the GT bounding box which is motivated by the observation

that many instances in [32] are ellipses. We show results

with perfect and expanded bounding boxes (expansion sim-

ilar to our model) for Square Box and Ellipse. DeepMask

and SharpMask were evaluated with perfect bounding boxes

with the threshold suggested by the authors. Table 2, demon-

strates high generalization capabilities of our model.

Online Fine-tuning: In these experiments, our simulated

annotator has parameters T = 1 and T2 = 0.8. Fig. 9 reports

the percentage of clicks saved with respect to GT polygons

for our Cityscapes model and the online fine-tuned models.

We see that our adaptive approach overcomes stark domain

shifts with as few as one chunk of data (40 images for Sun-

nybrook, 3 for ssTEM, 200 for ADE and 20 for Aerial)

showcasing strong generalization. Overall, we show at least

65% overall reduction in the number of clicks across all

datasets, with the numbers almost at 100% for the Sunny-

brook Cardiac MR dataset. We believe these results pave the

way towards a real annotation tool that can learn along with

the annotator and significantly reduce human effort.

4.3. Qualitative Results

Fig. 10 shows example predictions obtained in automatic

mode on Cityscapes. We illustrate the improvements from

specific parts of the model in Fig. 11. We see how using RL

and the evaluator network leads to crisper predictions, while
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Figure 10: Qualitative results in automatic mode on Cityscapes. Left: requiring GT boxes; Right: FasterRCNN + PolygonRNN++

MLE+ATTENTION RL+EVALUATOR GGNN 

Figure 11: Results with different components of the model

Figure 12: Qualitative results in automatic mode on different unseen

datasets without fine-tuning

Figure 13: Visualization of attention maps in our model

the GGNN upscales, adds points and builds a polygon resem-

bling human annotation. Fig. 12 showcases automatic pre-

dictions from PolygonRNN++ on the out-of-domain datasets.

We remind the reader that this labeling is obtained by ex-

ploiting GT bounding boxes, and no fine-tuning.

4.4. Interaction with Human Annotators

We also conducted a small scale experiment with real

human annotators in the loop. To this end, we implemented

a very simple annotation tool that runs our model at the

backend. We use 54 car instances from Cityscapes as per [4].

We asked two human subjects to annotate these interactively

using our model, and two to annotate manually. While we

explain how the tool works, we do not train the annotators

to use our tool. All our annotators were in-house.

Timing begins when an annotator first clicks on an object,

and stops when the "submit" button is clicked. While using

our model, the annotator needs to draw a bounding box

around the object, which we include in our reported timing.

Note that we display the object to the annotator by cropping

an image inside an enlarged box. Thus our annotators are fast

in drawing the boxes, taking around 2 seconds on average.

We report results in Table 5. Annotators are 3x faster

when using our model, with only slightly lower IoU agree-

ment with GT. Note that our tool has scope for improvement

in various engineering aspects. [4] reported that on these

examples, human subjects needed on average 42.2 sec per

object using GrabCut [30], and obtained a lower IoU (70.7).

Cityscapes ADE

Time (s) IoU (%) Time (s) IoU (%)

manual 39.7 76.2 29.2 80.63

with PolygonRNN++ 14.7 75.4 19.3 75.9

Table 5: Real Human Experiment: In-domain on 50 randomly chosen

Cityscapes car instances (left) and Out-of-domain on 40 randomly chosen

ADE20K instances (right). No fine-tuning was used in ADE experiment.

We also investigate cross-domain annotation. In partic-

ular, we use the ADE20k dataset and our model trained on

Cityscapes (no fine-tuning). We randomly chose a total of

40 instances of car, person, sofa and dog. Here car and

person are two classes seen in Cityscapes (i.e., person ∼
pedestrian in Cityscapes), and sofa and dog are unseen cate-

gories. From results in Table 5, we observe that the humans

were still faster when using our tool, but less so, as expected.

Limitations: Our model predicts one polygon per box,

typically annotating the more central object. If one object

breaks the other, our approach tends to predict the occluded

object as a single polygon. As a result, current failures cases

are mostly multi-component objects. Note also that we do

not handle holes which do not appear in our tested datasets.

5. Conclusion

In this paper, we proposed Polygon-RNN++, a model for

object instance segmentation that can be used to interactively

annotate segmentation datasets. The model builds on top of

Polygon-RNN [4], but introduces several important improve-

ments that significantly outperform the previous approach

in both, automatic and interactive modes. We further show

generalization of our model to novel domains. We also show

that with a simple online fine-tuning scheme, our model can

be used to effectively adapt to novel, out-of-domain datasets.
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