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Abstract

Zero-shot learning has gained popularity due to its po-

tential to scale recognition models without requiring ad-

ditional training data. This is usually achieved by asso-

ciating categories with their semantic information like at-

tributes. However, we believe that the potential offered

by this paradigm is not yet fully exploited. In this work,

we propose to utilize the structure of the space spanned

by the attributes using a set of relations. We devise ob-

jective functions to preserve these relations in the embed-

ding space, thereby inducing semanticity to the embedding

space. Through extensive experimental evaluation on five

benchmark datasets, we demonstrate that inducing seman-

ticity to the embedding space is beneficial for zero-shot

learning. The proposed approach outperforms the state-of-

the-art on the standard zero-shot setting as well as the more

realistic generalized zero-shot setting. We also demonstrate

how the proposed approach can be useful for making ap-

proximate semantic inferences about an image belonging to

a category for which attribute information is not available.

1. Introduction

Novel categories of objects arise dynamically in nature.

It is estimated that around 8000 species of animals and

plants are discovered every year [1]. However, current

recognition models are quite incapable of handling this dy-

namic scenario when labeled examples of novel categories

are not available. Obtaining labeled examples followed by

retraining or transfer learning can be expensive and cumber-

some. Zero-shot learning (ZSL) [25, 3, 24, 36, 46, 18] offers

an elegant way to address this problem by utilizing the mid-

level semantic descriptions of the categories. These descrip-

tions are usually encoded in an attribute vector [12, 11, 10],

sometimes referred to as side information or class embed-

dings. This paradigm is useful not only for emerging cat-

egories, but also for extending the recognition capabilities
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Figure 1: t-SNE visualization [20] of the ten unseen categories

of AWA2 [40] dataset. Black dot denotes the mapped embeddings

obtained using the proposed approach. Best viewed in color.

of a model beyond the categories it is trained on without

requiring additional training data.

Some of the existing approaches treat zero-shot recogni-

tion as a ranking problem [4, 39, 13]. In these approaches,

a compatibility function between the image feature and the

class embeddings is learned such that its score for the cor-

rect class is higher than that for an incorrect class by a fixed

margin. Ranking can lead to loss of some of the seman-

tic structure available from the attributes due to the fixed

margin and the unbounded nature of the compatibility func-

tion. In some of the other approaches [16, 44, 31], zero-shot

recognition is typically achieved by embedding either the

image features or the attribute vectors, or both, to a prede-

fined embedding space using a ridge regression or a mean

squared error objective. Here, proper choice of the embed-

ding space is essential. If the space spanned by the attributes

(semantic space) is used as the embedding space, then the

semantic structure is preserved, but the problem of hubness

surfaces [34, 29]. To alleviate this problem, few recent ap-

proaches [44, 34] map the class embeddings to the space

spanned by the image features (visual space). However, the

visual space may not contain semantic properties, as it may

be inherited from a model trained on a supervised classifi-
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cation task where labels are one-of-k coded.

We believe that two things are crucial for zero-shot

recognition: (1) discriminative ability on the categories

available during training and (2) inheriting the properties

of semantic space for efficient classification on novel cat-

egories. Existing approaches focus on either of the two

aspects. To this end, we propose a simple yet effective

approach which ensures discriminative capability while re-

taining the structure of the semantic space in an encoder-

decoder multilayer perceptron framework.

We decompose the structure of the semantic space to a

set of relations between categories. Our aim is to preserve

these relations in the embedding space so as to appropri-

ately inherit the structure of the semantic space to the em-

bedding space. Relation between categories is decomposed

to three groups: identical, semantically similar and seman-

tically dissimilar. We construct a semantic tuple which con-

sists of samples belonging to categories of each of the re-

lations with respect to a given category. Objective function

specific to each relation is formulated so that the underlying

semantic structure can be captured while still ensuring dis-

criminative capability. The underlying principle is that the

embeddings belonging to categories which are semantically

similar in the attribute space must still be close in the em-

bedding space, while the ones which are dissimilar should

be far away.

Our contributions are threefold:

• Propose a simple and effective approach for zero-shot

recognition which preserves the structure of the se-

mantic space in the embedding space by utilizing se-

mantic relations between categories.

• Extensive experimental evaluation on multiple

datasets, including the large scale ImageNet [32]

shows that the proposed method improves over the

state-of-the art in multiple settings.

• Demonstrate how the proposed approach can be use-

ful for making approximate inferences about images

belonging to novel categories even when the class em-

beddings corresponding to that category is not avail-

able.

The rest of the paper is organized is follows: Section 2

reviews the related work followed by Section 3 which de-

scribes the proposed approach in detail. Experimental eval-

uation is reported in Section 4 with some pertinent discus-

sions in Section 5. We conclude the paper in Section 6.

2. Related Work

There are a number of related works which have been

developed independently to address zero-shot recognition

for visual data. Few of these approaches use bilinear com-

patibility frameworks to model the relationship between

the features and the class embeddings. Akata et al. [4, 3]

and Frome et al. [13] use a pairwise ranking formula-

tion to learn the parameters of the bilinear model. [5]

use distributed word embeddings like Word2Vec [22] and

Glove [27] apart from annotated attributes to learn a bilin-

ear model for each of them independently. The final model

is obtained by a weighted combination of the individual

compatibility frameworks. Xian et al. [39] learn multiple

bilinear models that results in a piece-wise linear decision

boundary, which suits fine-grained classification. Romera-

Pardes et al. [31] map the resulting compatibility model to

label space. This method is simple and elegant as it has a

closed form solution. Qiao et al. [28] extend this method

to online documents by incorporating an ℓ2,1 norm on the

weight vector to suppress noise in the documents and en-

hance zero-shot recognition. Although bilinear compati-

bility models are elegant to use, the bilinear compatibility

score which is obtained at the time of inference has limited

semantic meaning, which restricts its interpretability.

Apart from bilinear compatibility models, few other ap-

proaches map image features to semantic space by using a

ridge regression objective. Kodirov et al. [16] use an ad-

ditional reconstruction constraint on the mapped features

which enhanced zero-shot recognition performance. In

[19], the parameters of a deep network is learned using side

information like Word2Vec. This work uses binary cross

entropy loss and hinge loss in addition to mean squared er-

ror loss. Recently, Zhang et al. [44] proposed to reverse the

direction of mapping from semantic space to visual space.

However, mapping from semantic space to visual space may

result in reduced semantic expressiveness of the model.

Few of the other approaches employ manifold learning

[7, 43, 23] to solve zero-shot recognition. Changpinyo

et al. [7] construct a weighted bipartite graph in a space

where additional classes called phantom classes are intro-

duced. They minimize a distortion objective which aligns

this space with the class embeddings. [43] use a trans-

ductive approach to learn projection function by matrix tri-

factorization and preserving the underlying manifold struc-

ture of both visual space and semantic space. However, our

approach differs from these approaches as our method is

neither transductive nor involves manifold learning.

Our method relies on using semantic relations to learn

the embeddings. Parikh and Grauman [26] use partial or-

dering and ranking formulation to capture semantic rela-

tions across individual attributes. This is different from our

approach wherein the semantic relations are defined on the

categories themselves.

3. Proposed Approach

Let xi be a d-dimensional feature descriptor of an im-

age sample corresponding to one of the seen classes Cs =
{1, 2, . . . , cs}. The set of all samples in the given training
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Figure 2: An illustration of the proposed approach.

data is denoted by X = {xi
T }Ni=1∈ R

N×d and their cor-

responding class embeddings by Y = {yi
T }Ni=1∈ R

N×a,

where a is the dimensionality of the class embedding. In

this work, the class embeddings are obtained either through

attributes [11, 17, 38, 42] or distributed word representa-

tions [22]. The semantic space spanned by the class em-

beddings is shared between seen and unseen classes. Given

a new sample xu which potentially belongs to an unseen

class Cu = {cs + 1, . . . , cs + cu}, the goal of zero-shot

learning is to predict the correct class of xu, without ever

having trained the recognition model using the samples of

the unseen class.

3.1. Defining Semantic Relations

We explicitly define semantic relations between classes

so that objective function specific to each relation can be

formulated in order to preserve the relations. For a given

set of classes, we wish to group them to three different cat-

egories with respect to a reference class - identical, seman-

tically similar and semantically dissimilar. This particular

grouping should be reflective of the underlying semantic-

ity. There are many possible ways to define these class rela-

tions. For example, one can leverage prior knowledge about

the classes specific to the task under study.

In this work, we employ class embeddings to define se-

mantic relations. Let δmn = s(ym,yn) be a similarity mea-

sure between two class embeddings. We use cosine similar-

ity as a semantic similarity measure [22, 21].

s(p,q) =
< p , q >

||p||2||q||2
(1)

p and q are any two vectors of same dimension. Given

δmn for any two embeddings ym and yn, we define class

relations as follows:

• Belonging to same class (identical) if δmn = 1.

• Semantically similar if τ ≤ δmn < 1.

• Semantically dissimilar if δmn < τ .

where τ ∈ (−1, 1) is a threshold. Without loss of general-

ity, τ can be fixed to zero, which is a reasonable estimate for

a cosine similarity. τ can also be chosen over a validation

set. In this paper, we choose τ based on the performance

on the validation set. Since the semantic space of attributes

is shared between seen and unseen classes, this particular

definition provides a good generalization to novel classes.

3.2. Preserving Semantic Relations

Armed with the above definition, we wish to map the

class embeddings to the visual space such that the semantic

relation between the mapped class embeddings and the vi-

sual features reflects the relation between their correspond-

ing classes. Our motivation to map to the visual space

comes from the works of Shigeto et al. [34]1 and Zhang et

al. [44], which showed that using visual space instead of se-

mantic space or any other intermediate space as the embed-

ding space alleviated the hubness problem [37, 29], a prob-

lem in which a few points (called as hubs) arise which are in

the k-nearest neighbors of most of the other points. We em-

ploy nearest neighbor search for zero-shot recognition, and

hence the problem of hubness can lower the performance

if mapped to any space other than the visual space. There-

fore, we use the visual space as the embedding space for our

approach.

We use an encoder-decoder multilayer perceptron ar-

chitecture to learn the embedding function. The encoder

parameterized by θf learns the mapping f(y; θf ) and the

decoder g(x; θg) learns to reconstruct the input from the

mapped class embeddings. Our model formulation is in-

1[34] discusses hubness problem only for ridge regression based tech-

niques. However, hubness problem can also arise in cosine similarity mea-

sure based approaches, as demonstrated in [30].
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spired from [16], though [16] does not explicitly use a mul-

tilayer perceptron based encoder-decoder. Conventionally,

mean squared error loss is used to reduce the discrepancy

between the identical embeddings. However, this may not

preserve the semantic structure. In this work, we explic-

itly formulate objective functions to preserve the semantic

structure in the embedding space.

In order to facilitate the task of preserving semantic

relations, we consider a tuple of visual features (xi,xj,xk)
for every class embedding yr to be mapped. The elements

of the tuple are sampled such that the semantic relationship

between their corresponding class embeddings and yr

satisfy the conditions in the definition. Specifically, if

(yi,yj,yk) is the class embedding tuple corresponding

to the visual tuple, then δir = 1, τ ≤ δjr < 1 and

δkr < τ . The first feature corresponds to the same class

(i.e. yr = yi), the second corresponds to a semantically

similar class and the third feature corresponds to a seman-

tically dissimilar class. We present a way to efficiently

sample the tuples in Section 3.3. Note that this essentially

forms a quadruplet (yr,xi,xj,xk). Though quadruplet

based algorithms have been used in literature [8], the one

explored here is fundamentally different.

Objective for Identical and Dissimilar Classes. The

mapped class embedding f(yr; θf ) and the visual feature

xi must have a high semantic similarity score as they

belong to the same class. Ideally, it should be equal to one.

Also f(yr; θf ) and the visual feature xk must have a very

low semantic similarity score as they belong to dissimilar

classes, i.e. δkr < τ . The objective function which caters

to the above needs is given by:

O1 = min
θf

−s
(

f(yr; θf ), xi

)

+
(

τ − δkr
)

· s
(

f(yr; θf ), xk

)

(2)

The first term caters to the identical class and aims to

maximize the semantic similarity between f(yr; θf ) and

xi. The second term aims to minimize the semantic

similarity between dissimilar entities f(yr; θf ) and xk.

Here (τ − δkr) acts as an adaptive scaling term, i.e. if

the class embeddings are very dissimilar, we put a higher

weight on the term to minimize it.

Objective for Similar Classes. Since yr and yj are

embeddings of semantically similar classes, f(yr; θf )
and xj need to be close in order to preserve this relation.

Explicitly, s
(

f(yr; θf ), xj

)

must be greater than τ . In

addition to this condition, we also want to ensure that the

above enforced condition does not interfere with zero-shot

recognition. Therefore, we restrict the semantic similarity

score s
(

f(yr; θf ), xj

)

to be less than δjr. This ensures

that semantic similarity is preserved without hindering

the recognition task. Mathematically, the objective which

reflects the above two conditions is as follows:

O2 = min
θf

[

τ − s
(

f(yr; θf ), xj

)]

+
+
[

s
(

f(yr; θf ), xj

)

− δjr
]

+

(3)

where [z]+ = max[0, z]. Note that only one of the two

terms is triggered, corresponding to the either of the

conditions s
(

f(yr; θf ), xj

)

≥ τ or s
(

f(yr; θf ), xj

)

≤ δjr
they violate. The above constraints are enforced only on

semantically similar classes. For semantically dissimilar

classes, we aim to have a similarity score as small as

possible regardless of the amount of dissimilarity because

in most applications the amount of dissimilarity is of little

concern.

Reconstruction Loss. Since our setup involves a decoder

which reconstructs the input yr, there is an accompanying

reconstruction loss. We noted in our experiments that

using this additional condition of reconstruction provided

better updates to the encoder and enhanced zero-shot

recognition performance. In addition, this is in spirit

with the observation of Kodirov et al. [16] that adding an

additional reconstruction term is beneficial for zero-shot

recognition.

O3 = min
θf ,θg

||yr − ŷr||
2
2 (4)

where, ŷr is the output of the decoder g(x; θg).

Overall Objective. With the above three objective

functions, the overall objective is given by:

O =
1

|B|

∑

B

O1 + λ1O2 + λ2O3 (5)

Here |B| refers to the size of the mini-batch B. λ1 and λ2

are hyper-parameters chosen based on the validation data.

Given a testing sample xu, we infer its class as follows:

c∗ = argmax
c

s
(

f(yc
r ; θf ), x

u
)

(6)

where yc
r refers to the class embeddings of only the unseen

classes in the conventional zero-shot setting and to the class

embeddings of both seen as well as unseen classes in the

generalized zero-shot setting.

3.3. Mining the Tuples

The proposed algorithm relies on sampling the tuples for

preserving the semantic relations. In the tuple (xi,xj,xk),
xi can be chosen at random such that it belongs to the same

class as yr, which we choose sequentially from the dataset.

There are many possible ways to choose xj and xk. Choos-

ing the most informative tuples will help in faster conver-

gence and provide useful updates for gradient descent based

algorithms. In this work, we sample the tuples in an online

fashion, wherein for each epoch a criterion is evaluated. Our
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Dataset
No. of

attributes

No. of

Seen

Classes

No. of

unseen

classes

No. of

samples

No.of

samples

(Train)

No. of

samples from

unseen classes

(Test)

No. of

samples from

seen classes

(Test)

Hidden layer

size (Encoder)

Hidden layer

size (Decoder)

SUN [42] 102 645 72 14340 10320 1440 2580 H1 = 1024 H1 = 1024

AWA2 [40] 85 40 10 37322 23527 7913 5882
H1 = 512

H2 = 1024

H1 = 1024

H2 = 512

CUB [38] 312 150 50 11788 7057 2967 1764 H1 = 1024 H1 = 1024

aPY [11] 64 20 12 15339 5932 7924 1483
H1 = 512

H2 = 1024

H1 = 1024

H2 = 512

Table 1: Details of the datasets with the corresponding encoder-decoder architecture used in the proposed approach. H1 and H2 refers to

the first and second hidden layer respectively. Only one hidden layer has been used for SUN and CUB datasets.

method is similar to the hard negative mining approach for

triplet based learning algorithms [6, 33, 35]. For every yr

we wish to embed, we randomly sample p (p = 50) xj
′s

which satisfy the condition τ ≤ δij < 1. Among these xj
′s,

we update the parameters of the model with that particular

sample which gives the highest loss in objective O2. Simi-

larly, we randomly sample p different xk
′s which satisfy the

condition that δij < τ . Among these xk
′s, we update the

parameters of the model with that particular sample which

gives the highest value in the second term of objective O1.

It can be seen that we update the model from a set of

randomly sampled points. This is much more efficient com-

pared to updating the model using the hardest negative [33]

which involves computing the maximum over a much larger

set of points. In addition, our method also circumvents the

problem of potentially reaching a bad minima due to upda-

tion of the model with the hardest negative. We also tried

updating with the semi-hard negatives as described in [33],

but it did not lead to any significant impact on the results.

4. Experiments

4.1. Datasets and Experimental Setting

We evaluate the proposed approach on four datasets for

zero-shot learning : SUN [42], Animals with Attributes 2

(AWA2) [40], Caltech UCSD Birds 200-2011 (CUB) [38]

and Attribute Pascal and Yahoo dataset (aPY) [11]. All

these datasets are provided with annotated attributes.

The details of these datasets are listed in Table 1. It

was observed in [41] that some of the testing categories

in the original split of the datasets are subset of the Ima-

genet [32] categories. Hence, extracting features from Ima-

genet trained models will not result in a true zero-shot set-

ting. In order to alleviate the problem, the authors proposed

a new split such that none of the testing categories coin-

cide with Imagenet categories. In addition, some samples

from seen categories were held out for generalized zero-

shot recognition. Hence, we employ the protocol and the

splits as described in [41, 40]. We use continuous per-class

attributes for all the datasets and average per-class top-1 ac-

curacy to report the results.

We use the 2048-D Resnet-101 [14] features provided

by [41] for all the datasets. The architecture details of the

proposed approach are given in Table 1. ReLU activation is

used for all the layers except for the output of the encoder

and the decoder, which employ ELU [9] activations. We

use Adam optimizer [15] with a learning rate of 10−3 and

a weight decay of 5 × 10−5. All the input features and at-

tributes are normalized to have zero mean and unit standard

deviation.

The comparisons with the state-of-the-art are made with

the results reported in [40], as it is based on exactly the

same protocol and use the same set of features. Besides,

the algorithms on which the results are reported encompass

a wide range of approaches in zero-shot learning.

Baselines. We define three baseline settings which

provide insights into the importance of each of the terms in

the proposed objective function. For baseline B1, instead

of O1 and O2, mean squared error objective is used to

learn the mapping. The same architecture as used by the

proposed approach is used along with the reconstruction

objective O3. This will align the mapped class embeddings

with the structure of the visual space. Since this setup does

not enforce the relations as described in Section 3.1, the

embedding space may not maintain the structure of the

semantic space. For baseline B2, we set τ = 1 and λ1 = 0
in our approach. This helps us to better understand the

importance of objective O2. This results in maximizing

the cosine similarity for identical classes and minimizing

the same for all other classes. In addition to the above

two baselines, we also demonstrate the importance of

the objective O3. We employ just the encoder and set

λ2 = 0 in our experiments for B3. This provides insight

into the degree of enhancement in performance due to the

reconstruction term.

4.2. Conventional Zero­Shot Learning Results

The results of the proposed approach on various datasets

is listed in Table 2. We also provide comparisons with the

state-of-the-art. With respect to the first baseline B1, we ob-

serve that the proposed approach consistently performs bet-
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Method SUN AWA2 CUB aPY

DAP [18] 39.9 46.1 40.0 33.8

IAP [18] 19.4 35.9 24.0 36.6

CONSE [24] 38.8 44.5 34.3 26.9

CMT [36] 39.9 37.9 34.6 28.0

SSE [45] 51.5 61.0 43.9 34.0

LATEM [39] 55.3 55.8 49.3 35.2

ALE [4] 58.1 62.5 54.9 39.7

DEVISE [13] 56.5 59.7 52.0 39.8

SJE [5] 53.7 61.9 53.9 32.9

ESZSL [31] 54.5 58.6 53.9 38.3

SYNC [7] 56.3 46.6 55.6 23.9

SAE [16] 40.3 54.1 33.3 8.3

MSE + Recons. (B1) 58.5 54.9 49.2 34.8

Proposed - O2 (B2) 57.1 57.2 51.5 31.6

Proposed - O3 (B3) 58.7 62.4 52.7 37.2

Proposed 61.4 63.8 56.0 38.4

Table 2: Average per-class accuracy (top-1 in %) for conventional

zero-shot learning. Results of the existing approaches are taken

from [40].

ter on all the datasets. This supports our hypothesis that in-

heriting semantic properties to the embedding space is ben-

eficial for zero-shot recognition. We also observe signifi-

cant increase in performance when we include the objective

O2 in our approach. In this case, the difference in perfor-

mance is pronounced in coarse-grained datasets AWA2 and

aPY wherein the inter-class semantics are much different.

This indicates that the objective O2, which is essentially the

structure preserving term, is beneficial for zero-shot recog-

nition. The reconstruction term also contributes to varying

levels of gain in performance. Visualization of the embed-

ding space is presented in Figure 1 for the ten unseen classes

of AWA2 dataset. It can be seen that the semantic relations

are preserved to a good extent.

The proposed approach also compares favorably with

the existing approaches in literature, with our approach

obtaining the state-of-the-art on SUN, AWA2 and CUB

datasets. On aPY dataset, we obtain 38.4% which is slightly

less than Deep Visual Semantic Embedding Model [13].

However, on the generalized zero-shot setting, the proposed

approach performs much better, as illustrated next.

Effectiveness of the tuple mining approach. The

graph showing the accuracy on the validation split against

the number of epochs for the four datasets is shown in

Figure 3. We observe that for all the datasets, around 80%

of the maximum accuracy is reached in less than 5 epochs.

4.3. Generalized Zero­Shot Learning Results

In [41], some of the samples from seen classes are held

out for testing. In this setting, the search space consists of

both the seen classes as well as the unseen classes. This

Figure 3: Plot of validation accuracy against number of epochs.

scenario is more realistic, as we cannot usually anticipate

whether an incoming sample belongs to a seen class or an

unseen class. Table 3 reports the result of generalized zero-

shot learning on the four datasets under two different set-

tings. The first setting (referred to as ts) involves compar-

ison of samples from unseen classes against both seen and

unseen classes. The second setting (referred to as tr) in-

volves comparison of samples from unseen classes as well

as held-out samples from seen classes against all the classes.

High accuracy on tr and low accuracy on ts implies that the

model performs well on the seen classes but fails to gener-

alize to the unseen classes. The harmonic mean (denoted

by H) of the two results is also reported, as this measure en-

courages accuracies for both the settings to be high [41, 40].

With respect to B1, we can see that our method performs

better in the first setting (ts) by a large margin. With respect

to B2, there is a gain in accuracy on all the settings. The

difference is pronounced in the first setting, which is con-

cerned with samples belonging to novel classes. This indi-

cates that employing the concept of semantic relations and

preserving these relations in the embedding space is benefi-

cial for classification on novel categories. In fact, the obser-

vations made for conventional zero-shot learning setting are

also applicable here in a more realistic setting. With respect

to the state-of-the-art, our approach gives a harmonic mean

accuracy of 26.7% on SUN which is the best result among

all the reported methods. In addition, we obtain 32.3%

on the AWA2 dataset, better than the next best method by

nearly 5%. On CUB, proposed approach obtains a best ac-

curacy of 24.6% on the first setting and 33.9% overall. On

aPY dataset, our approach achieves 13.5% on the first set-

ting and 51.4% on the second setting, with an overall result

of 21.4%. It can be seen that methods like CONSE [24] per-

form very well on seen classes but do not generalize well

for novel classes. Although our method does not match the

accuracy of the methods like CONSE [24] and CMT [36]

on the second setting, it outperforms them on the first set-

ting by a large margin which is reflected in the harmonic
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SUN AWA2 CUB aPY

Method ts tr H ts tr H ts tr H ts tr H

DAP [18] 4.2 25.1 7.2 0.0 84.7 0.0 1.7 67.9 3.3 4.8 78.3 9.0

IAP [18] 1.0 37.8 1.8 0.9 87.6 1.8 0.2 72.8 0.4 5.7 65.6 10.4

CONSE [24] 6.8 39.9 11.6 0.5 90.6 1.0 1.6 72.2 3.1 0.0 91.2 0.0

CMT [36] 8.1 21.8 11.8 0.5 90.0 1.0 7.2 49.8 12.6 1.4 85.2 2.8

CMT* [36] 8.7 28.0 13.3 8.7 89.0 15.9 4.7 60.1 8.7 10.9 74.2 19.0

SSE [45] 2.1 36.4 4.0 8.1 82.5 14.8 8.5 46.9 14.4 0.2 78.9 0.4

LATEM [39] 14.7 28.8 19.5 11.5 77.3 20.0 15.2 57.3 24.0 0.1 73.0 0.2

ALE [4] 21.8 33.1 26.3 14.0 81.8 23.9 23.7 62.8 34.4 4.6 73.7 8.7

DEVISE [13] 16.9 27.4 20.9 17.1 74.7 27.8 23.8 53.0 32.8 4.9 76.9 9.2

SJE [5] 14.7 30.5 19.8 8.0 73.9 14.4 23.5 59.2 33.6 3.7 55.7 6.9

ESZSL [31] 11.0 27.9 15.8 5.9 77.8 11.0 12.6 63.8 21.0 2.4 70.1 4.6

SYNC [7] 7.9 43.3 13.4 10.0 90.5 18.0 11.5 70.9 19.8 7.4 66.3 13.3

SAE [16] 8.8 18.0 11.8 1.1 82.2 2.2 7.8 54.0 13.6 0.4 80.9 0.9

MSE + Recons. (B1) 12.8 38.9 19.3 13.6 72.4 22.9 13.1 48.8 20.7 10.9 51.3 18.0

Proposed - O2 (B2) 17.2 35.3 23.1 15.3 73.5 25.3 20.7 51.6 29.5 7.6 36.0 12.6

Proposed - O3 (B3) 16.9 34.2 22.4 20.5 72.9 32.0 20.9 52.3 29.9 11.4 48.7 18.5

Proposed 20.8 37.2 26.7 20.7 73.8 32.3 24.6 54.3 33.9 13.5 51.4 21.4

Table 3: Results on generalized zero-shot learning. ts refers to the setting wherein the testing samples belong to unseen classes. tr refers

to the setting in which the testing samples belong to either seen classes or unseen classes. H refers to the harmonic mean between ts and

tr. The results of the existing approaches are taken from [40]. CMT* refers to CMT [36] with novelty detection.

Conventional

ZSL

Generalized

ZSL

2H 3H All 2H 3H All

Top-1
SYNC [7] 9.1 2.6 0.9 0.3 0.1 0.0

Proposed 9.4 2.8 1.0 1.2 0.8 0.4

Top-5
SYNC [7] 25.9 4.9 2.5 8.7 3.8 1.2

Proposed 26.3 4.8 2.7 11.2 4.9 1.7

Table 4: Results on ImageNet. We measure top-1 and top-5 ac-

curacies in %. 2H / 3H refers to the test split in which classes are

2 / 3 tree hops away from train classes in the WordNet hierarchy.

mean of the two. In addition, our method performs better

compared to other competitive methods like ALE [4] and

DEVISE [13] on the first setting on AWA2, CUB and aPY.

4.4. Experiments on ImageNet

ImageNet [32] is a large scale dataset consisting of

nearly 14.1 million images belonging to 21,841 categories.

The 1000 categories of ILSRVC are used as seen classes2

while the rest as unseen classes. There are no curated at-

tributes available for this dataset. Distributed word embed-

dings like Word2Vec [22] are employed instead as they have

been shown to contain semantic properties which are suit-

able for zero-shot learning. We extract the Resnet-101 [14]

features from the pretrained model available in the py-

torch [2] model zoo. We use the Word2Vec provided by [7].

2Images from one of the seen classes namely ‘teddy bear’ which be-

longs to the synset n04399382 was unavailable. Hence, we use only 999

categories for training.

We employ two hidden layers for the encoder and the de-

coder, similar to AWA2 and aPY datasets. For compari-

son, we implement the SYNC [7] algorithm with the afore-

mentioned features and settings. To the best of our knowl-

edge, SYNC achieves the state-of-the-art performance on

this very challenging dataset [41, 40]. We use the public

code made available by the authors for evaluation.

Table 4 lists the results obtained using the proposed ap-

proach on different splits of test data. We observe that

our approach consistently achieves better performance com-

pared to SYNC, thus improving over the state-of-the-art.

On the generalized zero-shot setting, we observe that the

proposed approach outperforms SYNC by a large margin.

This indicates that the proposed approach scales favorably

to a realistic setting with large number of unseen classes.

4.5. Approximate Semantic Inference

It is reasonable to assume that attributes or other form

of side information is available in most of the scenarios.

However, there might be a situation in which side informa-

tion for a few categories of interest might not be available.

For example, in ImageNet, out of the 21,841 categories,

Word2Vec for 497 categories is not present. This bottle-

neck might crop up in a very large scale setting as evident

in the ImageNet example. In this scenario, though classifi-

cation is not possible, we wish to infer the approximate se-

mantic characteristics of the object in the image. Since our

model has semantic characteristics in its embedding space,

we can approximately infer the semantic properties of the

image in relation to the existing categories (seen and un-
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Figure 4: Results on approximate semantic inference. The image at the left corresponds to the query image for which class embeddings

are not available. Comparison using cosine similarity with the existing class embeddings (seen as well as unseen) is shown. The numerical

figures indicate the cosine similarity of the image with respect to the class. The bar indicates whether the model predicts it as similar

(green) or dissimilar (red). τ = 0 for this setup.

seen). Some of the empirical results on categories of Im-

ageNet for which class embeddings is not available can be

seen in Figure 4. In the first example, the bird in the im-

age belongs to Aegypiidae, for which the class embedding

is not available. The image feature is compared using co-

sine similarity with the existing class embeddings. It can

be inferred that the given image is semantically similar to

Prairie Chicken, Black Chicken and Vulture. Moreover, it

can also be inferred that categories Poll Parrot, Trogon and

Cannon are dissimilar to the bird in the image. This is very

much in agreement to the actual semantic properties of the

categories. In addition, the cosine similarity score is evoca-

tive of the degree of similarity between the actual category

and the category with which it is compared. Similar obser-

vations can be made from other examples as well. This sug-

gests that inheriting the structure of semantic space helps to

make approximate inference about an image with respect to

known entities, thus showing potential for tasks beyond just

zero-shot classification.

5. Discussion

The cosine similarity function applied on the mapped

class embeddings and the image features can be approxi-

mated to a normalized compatibility score function. Thus,

the setup of baseline B2 is similar to the ranking based

methods [3, 39, 13] which employ compatibility functions

wherein the embeddings which belong to the same class are

pulled together while the rest are pushed apart. The results

are also similar to the ones achieved using these methods.

Thus, a particular instantiation of the proposed approach

can be approximated to compatibility models with the rank-

ing objective. In addition, the merits of approaches [16] and

[44] are seamlessly incorporated in our model.

Although the advantages of the proposed approach is

clear and encouraging, one of the limitations is its perfor-

mance on the seen categories in the generalized zero-shot

setting. Though it does not match the results on some of

the previous approaches in literature, the proposed approach

still gives encouraging performance. We believe that ex-

ploration of more intricate forms of relations between cat-

egories would help in furthering the state-of-the art in this

setting.

6. Conclusion

In this work, we focus on efficiently utilizing the
structure of the semantic space for improved classification
on the unseen categories. We introduce the concept of
relations between classes in terms of their semantic content.
We devise objective functions which help in preserving se-
mantic relations in the embedding space thereby inheriting
the structure of the semantic space. Extensive evaluation
of the proposed approach is carried out and state-of-the-art
results are obtained on multiple settings including the
tougher generalized zero-shot learning, thus proving its
effectiveness for zero-shot learning.
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