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Abstract

Most of the traditional work on intrinsic image decom-

position rely on deriving priors about scene characteristics.

On the other hand, recent research use deep learning mod-

els as in-and-out black box and do not consider the well-

established, traditional image formation process as the ba-

sis of their intrinsic learning process. As a consequence,

although current deep learning approaches show superior

performance when considering quantitative benchmark re-

sults, traditional approaches are still dominant in achieving

high qualitative results.

In this paper, the aim is to exploit the best of the two

worlds. A method is proposed that (1) is empowered by

deep learning capabilities, (2) considers a physics-based

reflection model to steer the learning process, and (3) ex-

ploits the traditional approach to obtain intrinsic images

by exploiting reflectance and shading gradient information.

The proposed model is fast to compute and allows for the

integration of all intrinsic components. To train the new

model, an object centered large-scale datasets with intrin-

sic ground-truth images are created.

The evaluation results demonstrate that the new model

outperforms existing methods. Visual inspection shows that

the image formation loss function augments color reproduc-

tion and the use of gradient information produces sharper

edges.

Datasets, models and higher resolution images are avail-

able at https://ivi.fnwi.uva.nl/cv/retinet.

1. Introduction

Intrinsic image decomposition is the process of sep-

arating an image into its formation components such as

reflectance (albedo) and shading (illumination) [2]. Re-

flectance is the color of the object, invariant to camera view-

point and illumination conditions, whereas shading, depen-

dent on camera viewpoint and object geometry, consists of

different illumination effects, such as shadows, shading and

inter-reflections. Using intrinsic images, instead of the orig-

inal images, can be beneficial for many computer vision al-

gorithms. For instance, for shape-from-shading algorithms,

the shading images contain important visual cues to recover

geometry, while for segmentation and detection algorithms,

reflectance images can be beneficial as they are independent

of confounding illumination effects. Furthermore, intrinsic

images are used in a wide range of computational photog-

raphy applications, such as material recoloring [42, 26], re-

lighting [3, 10], retexturing [6, 41] and stylization [42].

Most of the pioneering work on intrinsic image decom-

position, such as [1, 2, 38, 40], rely on deriving priors

about scene characteristics to understand the physical in-

teractions of objects and lighting in a scene. In general,

an optimization approach is taken imposing constraints on

reflectance and shading intrinsics for a pixel-wise decom-

position. [20] introduces the well-known Retinex algorithm

which is based on the assumption that larger gradients in an

image usually correspond to reflectance changes, whereas

smaller gradients are more likely to correspond to illumi-

nation changes. In addition to the traditional work, more

recent research focuses on using deep learning (e.g. CNN)

models [27, 35]. However, these deep learning-based meth-

ods do not consider the well-established, traditional image

formation process as the basis of their intrinsic learning

process. Deep learning is used as in-and-out black box,

which may lead to inadequate or restricted results. Further-

more, the contribution and physical interpretation of what

the network learned is often difficult to interpret. As a con-

sequence, although current deep learning approaches show

superior performance when considering quantitative bench-

mark results, traditional approaches are still dominant in

achieving high qualitative results. Therefore, the goal of

this paper is to exploit the best of the two worlds. A method

is proposed that (1) is empowered by deep learning capabil-

ities, (2) considers a physics-based reflection model to steer

the learning process, and (3) exploits the traditional ap-
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proach to obtain intrinsic images by exploiting reflectance

and shading gradient information.

To this end, a physics-based convolutional neural net-

work, IntrinsicNet, is proposed first. A standard CNN ar-

chitecture is chosen to exploit the dichromatic reflection

model [31] as a standard reflection model to steer the train-

ing process by introducing a physics-based loss function

called the image formation loss, which takes into account

the reconstructed image of the predicted reflectance and

shading images. The goal is to analyze the contribution

of exploiting the image formation process as a constrain-

ing factor in a standard CNN architecture for intrinsic im-

age decomposition. Then, we propose the RetiNet, which is

a two-stage Retinex-inspired convolutional neural network

which first learns to decompose (color) image gradients into

intrinsic image gradients i.e. reflectance and shading gradi-

ents. Then, these intrinsic gradients are used to learn the

CNN to decompose, at the pixel, the full image into its cor-

responding reflectance and shading images.

The availability of annotated large-scale datasets is key

to the success of supervised deep learning methods. How-

ever, the largest publicly available dataset with intrinsic

image ground-truth has around a thousand of redundant

images taken from an animated cartoon-like short film

[7]. Therefore, to train our CNN’s, we introduce a large-

scale dataset with intrinsic ground-truth images: a synthetic

dataset with man-made objects. The dataset consists of

around 20,000 images. Rendered with different environ-

ment maps and viewpoints, the dataset provides a variety of

possible images in indoor and outdoor scenes.

In summary, our contributions are: (1) a standard CNN

architecture IntrinsicNet incorporating the image formation

loss derived by a physics-based reflection model, (2) a new

two-stage Retinex-inspired convolutional neural network

RetiNet exploiting intrinsic gradients for image decompo-

sition at the pixel, (3) gradient (re)integration (inverse prob-

lem) where images are integrated based on intrinsic gradi-

ents by a set of simple convolutions rather than complex

computations (e.g. Poisson), and (4) a large-scale synthetic

object-centered dataset with intrinsic ground-truth images.

2. Related Work

Since there are multiple unknowns and multiple solu-

tions to recover the pixel intrinsics, intrinsic image de-

composition is an ill-posed and under-constrained problem

[13, 34]. Therefore, most of the related work derive pri-

ors about the scene characteristics and impose constraints

on the reflectance and shading maps. Usually an optimiza-

tion procedure is used enforcing imaging constraints for

pixel-wise decomposition. One of the earliest and most

successful methods is the Retinex algorithm [20]. This ap-

proach considers that the reflectance image is piece-wise

constant and that the shading image varies smoothly. The

algorithm assumes that larger derivatives in an image cor-

respond to reflectance changes, and that the smaller ones

correspond to illumination changes. This approach is ex-

tended to color images [12] by exploiting the chromaticity

information, which is invariant to shading cues. Since then,

most of the (traditional) related work continued to focus on

understanding the physical interactions, geometries of the

objects, and lighting cues by inferring priors. Priors that are

used to constrain the inference problem are based on tex-

ture cues [32, 43], sparsity of reflectance [13, 34], user in

the loop [6, 33], and depth cues [1, 9, 21]. Other methods

use multiple images [19, 24, 40], where reflectance is con-

sidered as the constant factor and illumination the changing

one. These methods produce promising results as they dis-

ambiguate the decomposition. However, their applicability

is limited by the use of priors.

Supervised Deep Learning: Deep convolutional neural

networks are very successful for various computer vision

tasks, such as image classification [36] and object detec-

tion [14]. However, the success of supervised deep learn-

ing is dependent on the availability of annotated large-scale

datasets [22, 30]. Collecting and annotating large-scale

datasets takes considerable time and effort for most of the

deep learning related classification tasks. However, these

images are mostly collected from the internet, which makes

them easily accessible by nature. On the other hand, the

process of data generation and annotation is more difficult

for dense (pixel-wise) prediction tasks, such as semantic

segmentation, optical flow estimation and intrinsic image

decomposition. For those tasks, generating and annotating

synthetic data in an automated fashion is relatively easier

than collecting and annotating real world data. The use

of synthetic data has proven to produce competitive per-

formance [25, 29]. For real data, collecting and generat-

ing ground-truth intrinsic images is only possible in a fully-

controlled laboratory settings. It requires a delicate setting

to separate intrinsic images step by step from the original

image. This process requires excessive effort and time [15].

At this moment, the only existing dataset with real world

images and corresponding ground-truth intrinsics contains

as few as 20 object-centered images [15]. As a result, in-

trinsic image research using supervised deep learning is de-

pendent on synthetic datasets. [7] provides a scene-level

3D animated cartoon-like short film with intrinsic image

ground-truths. Although the dataset has around a thousand

images, it is demonstrated by [18, 27] that this dataset of

synthetic ground-truth is useful for training convolutional

neural networks. Further, [35] provides a large dataset

of non-Lambertian synthetic objects (around 3 million im-

ages). Using this dataset, [35] achieves state of the art

results by training an encoder-decoder based convolutional

neural network. However, their dataset is not publicly avail-

able, yet. [5] provides relative reflectance comparisons over
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point pairs of real world indoor scenes. These indoor scenes

are annotated by crowd-sourcing. Although it does not have

ground-truth intrinsic images, it is effective in learning pri-

ors and relationships in a data-driven manner [28, 44, 45].

Supervised deep learning, trained on large scale datasets,

achieves state of the art results on different benchmarks.

However, they ignore physics-based characteristics of the

intrinsic image formation process. These methods use deep

learning as a black box. The use of reflection models are

used by traditional methods. However, traditional methods

do not exploit the learning power of CNNs. [27] argues

that the learning model should consider both patch level

information and the overall gist of the scene. In more re-

cent work, the proposed model is based on the assumption

that the intrinsic components are highly correlated [35].

Their training data is generated in a physics-based man-

ner as well, including a specular component, but they do

not explicitly embed a physics-based image formation loss.

Another recent work [18] uses an image formation com-

ponent in their unary term for CRF (for the optimization

process, not in the learning process itself), but their train-

ing data (Sintel) was not created in a physics-based manner.

Nonetheless, none of proposed deep learning methods con-

sider the image formation process for consistent decompo-

sition during training, nor a Retinex driven gradient sepa-

ration approach [4, 13, 15, 32, 37, 38]. Retinex has a solid

background in intrinsic image decomposition. Therefore,

this paper combines the best of the two worlds: supervised

deep learning based on reflection and Retinex models.

3. Approach

In this section, the image formation model is described

first. Then, we propose an encoder-decoder CNN, called

IntrinsicNet, which is a convolutional neural network based

on the reflection model by introducing the image formation

loss. Finally, we propose a new CNN architecture, RetiNet,

which is a Retinex-inspired scheme that exploits image gra-

dients in combination with the image formation loss.

3.1. Image Formation Model

The dichromatic reflection model [31] describes a sur-

face as a composition of the body Ib (diffuse) and specular

Is (interface) reflectance:

I = Ib + Is. (1)

Then, the pixel value, measured over the visible spectrum

ω, is expressed by:

I = mb(~n,~s)

∫

ω

fc(λ) e(λ) ρb(λ) dλ +

ms(~n,~s,~v)

∫

ω

fc(λ) e(λ) ρs(λ) dλ,

(2)

where ~n is the surface normal, ~s is the light source direc-

tion, and ~v is the viewing/camera direction. m is a function

of the geometric dependencies. Furthermore, λ is the wave-

length, fc(λ) is the camera spectral sensitivity, e(λ) defines

the spectral power distribution of the illuminant, ρb charac-

terizes the diffuse surface reflectance, and ρs is the specular

reflectance with Fresnel reflection.

Assuming a linear sensor response and narrow band fil-

ters (λI ), Equation (2) is as follows:

I = mb(~n,~s) e(λI) ρb(λI) +

ms(~n,~s,~v) e(λI) ρs(λI).
(3)

Then, under the assumption of body (diffuse) reflection,

the decomposition of the observed image I(~x) at position

~x can be approximated as the element-wise product of its

reflectance R(~x) and shading S(~x) intrinsics:

I(~x) = R(~x)× S(~x), (4)

where S(~x) can be Lambertian i.e. the dot product of ~n
and ~s at location ~x. In Equation (3), e(λI) is modeled as a

single, canonical light source. We can extend the model for

a non-canonical light source as follows:

I(~x) = R(~x)× S(~x)× E(~x), (5)

where E(~x) describes the color of the light source at posi-

tion ~x. The model for a global, non-canonical light source

is described by:

I(~x) = R(~x)× S(~x)× E. (6)

Equation (4) is extended to non-diffuse reflection by adding

the specular (surface) term H(~x):

I(~x) = R(~x)× S(~x) +H(~x). (7)

and for a non-canonical light source by:

I(~x) = R(~x)× S(~x)× E(~x) +H(~x)× E(~x). (8)

Finally, for a global, non-canonical light source we obtain:

I(~x) = R(~x)× S(~x)× E +H(~x)× E. (9)

In the next section, the reflection model is considered to in-

troduce different image formation losses within an encoder-

decoder CNN model for intrinsic image decomposition.

3.2. IntrinsicNet: CNN driven by Reflection Models

In this section, a physics-based deep learning network,

IntrinsicNet, is proposed. We use a standard CNN archi-

tecture to constrain the training process by introducing a

physics-based loss. The reason of using a standard CNN ar-

chitecture is to analyze whether it is beneficial to constrain
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Figure 1: IntrinsicNet model architecture with one shared encoder and two separate decoders: one for shading and one

for reflectance prediction. Encoder part contains both shading and reflectance characteristics. The decoder parts aim to

disentangle those features.

the CNN by the reflection model. Therefore, an end-to-

end trainable encoder-decoder CNN is considered. These

type of CNNs yield good results in most of the pixel-wise

dense prediction tasks [35, 39]. An architecture is adopted

with one shared encoder and two separate decoders: one for

shading prediction and one for reflectance prediction. The

features learned by the encoder stage contain both shading

and reflectance cues. The purpose of the decoder parts is to

disentangle those features. Figure 1 illustrates our model.

Obviously, the architecture can be extended by considering

more image formation factors (e.g. the light source or high-

lights) by adding the corresponding decoder blocks.

To train the model, we use the standard L2 reconstruc-

tion loss. Let Ĵ be the ground-truth intrinsic image and J
be the prediction of the network. Then, the reconstruction

loss LRL is given by:

LRL(J, Ĵ) =
1

n

∑

~x,c

||Ĵ − J ||22, (10)

where ~x denotes the image pixel, c the channel index and n
is the total number of evaluated pixels. In our case, the final,

combined loss LCL is composed of 2 distinct loss functions,

one for reflectance reconstruction LRLR
and one for shad-

ing reconstruction LRLS
:

LCL(R, R̂, S, Ŝ) = γR LRLR
(R, R̂) +

γS LRLS
(S, Ŝ),

(11)

where the γs are the corresponding weights. In general,

this type of network may generate color artifacts and blurry

reflectance maps [35, 39]. The goal of the image formation

loss is to increase the color reproduction quality because of

the physics constraint.

More precisely, the image formation loss LIMF takes

into account the reconstructed image of the predicted re-

flectance and shading images. That is in addition to the

RGB input image. Hence, this loss imposes the reflection

model constraint of Equation (4):

LIMF (R,S, I) = γIMF LRLIMF
((R× S), I) (12)

where I is the input image. Thus, the final loss of the In-

trinsicNet becomes:

LFL(I, R, R̂, S, Ŝ) = LCL(R, R̂, S, Ŝ) +

LIMF (R,S, I).
(13)

Note that the image formation loss is not limited to Equa-

tion (4). Any intrinsic image Equation (4-9) can be used

depending on the intrinsic problem at hand. For example,

the loss function for the full reflection model LFRM is as

follows:

LFRM (∗) = γR LRLR
(R, R̂) + γS LRLS

(S, Ŝ) +

γH LRLH
(H, Ĥ) + γE LRLE

(E, Ê) +

γIMF LRLIMF
((R× S × E +H × E), I)

(14)

The image formation loss function is designed to aug-

ment the color reproduction. To augment both color repro-

duction and edge sharpness, in the next section, a two-stage

Retinex-inspired CNN architecture is described which uses

intrinsic gradients (for edge sharpness) and the image for-

mation loss (for color reproduction).

3.3. RetiNet

In this section, we exploit how a well-established, tradi-

tional approach such as Retinex can be used to steer the de-

sign of a CNN architecture for intrinsic image decomposi-

tion. Therefore, we propose the RetiNet model. In fact, the
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Figure 2: RetiNet model architecture. Refer to Figure 1 for layer types and encoder-decoder sub-network details. Instead

of generating intrinsic image pixel values, the encoder-decoder network is trained to separate (color) image gradients into

intrinsic image gradients. Then, for gradient re-integration part, the input image is concatenated with predicted intrinsic

gradients and forwarded to a fully convolutional sub-network to perform the actual pixel-wise intrinsic image decomposition.

RetiNet architecture is a two-stage Retinex-inspired CNN

that exploits gradient information in combination with the

image formation loss. Actually, most of the traditional ap-

proaches follow the successful Retinex findings of using

gradient separation [4, 13, 15, 32, 37, 38]. In contrast to

threshold-driven gradient separation, the goal of our net-

work is to learn intrinsic gradients directly from data avoid-

ing hard-coded thresholds. Further, for the re-integration

process, we propose a series of simple convolutions to ef-

ficiently compute the intrinsic images separately. That is

in contrast to other methods which try to find, by complex

computations, the pseudo-inverse of an unconstrained sys-

tem of derivatives, or to solve the Poisson equation.

Image gradients are calculated by taking the intermedi-

ate difference between neighboring pixels; horizontal (Gx)

and vertical (Gy) separately. Finally, the gradient magni-

tude (G) is given as the square root of the sum of squares of

the horizontal and the vertical components of the gradient:

G =

√

Gx
2 +Gy

2 (15)

This operation is carried out for each color channel individ-

ually. Then, the input is formed by concatenating the RGB
image with its gradients per color channel, resulting in a 6

channel input. In this way, the network is assisted by image

gradients. Finally, the encoder-decoder network is trained

to separate color image gradients to intrinsic image gradi-

ents by using Equation (11):

LS1 = LCAL(∇R,∇R̂,∇S,∇Ŝ), (16)

where ∇ denotes the image gradient. For the first stage,

we use the IntrinsicNet architecture described in the previ-

ous section. For the second stage, the input image is con-

catenated with the predicted intrinsic gradients this time.

The newly formed input is provided to a fully convolutional

sub-network to perform the actual decomposition by using

Equation (13) with the intrinsic loss. Figure 2 illustrates our

RetiNet model.

[11] has some similarities with our gradient-based

model. However, our model differs from theirs in sev-

eral ways. Instead of relying on edge information, we di-

rectly use gradient information. Further, we aim to learn to

separate gradients into different components, whereas their

method only has one component. Finally, we propose a se-

ries of simple convolutions for the reintegration part, while

they use an encoder-decoder based network with deconvo-

lutions.

4. Experiments

4.1. New Synthetic Dataset of Man­made Objects

For our experiments, large scale datasets are needed to

train the networks. Unfortunately, the intrinsic, synthetic

ground-truth dataset of [35] is not publicly available (yet).

For comparison reasons, we created a new dataset follow-

ing the one described by [35]. We randomly sample around

20,000 3D models obtained from the ShapeNet dataset [8]

for training. To create more variation and to decouple the

correlation between image shape and texture, the texture of

each component in a model is replaced by a random color.

To enforce the lighting model, we apply a diffuse bidirec-

tional scattering distribution function (BSDF) on the object

surface with a random roughness parameter. The rendering

is performed by the physics-based Blender Cycles1. Dif-

ferent environment maps are used to render the models at

random viewpoints sampled from the upper hemisphere as

conducted in [35]. To guarantee the relationship between

reflectance and shading, the Cycles pipeline is modified to

obtain the output image, its corresponding reflectance, and

the shading map in high-dynamic range without gamma-

correction. Since the images are taken from objects, the

1https://www.blender.org/
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Albedo GT Shading GTInput Albedo GT Shading GTInput

Figure 3: Overview of the synthetic dataset. Different en-

vironment maps are used to render the models for realistic

appearance.

final dataset of around 20,000 images are object-centered.

The object-centered dataset represent man-made objects.

An overview of the datasets is given in Figure 3. Ren-

dered with different environment maps and viewpoints, the

dataset provides a variety of possible images in indoor and

outdoor scenes.

4.2. Error Metrics

To evaluate and compare our approach, metrics are cho-

sen which are commonly used in the field. First, the results

are evaluated in terms of the mean squared error (MSE) be-

tween the ground-truth intrinsic images and the measured

ones. Following [15], absolute brightness of each image

is adjusted to minimize the error. Further, the local mean

squared error (LMSE) [15] is chosen which is computed by

aggregating the MSE scores over all local regions of size

k × k with steps of k/2. Following the setup of [15], all

the results in the paper use k = 20. The LMSE scores of the

intrinsic images are averaged and normalized to make the

maximum possible error equal to 1. To evaluate the percep-

tual visual quality of the results, the dissimilarity version of

the structural similarity index (DSSIM) [9] is taken.

4.3. Implementation Details

For the encoder network, the VGG16 architecture [36]

is used by removing the fully-connected layers. Moreover,

for dimensionality reduction, the max-pooling layers are re-

placed by convolutional layers with stride 2. In this way, our

model learns its customized spatial down-sampling and is

fully convolutional. For the decoder network, the encoder

part is mirrored. The strided convolutional layers are in-

verted by a 4×4 deconvolution with stride 2. Furthermore,

we follow [23] and use skip-layer connections to pass im-

age details to the top layers. The connections are linked

between the convolutional layers before down-sampling of

encoder blocks, and the corresponding deconvolutional lay-

IN (-) IN (+)Input GT

Figure 4: MIT intrinsic benchmark differentiated by the use

of the image formation loss. IN(+/-) denotes the Intrinsic-

Net with/without the image formation loss. The image for-

mation loss suppresses color artifacts and halo effects.

ers of the decoder part, except between the last block of

the encoder and the first block of the decoder. Moreover,

batch normalization [17] is applied after each convolutional

layer, except for the last layer of the decoders and the in-

ference net of RetiNet (prediction results) to speed up the

convergence and to maintain the gradient flow. The infer-

ence net has convolution kernels of 3×3 and the layers have

[64, 128, 128, 64] feature maps, respectively. Our models

are implemented using the stochastic gradient descent opti-

mizer with learning rate of 1e-5 and momentum of 0.9. A

polynomial decay is applied to the learning rate to reach a

final learning rate of 1e-7. Convolution weights are initial-

ized by using [16] with a weight decay of 0.0005, whereas

deconvolution weights are initialized randomly from a nor-

mal distribution with mean of 0 and standard deviation of 1.

Moreover, the input size is fixed to 120×160 pixels and the

batch size is fixed at 16 for all experiments. Throughout all

experiments, we randomly flip, vertical or horizontal, and

shift images by a random factor of [-20, 20] pixels horizon-

tally and vertically to generate additional training samples

(data augmentation).

5. Evaluation

5.1. Image Formation Loss

Figure 4 shows detailed views of a patch, demonstrat-

ing the benefits of the image formation loss. It can be de-

rived that the image formation loss suppresses color arti-

facts and halo effects. Furthermore, Table 1 shows the quan-

titative evaluation results of our IntrinsicNet with and with-

out the image formation loss (LIMF ). The experiments on

the MIT intrinsic benchmark show that the image formation

loss constrains the model to obtain improved color repro-

duction as expressed quantitatively by the DSSIM metric.
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In addition, the model with the image formation loss obtains

better results for the MSE and LMSE metrics on average.

On the ShapeNet test set, the model with the image forma-

tion loss achieves similar performance for MSE and LMSE.

On DSSIM, it produces proper results for albedo prediction.

Considering the generalization ability and the effect on a

unseen real-world dataset, it can be observed that the net-

work with image formation loss achieves best performance

for all metrics. It shows the positive contribution of exploit-

ing the image formation process as a constraining factor in a

standard CNN approach for intrinsic image decomposition.

MSE LMSE DSSIM

Albedo Shading Albedo Shading Albedo Shading
∗Without LIMF 0.0045 0.0062 0.0309 0.0326 0.0940 0.0704
∗With LIMF 0.0051 0.0029 0.0295 0.0157 0.0926 0.0441

+Without LIMF 0.0005 0.0007 0.0300 0.0498 0.0075 0.0082
+With LIMF 0.0005 0.0007 0.0297 0.0505 0.0072 0.0084

Table 1: Evaluation results of the IntrinsicNet with and

without image formation loss on the MIT intrinsic bench-

mark (∗) and the ShapeNet test set (+). The image for-

mation loss constrains the model to obtain better DSSIM

performance. At the same time, it outperforms other mod-

els considering the MSE and LMSE metrics on real world

images.

5.2. ShapeNet Dataset

We now test our models on the ShapeNet test partition.

We follow the approach of [35] and randomly pick 1 im-

age per test model, resulting in 7000 test images. For all

experiments, the same test set is used. Table 2 shows the

quantitative evaluation results of the synthetic test set of

man-made objects. Figure 5 displays (visual) comparison

results. Our proposed methods yield better results on the

test set. Moreover, our RetiNet model outperforms all by a

large margin. Visual comparison results show that all of our

proposed models are capable of producing decent intrinsic

image compositions on the test set.

MSE LMSE DSSIM

Albedo Shading Albedo Shading Albedo Shading

DirectIntrinsics[27] 0.1487 0.0505 0.6868 0.3386 0.0475 0.0361

ShapeNet[35] 0.0023 0.0037 0.0349 0.0608 0.0186 0.0171

IntrinsicNet 0.0005 0.0007 0.0297 0.0505 0.0072 0.0084

RetiNet 0.0003 0.0004 0.0205 0.0253 0.0052 0.0064

Table 2: Evaluation results on ShapeNet. Our proposed

methods yield better results on the test set. Moreover, our

RetiNet model outperforms all by a large margin.

5.3. MIT Intrinsic Dataset

To assess our model on real world images, the MIT in-

trinsic image dataset [15] is used. The dataset consists of 20

object-centered images with a single canonical light source.

IN (-)Input IN (+) RN GT

Figure 5: Evaluation results on the synthetic test set. All

proposed models produce decent intrinsic image composi-

tions. IN(+/-) denotes the IntrinsicNet with/without the im-

age formation loss, and RN denotes the RetiNet model.

Figure 6 displays (visual) results and Table 3 shows the nu-

meric comparison to other state-of-the-art approaches. Our

proposed methods yield better results compared with the

ShapeNet [35] and DirectIntrinsics [27] models. It can be

derived that our proposed models properly recover the re-

flectance and shading information. However, IntrinsicNet

without the image formation loss generates color artifacts,

and both IntrinsicNets create blurry results compared with

RetiNet. In addition, if an image contains a strong shadow

cast, as in the deer image, models struggle to eliminate it

from the reflectance image. On the other hand, in RetiNet

colors appear more vivid in the reflectance image and it sup-

presses most of the remaining color artifacts and blurriness

that are present in IntrinsicNets. Figure 7 displays a detailed

analysis of RetiNet.

5.4. Real and In­the­wild Images

We also evaluate our RetiNet algorithm on real and in-

the-wild images. Figure 8 shows the performance of our

method (RetiNet) for a number of images. The results show

that it can capture proper reflectance image, free of shadings

caused by geometry. Finally, we present the reconstructed
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MSE LMSE DSSIM

Albedo Shading Albedo Shading Albedo Shading

Retinex[15] 0.0032 0.0348 0.0353 0.1027 0.1825 0.3987

DirectIntrinsics[27] 0.0277 0.0154 0.0585 0.0295 0.1526 0.1328

ShapeNet[35] 0.0468 0.0194 0.0752 0.0318 0.1825 0.1667

IntrinsicNet 0.0051 0.0029 0.0295 0.0157 0.0926 0.0441

RetiNet 0.0128 0.0107 0.0652 0.0746 0.0909 0.1054

RetiNet + GT∇ 0.0072 0.0034 0.0429 0.0224 0.0550 0.0443

Table 3: Evaluation results on MIT intrinsic benchmark.

Our proposed methods yield better results compared with

other models. Experiment with intrinsic gradient ground-

truths shows the benefits of exploiting them.

SN IN (-) IN (+) RN

Figure 6: MIT intrinsic benchmark differentiated by the dif-

ferent models. SN is the ShapeNet model of [35], IN(+/-)

denotes the IntrinsicNet with/without the image formation

loss, and RN denotes the RetiNet model (including the im-

age formation loss). Proposed models properly recover the

reflectance and shading information. IntrinsicNet without

the image formation loss generates color artifacts, and both

IntrinsicNets create blurry results compared with RetiNet.

input from its albedo and shading prediction to show that

the decomposition is consistent.

6. Conclusion

We proposed two deep learning models considering a

physics-based reflection model and gradient information to

steer the learning process. The contributions of the paper

are as follows. 1: New is the physics-based image forma-

tion model in the design of the loss functions. 2: A novel,

end-to-end solution is proposed to the well-known Retinex

approach based on derivatives. 3: New is the gradient sepa-

IN (+) RNInput GT

Figure 7: MIT intrinsic benchmark differentiated by the dif-

ferent models. IN(+) is the IntrinsicNet with the image for-

mation loss, and RN denotes the RetiNet model (including

the image formation loss). In RetiNet colors appear more

vivid in the reflectance image and it suppresses most of the

remaining color artifacts and blurriness that are present in

IntrinsicNets.

  

Input AlbedoInput ShadingInput Reconstructed Input

Figure 8: RetiNet applied on real images. It can capture

proper albedo image, free of shadings due to geometry.

ration part of the RetiNet model in which albedo and shad-

ing gradients are learned using a CNN. 4: A (re)integration

part is introduced where images are integrated based on gra-

dients by a set of simple convolutions. To train the models,

an object centered large-scale synthetic dataset with intrin-

sic ground-truth images was created. Proposed models were

evaluated on synthetic, real world and in-the-wild images.

The evaluation results demonstrated that the new model out-

performs existing methods. Furthermore, visual inspection

showed that the image formation loss function augments

color reproduction and the use of gradient information pro-

duces sharper edges. Future work will include all intrinsic

components in the learning model.
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