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Figure 1: Sample video from our benchmark. We select sequences that represent crowded scenes with multiple articulated

people engaging in various dynamic activities and provide dense annotations of person tracks, body joints and ignore regions.

Abstract

Existing systems for video-based pose estimation and

tracking struggle to perform well on realistic videos with

multiple people and often fail to output body-pose trajec-

tories consistent over time. To address this shortcoming

this paper introduces PoseTrack which is a new large-scale

benchmark for video-based human pose estimation and ar-

ticulated tracking. Our new benchmark encompasses three

tasks focusing on i) single-frame multi-person pose esti-

mation, ii) multi-person pose estimation in videos, and iii)

multi-person articulated tracking. To establish the bench-

mark, we collect, annotate and release a new dataset that

features videos with multiple people labeled with person

tracks and articulated pose. A public centralized evalu-

ation server is provided to allow the research community

to evaluate on a held-out test set. Furthermore, we con-

duct an extensive experimental study on recent approaches

to articulated pose tracking and provide analysis of the

strengths and weaknesses of the state of the art. We envision

that the proposed benchmark will stimulate productive re-

search both by providing a large and representative training

dataset as well as providing a platform to objectively eval-

uate and compare the proposed methods. The benchmark is

freely accessible at https://posetrack.net/.

∗This work was done prior to joining Amazon.
∗∗This work was done prior to joining Google.

1. Introduction

Human pose estimation has recently made significant

progress on the tasks of single person pose estimation in

individual frames [46, 45, 44, 4, 49, 15, 18, 31, 2, 36] and

videos [34, 6, 21, 12] as well as multi-person pose estima-

tion in monocular images [35, 18, 20, 3, 32]. This progress

has been facilitated by the use of deep learning-based ar-

chitectures [41, 14] and by the availability of large-scale

benchmark datasets such as “MPII Human Pose” [1] and

“MS COCO” [28]. Importantly, these benchmark datasets

not only have provided extensive training sets required for

training of deep learning based approaches, but also estab-

lished detailed metrics for direct and fair performance com-

parison across numerous competing approaches.

Despite significant progress of single frame based multi-

person pose estimation, the problem of articulated multi-

person body joint tracking in monocular video remains

largely unaddressed. Although there exist training sets for

special scenarios, such as sports [51, 23] and upright frontal

people [6], these benchmarks focus on single isolated in-

dividuals and are still limited in their scope and variability

of represented activities and body motions. In this work,

we aim to fill this gap by establishing a new large-scale,

high-quality benchmark for video-based multi-person pose

estimation and articulated tracking.

Our benchmark is organized around three related tasks

focusing on single-frame multi-person pose estimation,

multi-person pose estimation in video, and multi-person ar-

ticulated tracking. While the main focus of the dataset is
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Figure 2: Example frames and annotations from our dataset.

on multi-person articulated tracking, progress in the single-

frame setting will inevitably improve overall tracking qual-

ity. We thus make the single frame multi-person setting part

of our evaluation procedure. In order to enable timely and

scalable evaluation on the held-out test set, we provide a

centralized evaluation server. We strongly believe that the

proposed benchmark will prove highly useful to drive the

research forward by focusing on remaining limitations of

the state of the art.

To sample the initial interest of the computer vision com-

munity and to obtain early feedback we have organized a

workshop and a competition at ICCV’171. We obtained

largely positive feedback from the twelve teams that partici-

pated in the competition. We incorporate some of this feed-

back into this paper. In addition we analyze the currently

best performing approaches and highlight the common dif-

ficulties for pose estimation and articulated tracking.

2. Related Datasets

The commonly used publicly available datasets for eval-

uation of 2D human pose estimation are summarized in

Tab. 1. The table is split into blocks of single-person single-

frame, single-person video, multi-person single-frame, and

multi-person video data.

The most popular benchmarks to date for evaluation of

single person pose estimation are “LSP” [25] (+ “LSP Ex-

tended” [26]), “MPII Human Pose (Single Person)” [1] and

MS COCO Keypoints Challenge [28]. LSP and LSP Ex-

tended datasets focus on sports scenes featuring a few sport

types. Although a combination of both datasets results in

11,000 training poses, the evaluation set of 1000 is rather

small. FLIC [38] targets a simpler task of upper body pose

estimation of frontal upright individuals in feature movies.

In contrast to LSP and FLIC datasets, MPII Single-Person

benchmark covers a much wider variety of everyday hu-

man activities including various recreational, occupational

and household activities and consists of over 26,000 anno-

1https://posetrack.net/workshops/iccv2017/

Dataset # Poses Multi- Video-labeled Data type

person poses

LSP [25] 2,000 sports (8 act.)

LSP Extended [26] 10,000 sports (11 act.)

MPII Single Person [1] 26,429 diverse (491 act.)

FLIC [38] 5,003 feature movies

FashionPose [9] 7,305 fashion blogs

We are family [10] 3,131 X group photos

MPII Multi-Person [1] 14,993 X diverse (491 act.)

MS COCO Keypoints [28] 105,698 X diverse

Penn Action [51] 159,633 X sports (15 act.)

JHMDB [23] 31,838 X diverse (21 act.)

YouTube Pose [6] 5,000 X diverse

Video Pose 2.0 [39] 1,286 X TV series

Multi-Person PoseTrack [22] 16,219 X X diverse

Proposed 153,615 X X diverse

Table 1: Overview of publicly available datasets for artic-

ulated human pose estimation in single frames and video.

For each dataset we report the number of annotated poses,

availability of video pose labels and multiple annotated per-

sons per frame, as well as types of data.

tated poses with 7000 poses held out for evaluation. Both

benchmarks focus on single person pose estimation and pro-

vide rough location scale of a person in question. In con-

trast, our dataset addresses a much more challenging task

of body tracking of multiple highly articulated individuals

where neither the number of people, nor their locations or

scales are known.

The single-frame multi-person pose estimation setting

was introduced in [10] along with “We Are Family (WAF)”

dataset. While this benchmark is an important step towards

more challenging multi-person scenarios, it focuses on a

simplified setting of upper body pose estimation of mul-

tiple upright individuals in group photo collections. The

“MPII Human Pose (Multi-Person)” dataset [1] has signif-

icantly advanced the multi-person pose estimation task in

terms of diversity and difficulty of multi-person scenes that

show highly-articulated people involved in hundreds of ev-

ery day activities. More recently, MS COCO Keypoints

Challenge [28] has been introduced to provide a new large-

scale benchmark for single frame based multi-person pose

estimation. All these datasets are only limited to single-

frame based body pose estimation. In contrast, our dataset

also focuses on a more challenging task of multi-person

pose estimation in video sequences containing highly artic-

ulated people in dense crowds. This not only requires an-

notations of body keypoints, but also a unique identity for

every person appearing in the video. Our dataset is based

on the MPII Multi-Person benchmark, from which we se-

lect a subset of key frames and for each key frame include

about five seconds of video footage centered on the key
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frame. We provide dense annotations of video sequences

with person tracking and body pose annotations. Further-

more, we adapt a completely unconstrained evaluation setup

where the scale and location of the persons is completely

unknown. This is in contrast to MPII dataset that is re-

stricted to evaluation on group crops and provides rough

group location and scale. Additionally, we provide ignore

regions to identify the regions containing very large crowds

of people that are unreasonably complex to annotate.

Recently, [22] and [17] also provided datasets for multi-

person pose estimation in videos. However, both are at a

very small scale. [22] provides only 60 videos with most

sequences containing only 41 frames, and [17] provides 30

videos containing only 20 frames each. While these datasets

make a first step toward solving the problem at hand, they

are certainly not enough to cover a large range of real-world

scenarios and to learn stronger pose estimation models. We

on the other hand establish a large-scale benchmark with

a much broader variety and an open evaluation setup. The

proposed dataset contains over 150,000 annotated poses and

over 22,000 labeled frames.

Our dataset is complementary to recent video datasets,

such as J-HMDB [23], Penn Action [51] and YouTube

Pose [6]. Similar to these datasets, we provide dense an-

notations of video sequences. However, in contrast to

[23, 51, 6] that focus on single isolated individuals we tar-

get a much more challenging task of multiple people in dy-

namic crowded scenarios. In contrast to YouTube Pose that

focus on frontal upright people, our dataset includes a wide

variety of body poses and motions, and captures people at

different scales from a wide range of viewpoints. In contrast

to sports-focused Penn Action and J-HMDB that focuses on

a few simple actions, the proposed dataset captures a wide

variety of everyday human activities while being at least 3x

larger compared to J-HMDB.

Our dataset also addresses a different set of challenges

compared to the datasets such as “HumanEva” [40] and

“Human3.6M” [19] that include images and 3D poses of

people but are captured in controlled indoor environments,

whereas our dataset includes real-world video sequences

but provides 2D poses only.

3. The PoseTrack Dataset and Challenge

We will now provide the details on data collection and

the annotation process, as well as the established evaluation

procedure. We build on and extend the newly introduced

datasets for pose tracking in the wild [17, 22]. To that end,

we use the raw videos provided by the popular MPII Human

Pose dataset. For each frame in MPII Human Pose dataset

we include 41 − 298 neighboring frames from the corre-

sponding raw videos, and then select sequences that rep-

resent crowded scenes with multiple articulated people en-

gaging in various dynamic activities. The video sequences

are chosen such that they contain a large amount of body

motion and body pose and appearance variations. They also

contain severe body part occlusion and truncation, i.e., due

to occlusions with other people or objects, persons often

disappear partially or completely and re-appear again. The

scale of the persons also varies across the video due to the

movement of persons and/or camera zooming. Therefore,

the number of visible persons and body parts also varies

across the video.

3.1. Data Annotation

We annotated the selected video sequences with person

locations, identities, body pose and ignore regions. The an-

notations were performed in four steps. First, we labeled

ignore regions to exclude crowds and people for which pose

can not be reliably determined due to poor visibility. After-

wards, the head bounding boxes for each person across the

videos were annotated and a track ID was assigned to each

person. The head bounding boxes provide an estimate of the

absolute scale of the person required for evaluation. We as-

sign a unique track ID to each person appearing in the video

until the person moves out of the camera field-of-view. Note

that each video in our dataset might contain several shots.

We do not maintain track ID between shots and same per-

son might get different track ID if it reappears in another

shot. Poses for each person track are then annotated in the

entire video. We annotate 15 body parts for each body pose

including head, nose, neck, shoulders, elbows, wrists, hips,

knees and ankles. All pose annotations were performed us-

ing the VATIC tool [48] that allows to speed-up annotation

by interpolating between frames. We chose to skip anno-

tation of the body joints that can not be reliably localized

by the annotator due to strong occlusion or difficult imag-

ing conditions. This has proven the be a faster alternative to

requiring annotators to guess the location of the joint and/or

marking it as occluded. Fig. 2 shows example frames from

the dataset. Note the variability in appearance and scale,

and complexity due to substantial number of people in close

proximity.

Overall, the dataset contains 550 video sequences with

66,374 frames. We split them into 292, 50, 208 videos for

training, validation and testing, respectively. The split fol-

lows the original split of the MPII Human Pose dataset mak-

ing it possible to train a model on the MPII Human Pose and

evaluate on our test and validation sets.

The length of the majority of the sequences in our dataset

ranges between 41 and 151 frames. The sequences corre-

spond to about five seconds of video. Differences in the

sequence length are due to variation in the frame rate of the

videos. A few sequences in our dataset are longer than five

seconds with the longest sequence having 298 frames. For

each sequence in our benchmark we annotate the 30 frames

in the middle of the sequence. In addition, we densely anno-
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Figure 3: Various statistics of the PoseTrack benchmark.

tate validation and test sequences with a step of four frames.

The rationale behind this annotation strategy is that we aim

to evaluate both smoothness of body joint tracks as well as

ability to track body joints over longer number of frames.

We did not densely annotate the training set to save the an-

notation resources for the annotation of the test and valida-

tion set. In total, we provide around 23,000 labeled frames

with 153,615 pose annotations. To the best of our knowl-

edge this makes PoseTrack the largest multi-person pose es-

timation and tracking dataset released to date. In Fig. 3 we

show additional statistics of the validation and test sets of

our dataset. The plots show the distributions of the num-

ber of people per frame and per video, the track length and

people sizes measured by the head bounding box. Note that

substantial portion of the videos has a large number of peo-

ple as shown in the plot on the top-right. The abrupt fall

off in the plot of the track length in the bottom-left is due to

fixed length of the sequences included in the dataset.

3.2. Challenges

The benchmark consists of the following challenges:

Single-frame pose estimation. This task is similar to the

ones covered by existing datasets like MPII Pose and MS

COCO Keypoints, but on our new large-scale dataset.

Pose estimation in videos. The evaluation of this challenge

is performed on single frames, however, the data will also

include video frames before and after the annotated ones,

allowing methods to exploit video information for a more

robust single-frame pose estimation.

Pose tracking. This task requires to provide temporally

consistent poses for all people visible in the videos. Our

evaluation include both individual pose accuracy as well as

temporal consistency measured by identity switches.

3.3. Evaluation Server

We provide an online evaluation server to quantify the

performance of different methods on the held-out test set.

This will not only prevent over-fitting to the test data but

also ensures that all methods are evaluated in the exact same

way, using the same ground truth and evaluation scripts,

making the quantitative comparison meaningful. Addition-

ally, it can also serve as a central directory of all available

results and methods.

3.4. Experimental Setup and Evaluation Metrics

Since we need to evaluate both the accuracy of multi-

person pose estimation in individual frames and articulated

tracking in videos, we follow the best practices followed

in both multi-person pose estimation [35] and multi-target

tracking [30]. In order to evaluate whether a body part

is predicted correctly, we use the PCKh (head-normalized

probability of correct keypoint) metric [1], which consid-

ers a body joint to be correctly localized if the predicted

location of the joint is within a certain threshold from the

true location. Due to large scale variation of people across

videos and even within a frame, this threshold needs to be

selected adaptively based on the person’s size. To that end,

we follow [1] and use 50% of the head length where the

head length corresponds to 60% of the diagonal length of

the ground-truth head bounding box. Given the joint local-

ization threshold for each person, we compute two sets of

evaluation metrics, one which is commonly used for eval-

uating multi-person pose estimation [35], and one from the

multi-target tracking literature [50, 8, 30] to evaluate multi-

person pose tracking. During evaluation we ignore all per-

son detections that overlap with the ignore regions.

Multi-person pose estimation. For measuring frame-wise

multi-person pose accuracy, we use mean Average Precision

(mAP) as is done in [35]. The protocol to evaluate multi-

person pose estimation in [35] requires that the location of

a group of persons and their rough scale is known during

evaluation [35]. This information, however, is almost never

available in realistic scenarios, particularly for videos. We

therefore, propose not to use any ground-truth information

during testing and evaluate the predictions without rescaling

or selecting a specific group of people for evaluation.

Articulated multi-person pose tracking. To evaluate

multi-person pose tracking, we use Multiple Object Track-

ing (MOT) metrics [30] and apply them independently to

each of the body joints. Metrics measuring the overall track-

ing performance are then obtained by averarging the per-

joint metrics. The metrics require predicted body poses with

track IDs. First, for each frame, for each body joint class,

distances between predicted and ground-truth locations are

computed. Subsequently predicted and ground-truth loca-
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tions are matched to each other by a global matching proce-

dure that minimizes the total assignment distance. Finally,

Multiple Object Tracker Accuracy (MOTA), Multiple Ob-

ject Tracker Precision (MOTP), Precision, and Recall met-

rics are computed. Evaluation server reports MOTA metric

for each body joint class and average over all body joints,

while for MOTP, Precision, and Recall we report averages

only. In the following evaluation MOTA is used as our main

tracking metric. The source code for the evaluation metrics

is publicly available on the benchmark website.

4. Analysis of the State of the Art

Articulated pose tracking in unconstrained videos is a

relatively new topic in computer vision research. To the

best of our knowledge only few approaches for this task

have been proposed in the literature [17, 22]. Therefore, to

analyze the performance of the state of the art on our new

dataset, we proceed in two ways.

First, we propose two baseline methods based on the

state-of-the-art approaches [17, 22]. Note that our bench-

mark includes an order of magnitude more sequences com-

pared to the datasets used in [17, 22] and the sequences in

our benchmark are about five times longer, which makes it

computationally expensive to run the graph partitioning on

the full sequences as in [17, 22]. We modify these meth-

ods to make them applicable on our proposed dataset. The

baselines and corresponding modifications are explained in

Sec. 4.1.

Second, in order to broaden the scope of our evaluation

we organized a PoseTrack Challenge in conjunction with

ICCV’17 on our dataset by establishing an online evalua-

tion server and inviting submissions from the research com-

munity. In the following we consider the top five meth-

ods submitted to the online evaluation server both for the

pose estimation and pose tracking tasks. In Tab. 2 and 3

we list the best performing methods on each task sorted by

MOTA and mAP, respectively. In the following we first de-

scribe our baselines based on [17, 22] and then summarize

the main observations made in this evaluation.

4.1. Baseline Methods

We build the first baseline model following the graph

partitioning formulation for articulated tracking proposed

in [17], but introduce two simplifications that follow [32].

First, we rely on a person detector to establish locations

of people in the image and run pose estimation indepen-

dently for each person detection. This allows us to deal

with large variation in scale present in our dataset by crop-

ping and rescaling images to canonical scale prior to pose

estimation. In addition, this also allows us to group to-

gether the body-part estimates inferred for a given detec-

tion bounding box. As a second simplification we apply

the model on the level of full body poses and not on the

level of individual body parts as in [17, 22]. We use a pub-

licly available Faster-RCNN [37] detector from the Tensor-

Flow Object Detection API [16] for people detection. This

detector has been trained on the “MS COCO” dataset and

uses Inception-ResNet-V2 [42] for image encoding. We

adopt the DeeperCut CNN architecture from [18] as our

pose estimation method. This architecture is based on the

ResNet-101 converted to a fully convolutional network by

removing the global pooling layer and utilizing atrous (or

dilated) convolutions [7] to increase the resolution of the

output scoremaps. Once all poses are extracted, we per-

form non-maximum suppression based on pose similarity

criteria [32] to filter out redundant person detections. We

follow the cropping procedure of [32] with the crop size

336x336px. Tracking is implemented as in [17] by forming

the graph that connects body-part hypotheses in adjacent

frames and partitioning this graph into connected compo-

nents using an approach from [27]. We use Euclidean dis-

tance between body joints to derive costs for graph edges.

Such distance-based features were found to be effective in

[17] with additional features adding minimal improvements

at the cost of substantially slower inference.

For the second baseline, we use the publicly available

source code of [22] and replace the pose estimation model

with [3]. We empirically found that the pose estimation

model of [3] is better at handling large scale variations com-

pared to DeeperCut [18] used in the original paper. We do

not make any changes in the graph partitioning algorithm,

but reduce the window size to 21 as compared to 31 used

in the original model. We refer the readers to [22] for more

details. The goal of constructing these strong baselines is

to validate the results submitted to our evaluation server

and to allow us to perform additional experiments presented

in Sec. 5. In the rest of this paper, we refer to them as

ArtTrack-baseline and PoseTrack-baseline respectively.

4.2. Main Observations

Two-stage design. The first observation is that all submis-

sions follow a two-stage tracking-by-detection design. In

the first stage, a combination of person detector and single-

frame pose estimation method is used to estimate poses of

people in each frame. The exact implementation of single-

frame pose estimation method varies. Each of the top three

articulated tracking methods builds on a different pose es-

timation approach (Mask-RCNN [13], PAF [3] and Deep-

erCut [18]). On the other hand, when evaluating methods

according to pose estimation metric (see Tab. 3) three of

the top four approaches build on PAF [3]. The performance

still varies considerably among these PAF-based methods

(70.3 for submission ML-LAB [52] vs. 62.5 for submission

SOPT-PT [43]) indicating that large gains can be achieved

within the PAF framework by introducing incremental im-

provements.
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Submission Pose model Tracking model Tracking granularity Additional training data mAP MOTA

ProTracker [11] Mask R-CNN [13] Hungarian pose-level COCO 59.6 51.8

BUTD [24] PAF [3] graph partitioning person-level and part-level COCO 59.2 50.6

SOPT-PT [43] PAF [3] Hungarian pose-level MPII-Pose + COCO 62.5 44.6

ML-LAB [52] modification of PAF [3] frame-to-frame assign. pose-level MPII-Pose + COCO 70.3 41.8

ICG [33] novel single-/multi-person CNN frame-to-frame assign. pose-level - 51.2 32.0

ArtTrack-baseline Faster-RCNN [16] + DeeperCut [18] graph partitioning pose-level MPII-Pose + COCO 59.4 48.1

PoseTrack-baseline PAF [3] graph partitioning part-level COCO 59.4 48.4

Table 2: Results of the top five pose tracking models submitted to our evaluation server and of our baselines based on [17]

and [22]. Note that mAP for some of the methods might be intentionally reduced to achieve higher MOTA (see discussion in

text).

Submission Pose model Additional training data mAP

ML-LAB [52] modification of PAF [3] COCO 70.3

BUTDS [24] PAF [3] MPII-Pose + COCO 64.5

ProTracker [11] Mask R-CNN [13] COCO 64.1

SOPT-PT [43] PAF [3] MPII-Pose + COCO 62.5

SSDHG SSD [29] + Hourglass [31] MPII-Pose + COCO 60.0

ArtTrack-baseline DeeperCut MPII-Pose + COCO 65.1

PoseTrack-baseline PAF [3] COCO 59.4

Table 3: Results of the top five pose estimation models sub-

mitted to our evaluation server and of our baselines. The

methods are ordered according to mAP. Note that the mAP

of ArtTrack and submission ProTracker [11] is different

from Tab. 2 because the evaluation in this table does not

threshold detections by the score.

Model Training Set Head Sho Elb Wri Hip Knee Ank mAP

ArtTrack-baseline our dataset 73.1 65.8 55.6 47.2 52.6 50.1 44.1 55.5

ArtTrack-baseline MPII 76.4 74.4 68.0 59.4 66.1 64.2 56.6 66.4

ArtTrack-baseline MPII + our dataset 78.7 76.2 70.4 62.3 68.1 66.7 58.4 68.7

Table 4: Pose estimation performance (mAP) of our Art-

Track baseline for different training sets.

In the second stage the single-frame pose estimates are

linked over time. For most of the methods the assignment is

performed on the level of body poses, not individual parts.

This is indicated in the “Tracking granularity” column in

Tab. 2. Only submission BUTD [24] and our PoseTrack-

baseline track people on the level of individual body parts.

Hence, most methods establish correspondence/assembly

Model Head Sho Elb Wri Hip Knee Ank Total mAP

ArtTrack-baseline, τ = 0.1 58.0 56.4 34.0 19.2 44.1 35.9 19.0 38.1 68.6

ArtTrack-baseline, τ = 0.5 63.5 62.8 48.0 37.8 52.9 48.7 36.6 50.0 66.7

ArtTrack-baseline, τ = 0.8 66.2 64.2 53.2 43.7 53.0 51.6 41.7 53.4 62.1

Table 5: Pose tracking performance (MOTA) of ArtTrack

baseline for different part detection cut-off thresholds τ .

of parts into body poses on the per-frame level. In prac-

tice, this is implemented by supplying a bounding box of a

person and running pose estimation just for this box, then

declaring maxima of the heatmaps as belonging together.

This is suboptimal as multiple people overlap significantly,

yet most approaches choose to ignore such cases (possibly

for inference speed/efficiency reasons). The best perform-

ing approach ProTracker [11] relies on simple matching be-

tween frames based on Hungarian algorithm and matching

cost based on intersection-over-union score between person

bounding boxes. None of the methods is end-to-end in the

sense that it is able to directly infer articulated people tracks

from video. We observe that the pose tracking performance

of the top five submitted methods saturates at around 50

MOTA, with the top four approaches showing rather simi-

lar MOTA results (51.8 for submission ProTracker [11] vs.

50.6 for submission BUTD [24] vs. 48.4 for PoseTrack-

baseline vs. 48.1 for ArtTrack-baseline).

Training data. Most submissions found it necessary to

combine our training set with datasets of static images such

as COCO and MPII-Pose to obtain a joint training set with

larger appearance variability. The most common procedure

was to pre-train on external data and then fine-tune on our

training set. Our training set is composed of 2437 peo-

ple tracks with 61,178 annotated body poses and is com-

plementary to COCO and MPII-Pose which include an or-

der of magnitude more individual people but do not pro-

vide motion information. We quantify the performance im-

provement due to training on additional data in Tab. 4 using

our ArtTrack baseline. Extending the training data with the

MPII-Pose dataset improves the performance considerably

(55.5 vs. 68.7 mAP). The combination of our dataset and

MPII-Pose still performs better than MPII-Pose alone (66.4

vs. 68.7) showing that datasets are indeed complementary.

None of the approaches in our evaluation employs any

form of learning on the provided video sequences beyond

simple cross-validation of a few hyperparameters. This can

be in part due to relatively small size of our training set.

One of the lessons learned from our work on this bench-
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Figure 4: Sequences sorted by average MOTA (left). Pose estimation results sorted according to articulation complexity of

the sequence (middle). Visualization of correlation between mAP and MOTA for each sequence (right). Note the outliers in

right plot that correspond to sequences where pose estimation works well but tracking still fails.

mark is that creating truly large annotated datasets of ar-

ticulated pose sequences is a major challenge. We envi-

sion that future work will combine manually labeled data

with other techniques such as transfer learning from other

datasets such as [5], inferring sequences of poses by prop-

agating annotations from reliable keyframes [6], and lever-

aging synthetic training data as in [47].

Dataset difficulty. We composed our dataset by includ-

ing videos around the keyframes from MPII Human Pose

dataset that included several people and non-static scenes.

The rationale was to create a dataset that would be non-

trivial for tracking and require methods to correctly resolve

effects such as person-person occlusions. In Fig. 4 we vi-

sualize performance of the evaluated approaches on each

of the test sequences. We observe that test sequences vary

greatly with respect to difficulty both for pose estimation as

well as for tracking. E.g., for the best performing submis-

sion ProTracker [11] the performance varies from nearly

80 MOTA to a score below zero2. Note that the approaches

mostly agree with respect to the difficulty of the sequences.

More difficult sequences are likely to require methods that

are beyond simple tracking component based on frame-to-

frame assignment used in the currently best performing ap-

proaches. To encourage submissions that explicitly address

challenges in the difficult portions of the dataset we have

defined easy/moderate/hard splits of the data and report re-

sults for each of the splits as well as the full set.

Evaluation metrics. The MOTA evaluation metric has a

deficiency in that it does not take the confidence score of

the predicted tracks into account. As a result achieving good

MOTA score requires tuning of the pose detector threshold

so that only confident track and pose hypothesis are sup-

plied for evaluation. This in general degrades pose estima-

tion performance as measured by mAP (c.f . performance of

2Note that MOTA metric can become negative for example when the

number of false positives significantly exceeds the number of ground-truth

targets.

submission ProTracker [11] in Tab. 2 and 3). We quantify

this in Fig. 5 for our ArtTrack baseline. Note that filter-

ing the detections with score below τ = 0.8 as compared

to τ = 0.1 improves MOTA from 38.1 to 53.4. One po-

tential improvement to the evaluation metric would be to

require that pose tracking methods assign confidence score

to each predicted track as is common for pose estimation

and object detection. This would allow one to compute a

final score as an average of MOTA computed for a range

of track scores. Current pose tracking methods typically do

not provide such confidence scores. We believe that extend-

ing the evaluation protocol to include confidence scores is

an important future direction.

5. Dataset Analysis

In order to better understand successes and failures of

the current body pose tracking approaches, we analyze their

performance across the range of sequences in the test set.

To that end, for each sequence we compute an average over

MOTA scores obtained by each of the seven evaluated meth-

ods. Such average score serves us as an estimate for the

difficulty of the sequence for the current computer vision

approaches. We then rank the sequences by the average

MOTA. The resulting ranking is shown in Fig. 4 (left) along

with the original MOTA scores of each of the approaches.

First, we observe that all methods perform similarly well

on easy sequences. Fig. 5 shows a few easy sequences with

an average MOTA above 75%. Visual analysis reveals that

easy sequences typically contain significantly separated in-

dividuals in upright standing poses with minimal changes of

body articulation over time and no camera motion. Track-

ing accuracy drops with the increased complexity of video

sequences. Fig. 6 shows a few hard sequences with average

MOTA accuracy below 0. These sequences typically in-

clude strongly overlapping people, and fast motions of peo-

ple and camera.

We further analyze how tracking and pose estimation
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Figure 5: Selected frames from sample sequences with MOTA score above 75% with predictions of our ArtTrack-baseline

overlaid in each frame. See text for further description.

1 2 3 4

5 6 7 8

Figure 6: Selected frames from sample sequences with negative average MOTA score. The predictions of our ArtTrack-

baseline are overlaid in each frame. Challenges for current methods in such sequences include crowds (images 3 and 8),

extreme proximity of people to each other (7), rare poses (4 and 6) and strong camera motions (3, 5, 6, and 8).

accuracy are affected by pose complexity. As a measure

for the pose complexity of a sequence we employ an av-

erage deviation of each pose in a sequence from the mean

pose. The computed complexity score is used to sort video

sequences from low to high pose complexity and average

mAP is reported for each sequence. The result of this eval-

uation is shown in Fig. 4 (middle). For visualization pur-

poses, we partition the sorted video sequences into bins of

size 10 based on pose complexity score and report average

mAP for each bin. We observe that both body pose estima-

tion and tracking performance significantly decrease with

the increased pose complexity. Fig. 4 (right) shows a plot

that highlights correlation between mAP and MOTA of the

same sequence. We use the mean performance of all meth-

ods in this visualization. Note that in most cases more ac-

curate pose estimation reflected by higher mAP indeed cor-

responds to higher MOTA. However, it is instructive to look

at sequences where poses are estimated accurately (mAP is

high), yet tracking results are particularly poor (MOTA near

zero). One of such sequences is shown in Fig. 6 (8). This

sequence features a large number of people and fast camera

movement that is likely confusing simple frame-to-frame

association tracking of the evaluated approaches. Please see

supplemental material for additional examples and analyses

of challenging sequences.

6. Conclusion

In this paper we proposed a new benchmark for hu-

man pose estimation and articulated tracking that is signif-

icantly larger and more diverse in terms of data variability

and complexity compared to existing pose tracking bench-

marks. Our benchmark enables objective comparison of

different approaches for articulated people tracking in re-

alistic scenes. We have set up an online evaluation server

that permits evaluation on a held-out test set, and have mea-

sures in place to limit overfitting on the dataset. Finally,

we conducted a rigorous survey of the state of the art. Due

to the scale and complexity of the benchmark, most existing

methods build on combinations of proven components: peo-

ple detection, single-person pose estimation, and tracking

based on simple association between neighboring frames.

Our analysis shows that current methods perform well on

easy sequences with well separated upright people, but are

severely challenged in the presence of fast camera motions

and complex articulations. Addressing these challenges re-

mains an important direction for the future work.
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