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Abstract

Maps are a key component in image-based camera lo-

calization and visual SLAM systems: they are used to es-

tablish geometric constraints between images, correct drift

in relative pose estimation, and relocalize cameras after lost

tracking. The exact definitions of maps, however, are often

application-specific and hand-crafted for different scenar-

ios (e.g. 3D landmarks, lines, planes, bags of visual words).

We propose to represent maps as a deep neural net called

MapNet, which enables learning a data-driven map rep-

resentation. Unlike prior work on learning maps, Map-

Net exploits cheap and ubiquitous sensory inputs like visual

odometry and GPS in addition to images and fuses them

together for camera localization. Geometric constraints ex-

pressed by these inputs, which have traditionally been used

in bundle adjustment or pose-graph optimization, are for-

mulated as loss terms in MapNet training and also used

during inference. In addition to directly improving local-

ization accuracy, this allows us to update the MapNet (i.e.,

maps) in a self-supervised manner using additional unla-

beled video sequences from the scene. We also propose a

novel parameterization for camera rotation which is bet-

ter suited for deep-learning based camera pose regression.

Experimental results on both the indoor 7-Scenes dataset

and the outdoor Oxford RobotCar dataset show significant

performance improvement over prior work. The MapNet

project webpage is https://goo.gl/mRB3Au.

1. Introduction

Camera localization i.e. recovering the 3D position and

orientation of a moving camera is one of the fundamental

tasks in computer vision with a wide variety of applica-

tions in robotics, autonomous driving, and AR/VR. A key

component in camera localization, including various visual

SLAM systems [20, 42, 56] and image-based localization

methods [35, 46, 47] is the concept of a map. A map is an

abstract summary of the input data that establishes geomet-

ric constraints between observations and can be queried to

get the camera pose when tracking is drifting or lost. Maps,

however, are usually defined in an application-specific man-

Figure 1: Camera localization results for outdoor (left) and

indoor (right) scenes from the Oxford RobotCar [38] and 7-

Scenes [48] datasets. As shown, prior DNN-based methods (e.g.,

PoseNet [32, 30, 31]) result in noisy estimations, while traditional

visual odometry based methods (e.g., stereo VO or DSO [18]) of-

ten drift over time. In contrast, MapNet gives accurate camera

pose estimates by including various geometric constraints in DNN

training and inference.

ner with hand-crafted features. Examples include 3D land-

marks for general visual SLAM methods [34, 35, 42], 3D

lines and patches in semi-dense SLAM methods and in-

door scenes [20, 43, 56], object-level context in semantic

SLAM methods [10, 45], bag of visual word features on

key frames for camera relocalization [12, 46, 47]. Being

application-specific, these map representations may ignore

useful (sometimes, the only available) features in environ-

ments they were not designed for, and are inflexible to up-

date as more input data come in.

Is there a general map representation for camera localiza-

tion that addresses these drawbacks? In this paper, we take a

step towards answering this question. We propose to repre-

sent maps as a DNN, called MapNet, which learns the map

representation directly from input data, with the flexibility

to fuse multiple sensory inputs and to improve over time

using unlabeled data. MapNet aims to be a part that can be

easily plugged into any visual SLAM or image-based local-

ization systems. We are inspired by both the recent DNN-

based camera localization work (e.g., PoseNet [32] and its

variants [11, 31, 40, 55]) in the context of structure-from-

motion, as well as the traditional map optimization methods

(e.g., bundle adjustment (BA) [22, 23, 39], pose graph opti-

mization (PGO) [8, 17, 37]) in the context of visual SLAM.

Compared to these prior works, our approach makes the fol-
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lowing contributions:

• Most prior DNNs for camera localization [32, 30, 31,

11, 40, 55] are trained using single images labelled

with absolute camera pose. In MapNet we show how

the geometric constraints between pairs of observa-

tions can be included as an additional loss term in

training. These constraints can come from a variety

of sources: pose constraint from the visual odometry

(VO) between pairs of images, translation constraint

from two GPS readings, rotation constraint from two

IMU readings, etc. We call this geometry-aware learn-

ing and show that it significantly improves camera lo-

calization performance in Section 4.

• PoseNet and its variants are offline methods – the

learned DNNs are fixed after training. In contrast,

we propose MapNet+ that can use the geometric

constraints between pairs of observations mentioned

above to continuously update the DNN weights (i.e.,

maps) without absolute camera pose supervision, as

additional unlabeled data come in. Moreover, at run-

time, we also exploit the complementary noise char-

acteristics of MapNet predictions (locally noisy but

drift-free) and VO (locally smooth but drifty) by fus-

ing them in a moving window fashion with PGO. We

call this variant MapNet+PGO. We show in Section 4

that both MapNet+ and MapNet+PGO successively

improve performance further.

• We propose a new parameterization for camera rota-

tion, the logarithm of unit quaternion, which is better

suited for deep-learning based camera pose regression.

This improves the performance of PoseNet and Map-

Net, as shown in Table 2.

Figure 1 shows two examples of camera localization.

Pure DNN-based methods (e.g., PoseNet [32, 30, 31]) result

in noisy estimations, and the traditional VO-based meth-

ods (e.g., stereo VO or DSO [18]) often drift significantly

over time. By incorporting the geometric constraints into

DNN-based learning and inference, the proposed approach

MapNet+PGO achieves the best result. We evaluate the pro-

posed methods extensively on both the indoor 7-Scenes [48]

and the outdoor Oxford RobotCar dataset [38].

2. Related Work

Maps in Visual SLAM and Image-based Localization

Over the years, various types of map representations and

their optimization techniques have been proposed for cam-

era localization [52, 54]. In visual SLAM, 3D land-

marks (with feature descriptors of the corresponding im-

age patches) are often defined as maps in both Bayesian

filtering approaches [14, 41, 53] and key-frame based ap-

proaches [34, 42, 49]. The features are often modeled in

various forms such as points [14, 34], points and lines [21],

points and planes [51], or built on more semantic (object)

level features [10, 45]. However, the choice of the repre-

sentation has been application-specific, and thus the perfor-

mance can vary depending on a target scene (i.e., amount

of lines, planes or texture present in the scene). To address

this issue, recently, direct [27, 43] and semi-direct meth-

ods [18, 20] utilize all the pixels with high gradients rather

than features to build maps. While they provide more sta-

ble pose estimate and denser information of a scene, they

require a higher computational expense, and often need an

accurate intrinsic calibration and initialization because they

are sensitive to photometric consistency [5].

For map optimization, since Lu and Milios [37] first in-

troduced a graph-based method to refine a map with global

optimization of local nodes (measurements from odome-

try), various types of these local-to-global pose graph op-

timization methods have been proposed [15, 24, 52, 53].

Similarly, bundle adjustment [36, 54] has also been a pop-

ular choice for methods using structure from motion tech-

niques (i.e., keyframe-based approaches) [34, 42, 49].

In the context of image-based localization, visual place

recognition [46, 47, 35] and camera relocalization [42], im-

age descriptors (e.g., bag-of-words (BoW) features [12],

VLAD [4], Fisher vectors [28], and recent DNN-based fea-

tures [3]) are used to build maps/vocabularies for image re-

trieval and pose estimation.

Compared to these prior application-specific map defini-

tions, in this paper we primarily focus on learning a gen-

eral map representation for sequential camera localization

with deep neural networks, by leveraging statistical learn-

ing from big data and geometric constraints from pose graph

optimization and bundle adjustment.

DNN-based Camera Localization A few recent works

use deep neural networks for image-based localization in

the context of structure-from-motion. PoseNet [32] first

proposed to directly regress 6-DoF camera pose from an in-

put image with GoogLeNet. Kendall et al. [30, 31] extend

PoseNet by learning the weight between camera translation

and rotation loss and incorporating the reprojection loss.

Melekhov et al. [40] improved PoseNet with skip connec-

tions with ResNet34 architecture. Brachmann et al. [7] lo-

calize a camera in a dense 3D reconstruction by performing

RANSAC on predicted 2D-3D correspondences. Recently,

RNNs (e.g., LSTM) have been introduced to spatially [55]

and temporally [11] improve camera localization.

MapNet is inspired by the PoseNet line of work, but

has several major modifications. Table 1 shows a com-

parative summary. Clark et al. [11] used an LSTM to im-

plicitly learn the temporal relationship between consecutive

frames, but its performance is on-par or worse than prior

methods [31, 40]. In contrast, MapNet uses single images

as input during inference but still uses the geometric con-

2617



Table 1: Comparison with prior DNN-based camera localization methods. Please refer to Section 2 for details.

PoseNet Hourglass LSTM-Pose VidLoc (Proposed)

[32, 30, 31] [40] [55] [11] MapNet MapNet+ MapNet+PGO

Input Images Images Images Videos Images unlabeled videos + (VO, GPS, IMU)

Fusion ability No No No No No Yes Yes

Self-supervised update No No No No No Yes No

Temporal constraint No No No Yes Yes Yes Yes

Geometry aware Reprojection [31] No No No Geometric constraints on camera poses

straints between pairs as a meaningful learning signal for

training. MapNet+ and MapNet+PGO use unlabeled videos

and multiple sensory input (e.g., visual odometry, IMU,

GPS) to further improve performance. Thus, they can fuse

information from multiple modalities and improve in a self-

supervised manner. In [31] Kendall et al. make PoseNet

scene-geometry aware by minimizing the reprojection error

of 3D points in multiple images. In contrast, MapNet is

camera motion-geometry aware by utilizing the geometric

constraints between camera poses.

3. Proposed Approach

In this paper, we learn a general map representation for

sequential camera localization with deep neural networks

(DNNs). Maps are represented as learned weights of a DNN

trained to regress camera pose. Figure 2 shows all of our

three proposed models. At the heart of MapNet is a DNN

that regresses absolute camera pose from an input image,

which is described in detail in Section 3.1. MapNet takes in

tuples of images and additionally enforces constraints be-

tween pose predictions for pairs, as described in Section 3.2.

MapNet+ improves a trained MapNet by utilizing the geo-

metric constraints expressed by visual odometry (VO) on

additional unlabeled videos from the same scene, or syn-

chronized GPS readings (Section 3.3). Finally, we employ

moving-window PGO during inference to obtain a smooth

and drift free camera trajectory by fusing MapNet+ absolute

pose predictions and VO (Section 3.4).

3.1. Camera Pose Regression with DNNs

Our work is built upon prior works in DNN-based

pose estimation methods [11, 30, 31, 32, 40, 55], which

regress 6-DoF camera pose from an input RGB image with

a DNN. In our work, we made several modifications to

PoseNet [31, 32]. First, we use ResNet-34 [25] and mod-

ify it by introducing a global average pooling layer after the

last conv layer, followed by a fc layer with 2048 neurons, a

ReLU and dropout with p = 0.5. This is followed by a final

fc layer that outputs a 6-DoF camera pose.

Second, we propose to parameterize camera orientation

as the logarithm of a unit quaternion [2], which is better

suited for regression with deep learning. PoseNet and its

variants [11, 31, 32, 40, 55] used 4-d unit quaternions to

represent orientation, and regress it with l1 or l2 norm. This

has two issues: (1) the quadruple is an over parameteriza-

tion of the 3-DoF rotation, and (2) normalization of the out-

put quadruple is required but often results in worse perfor-

mance [32, 31, 40]. While Euler angles used in [50] are not

over-parameterized, they are not suited for regression since

they wrap around 2π.

The logarithm of a unit quaternion, logq has 3 dimen-

sions and is not over-parameterized. This allows us to di-

rectly use the l1 or l2 distance as the loss function with-

out normalization. The logarithm of a unit quaternion

q = (u,v), where u is a scalar and v is a 3-d vector, is

defined as [13, 29]

logq =

{

v

‖v‖ cos
−1 u, if ‖v‖ 6= 0

0, otherwise
(1)

The logarithmic form w = logq can be converted

back to a unit quaternion by the formula expw =
(cos ‖w‖, w

‖w‖ sin ‖w‖). As shown in Table 2 in Section 4,

using this rotation parameteration achieve better results than

PoseNet [31]. We also implemented other metrics for rota-

tion [26], and found they did not improve the performance.

3.2. MapNet: Geometry­Aware Learning

Similar to PoseNet [11, 31, 32, 40, 55], MapNet also

learns a DNN Θ that estimates the 6-DoF camera pose

p = (t,w) from an input RGB image I on the training set

D = {(I,p∗)} via supervised learning, f(I; Θ) = p. The

main difference, however, is that MapNet minimizes both

the loss of the per-image absolute pose and the loss of the

relative pose between image pairs, as shown in Fig. 2,

LD(Θ) =

|D|
∑

i=1

h(pi,p
∗
i ) + α

|D|
∑

i,j=1,i 6=j

h(vij ,v
∗
ij), (2)

where vij = (ti−tj ,wi−wj) is the relative camera pose

between pose predictions pi and pj for images Ii and Ij .

h(·) is a function to measure the distance between the pre-

dicted camera pose p and the ground truth camera pose p∗,

defined as [31]:

h(p,p∗) = ‖t− t∗‖1e
−β +β+ ‖w−w∗‖1e

−γ + γ, (3)
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Figure 2: Left: MapNet learns a general map representation directly from input data, including images, visual odometry (VO), and

other sensory inputs. Right: Data flow for our proposed algorithms. MapNet enforces geometric constraints between relative poses and

absolute poses in network training. MapNet+ fuses other inputs such as visual odometry to update maps with self-supervised learning.

MapNet+PGO performs PGO at testing time to further improve accuracy.
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Figure 3: 2D multi-dimensional scaling (MDS) of penultimate

layer features for various models trained on the LOOP sequence

from Oxford RobotCar [38]. Input images are from a held-out test

sequence (see Fig. 1 for ground-truth camera poses). The points

are chronologically colored. Features learned by PoseNet do not

correlate with the distribution of ground truth camera poses, while

those learned by MapNet and MapNet+ show successively better

correlation with the ground truth camera poses (see Fig. 5).

where β and γ are the weights that balance the transla-

tion loss and rotation loss. Both β and γ are learned dur-

ing training with initialization β0 and γ0. (Ii, Ij) are im-

age pairs within each tuple of s images sampled with a gap

of k frames from D. Intuitively, adding the second loss of

the relative camera poses between image pairs helps to en-

force global consistency, which improves the performance

of camera localization (see Section. 4).

To understand more about the representation MapNet

learns, we visualize the distribution of the feature vectors of

the last activation layer using 2D multi-dimensional scaling

(MDS) [6]. We chose MDS rather than T-SNE because it

is designed to preserve global structure of the feature space.

In Fig. 3, we show that PoseNet [31] feature vectors for

test images captured along a loop in the Oxford RobotCar

dataset [38] do not correlate with the distribution of ground

truth camera poses, while the features learned by MapNet

and MapNet+ (next subsection) show successively better

correlation. All models use the same network architecture.

3.3. MapNet+: Update with Unlabeled Data

Both PoseNet and MapNet require labelled data (i.e., im-

ages with absolute camera poses) to train. In many real ap-

plications, we may also have lots of unlabeled data, e.g.,

videos captured at different times or camera motions in

the same scene. Off-the-shelf VO algorithms [18, 19] pro-

vide relative camera poses between image pairs from these

videos. Other sensors (e.g., IMU and GPS) can also provide

measurements about camera pose, especially for challeng-

ing conditions (e.g., textureless, low-light). MapNet+ fuses

these additional data T to update the weights of MapNet

with self-supervised learning.

Suppose the additional data are some videos of the same

scene, T = {It}. We can compute the relative poses

v̂ij between consecutive frames with visual odometry al-

gorithms [18, 19, 44]. In order to update the map with T ,

we fine-tune a pre-trained MapNet Θ by minimizing a loss

function that consists of the original loss from the labelled

dataset D and the loss from the unlabeled data T ,

L(Θ) = LD(Θ) + LT (Θ), (4)

where LT (Θ) is the distance between the relative camera

pose vij (from predictions pi, pj) and visual odometry v̂ij ,

LT (Θ) =

|T |
∑

i,j=1,i 6=j

h(vij , v̂ij) (5)

Since VO algorithms compute v̂ij in the coordinate system

of camera i, the relative pose vij is also computed in that

coordinate system:

vij = ( exp(wj)(ti − tj) exp(wj)
−1,

log(exp(wj)
−1 exp(wi)), (6)
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Note that we still keep the supervision loss LD(Θ) from D
— this is important to avoid trivial solutions if we optimize

only the self-supervised loss LT (Θ) from T . Thus each

mini-batch samples half from the labelled data D and half

from the unlabeled data T . The image pairs (Ii, Ij) are

sampled similarly from tuples of s images with a gap of k

frames from both D and T .

Intuitively, MapNet+ exploits the complimentary char-

acteristics of VO and DNN-based pose prediction — VO is

locally accurate but often drifts over time, and DNN-based

pose predictions are noisy but drift-free. For other sensors

such as IMU (which measures relative rotation) and GPS

(which measures 3D locations), we can define similar loss

terms LT (Θ) that minimize the difference between such

measurements and the predictions from the MapNet.

3.4. MapNet+PGO: Optimizing During Inference

During inference, MapNet+PGO fuses the absolute pose

predictions from MapNet+ and the relative poses from VO

using pose graph optimization (PGO) [8, 37, 17] to get

smooth and globally consistent pose predictions. It runs

in a moving-window of T frames. Suppose the initial

poses predicted by MapNet+ are {pi}
T
i=1, and the rela-

tive poses between two frames from VO are {v̂ij} where

i, j ∈ [1, T ], i 6= j. MapNet+PGO solves for the optimal

poses {po
i }

T
i=1 by minimizing the following cost:

LPGO({p
o
i }

T
i=1) =

T
∑

i=1

h̄(po
i ,pi) +

T
∑

i,j=1,i 6=j

h̄(vo
ij , v̂ij),

(7)

where h̄(·) is the standard pose distance function used in

PGO literature [24]. PGO is an iterative algorithm where

internally vo
ij is derived from po

i and po
j as in Equation (6).

Details and derivation are included in the supplementary

material. Note here we fix the DNN weights Θ and only

optimize {po
i }

T
i=1. As shown in Section 4, MapNet+PGO

further improves the accuracy of pose estimation, with a

minimal extra computational cost at testing.

3.5. Implementation Details

We implemented our algorithms with PyTorch [1], using

the Adam optimizer [33] with a learning rate of 1e-4 and a

weight decay of 5e-4. The input images are scaled to 341×
256 pixels, and normalized by pixel mean subtraction and

standard deviation division. We set the weight coefficient

α = 1 and initializations β0 = 0.0 and γ0 = −3.0. Image

pairs are sampled from tuples of size s = 3 with spacing

k = 10 frames for MapNet and MapNet+, and T = 7,

k = 150 frames for PGO.1 All models are trained for 300

epochs, except for MapNet+, which is finetuned with α = 0
for 5 epochs from a trained MapNet.

1PGO for RobotCar sequences uses frame separation T = 7, k = 10.

4. Experimental Evaluations

Datasets We evaluate our algorithms on two well-known

public datasets — 7-Scenes [48] for small-scale, indoor,

AR/VR-type scenarios, and Oxford RobotCar [38] for

large-scale, outdoor, autonomous driving scenarios. 7-

Scenes contains RGB-D image sequences of seven indoor

environments (with the spatial extent less than 4 meters)

captured with a Kinect sensor. Multiple sequences were

captured for each environment, and each sequence is 500 or

1000 frames. The ground truth camera poses are obtained

with KinectFusion. The 7-Scenes dataset has recently been

evaluated extensively as a benchmark [32, 30, 31, 40, 55,

11, 7], which makes it ideal for us to compare with prior

state-of-the-art methods.

Oxford RobotCar contains over 100 repetitions of a con-

sistent route (about 10km) through central Oxford captured

twice a week over a period of over a year. Thus the dataset

captures different combinations of weather, traffic, pedes-

trians, construction and roadworks. In addition to the im-

ages captured with the six cameras mounted on the car, the

dataset also contains LIDAR, GPS and INS measurements,

as well as stereo visual odometry (VO). We extracted two

subsets from this dataset: LOOP (Fig. 1) with a total length

of 1120m, which was also used in VidLoc [11], and FULL

(Fig. 6) with a total length of 9562m. Details of the train-

ing, validation, and testing sequences are provided in the

supplementary material.

Baselines and Data Augmentation We compare our

approach with two groups of prior methods on 7-

Scenes. For the DNN-based prior work, we compare with

PoseNet15 [32], PoseNet16 [30], PoseNet17 [31], Hour-

glass [40], LSTM-PoseNet [55], and VidLoc [11]. For

the traditional visual odometry based methods, we used

DSO [18] to compute the VO and integrate to obtain camera

poses. We run the DSO with images at the same spatial res-

olution as MapNet. On Oxford RobotCar, only VidLoc [11]

reported results on the LOOP scene but it did not provide

training and testing sequences. Thus, the two baselines to

compare are the provided stereo VO, as well as our version

of PoseNet (with logq). In RobotCar, we randomly perturb

the brightness, saturation, hue and contrast of images dur-

ing training for experiments, which we found essential for

performing cross-weather and cross-time localization.

4.1. Experiments on the 7­Scenes Dataset

Effects of Rotation Parameteriation In Section 3.1, we

introduced a new parameterization of camera orientation for

PoseNet and used ResNet34 as the base network. Table 2

shows the quantitative results of these modifications to the

baseline PoseNet. Following the same convention of prior

work [32, 30, 31, 40, 55, 11], we compute the median error
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Figure 4: Camera localization results on 7-Scenes dataset [48]. For each subfigure, the top 3D plot shows the camera trajectory (green

for the ground truth and red for the prediction), and the bottom color bar shows rotation error for all the frames. From top to bottom, the

three testing sequences are: Redkitchen-seq-03, Heads-seq-01, and Redkitchen-seq-12. See Table 3 for quantitative comparison.

Table 2: Translation and rotation error on the 7-Scenes dataset.

Scene
PoseNet17 PoseNet PoseNet+logq

[31] (ResNet34) (ResNet34)

Chess 0.13m, 4.48◦ 0.11m, 4.24◦ 0.11m, 4.29◦

Fire 0.27m, 11.30◦ 0.29m, 11.68◦ 0.27m, 12.13◦

Heads 0.17m, 13.00◦ 0.20m, 13.11◦ 0.19m, 12.15◦

Office 0.19m, 5.55◦ 0.19m, 6.40◦ 0.19m, 6.35◦

Pumpkin 0.26m, 4.75◦ 0.23m, 5.77◦ 0.22m, 5.05◦

Red Kitchen 0.23m, 5.35◦ 0.27m, 5.81◦ 0.25m, 5.27◦

Stairs 0.35m, 12.40◦ 0.31m, 12.43◦ 0.30m, 11.29◦

Average 0.23m, 8.12◦ 0.23m, 8.49◦ 0.22m, 8.07◦

for camera translation and rotation.2 As shown, our pro-

posed rotation parameterization does improve performance.

Comparison with Prior Methods Figure 4 shows the

camera trajectories for several testing sequences from the

7-Scenes dataset for DSO VO, PoseNet, MapNet, Map-

Net+, and MapNet+PGO. Table 3 shows quantitative com-

parisons. The unlabeled data used to fine-tune MapNet+ for

these experiments are the unlabeled test sequences. This is

a transductive learning scenario [9, 16]. As shown, DSO

often drifts over time and PoseNet results in noisy pre-

dictions. In contrast, by including various geometric con-

straints into network training and inference our proposed

approaches MapNet, MapNet+ and MapNet+PGO succes-

2Other statistics of the camera pose estimation errors are also provided

in the supplementary material, which support the same conclusion.

sively improve the performance. A complete table for all

testing sequences from the 7-Scenes dataset is included in

the supplementary material.

4.2. Experiments on the Oxford RobotCar Dataset

Results on the LOOP Route We first train a baseline

PoseNet (with the logq parameterization for rotation) and

a MapNet model using two labelled sequences captured on

the LOOP route under cloudy weather, while the testing se-

quence is captured under sunny weather. We then perform

two experiments with different auxiliary data for MapNet+.

In the first experiment, MapNet+ is trained on additional

unlabeled LOOP sequences separate from the testing se-

quence, with stereo VO provided with the dataset. To tease

apart the influence of labeled and unlabeled data in the ef-

fectiveness of our MapNet+ models, we train them with

varying amounts of labeled (one to two sequences) and un-

labeled data (zero to three sequences). Figure 8 shows the

mean translation and rotation errors of these models on the

testing sequence. While labeled data is clearly more im-

portant than an equal amount of unlabeled data, we show

that unlabeled data does consistantly improve performance

as more becomes available. This trend bodes well for real-

world scenarios, where the amount of unlabeled data avail-

able far exceeds the amount of labeled data.

In the second experiment, MapNet+ is trained with GPS

i.e., the dataset T contains two sequences of images and

2621



Table 3: Translation error (m) and rotation error (◦) for various methods on the 7-Scenes dataset [48].

Scene
PoseNet17 Hourglass LSTM-Pose VidLoc DSO MapNet MapNet+ MapNet+PGO

[31] [40] [55] [11] [18]

Chess 0.13m, 4.48◦ 0.15m, 6.17◦ 0.24m, 5.77◦ 0.18m, NA 0.17m, 8.13◦ 0.08m, 3.25◦ 0.10m, 3.17◦ 0.09m, 3.24◦

Fire 0.27m, 11.30◦ 0.27m, 10.84◦ 0.34m, 11.9◦ 0.26m, NA 0.19m, 65.0◦ 0.27m, 11.69◦ 0.20m, 9.04◦ 0.20m, 9.29◦

Heads 0.17m, 13.00◦ 0.19m, 11.63◦ 0.21m, 13.7◦ 0.14m, NA 0.61m, 68.2◦ 0.18m, 13.25◦ 0.13m, 11.13◦ 0.12m, 8.45◦

Office 0.19m, 5.55◦ 0.21m, 8.48◦ 0.30m, 8.08◦ 0.26m, NA 1.51m, 16.8◦ 0.17m, 5.15◦ 0.18m, 5.38◦ 0.19m, 5.42◦

Pumpkin 0.26m, 4.75◦ 0.25m, 7.01◦ 0.33m, 7.00◦ 0.36m, NA 0.61m, 15.8◦ 0.22m, 4.02◦ 0.19m, 3.92◦ 0.19m, 3.96◦

Kitchen 0.23m, 5.35◦ 0.27m, 10.15◦ 0.37m, 8.83◦ 0.31m, NA 0.23m, 10.9◦ 0.23m, 4.93◦ 0.20m, 5.01◦ 0.20m, 4.94◦

Stairs 0.35m, 12.40◦ 0.29m, 12.46◦ 0.40m, 13.7◦ 0.26m, NA 0.26m, 21.3◦ 0.30m, 12.08◦ 0.30m, 13.37◦ 0.27m, 10.57◦

Average 0.23m, 8.12◦ 0.23m, 9.53◦ 0.31m, 9.85◦ 0.25m, NA 0.26m, 29.4◦ 0.21m, 7.77◦ 0.19m, 7.29◦ 0.18m, 6.55◦
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Figure 5: Camera localization results on the LOOP scene (1120m long) of the Oxford RobotCar dataset [38]. The ground truth

camera trajectory is the black line, the star indicates the first frame, and the red lines show the camera pose predictions. The caption

of each figure shows the mean translation error (m) and mean rotation error (◦). MapNet+(1seq) uses one unlabeled sequence, while

MapNet+(2seq) uses two unlabeled sequences. Left: MapNet+ trained with unlabeled images and stereo VO. Right: MapNet+ trained

with unlabeled images and GPS data.

their GPS locations, which are separate from the testing se-

quence. Since GPS measurements are sparse (less than 10%

of images have corresponding GPS measurements), we first

linearly interpolate GPS measurements for entire sequence.

We define the loss of auxillary data T in Equation (5) as

LT (Θ) =
∑|T |

i=1 h(pi, p̂i), where p̂i is the linearly interpo-

lated GPS measurement of the 2D camera location.

Figure 5 shows the estimated camera poses for all the

methods in these two experiments along with the mean

translation error (m) and rotation error (◦). Figure 7 shows

the cumulative distributions of the translation errors for all

the methods on the LOOP route. In both figures, the left part

shows that MapNet significantly improves the estimation

compared to PoseNet and stereo VO. MapNet+ and Map-

Net+PGO further improve the pose predictions. The right

part shows that by fusing GPS signals, MapNet+(GPS) ob-

tains better results compared to MapNet and GPS alone.

Results on the FULL Route We also evaluated our ap-

proach on the challenging 9562 m long FULL route of the

Oxford RobotCar dataset. Figure 6 shows the results of

all the models with mean translation error (m) and rotation

error (◦). MapNet significantly outperforms the baseline

PoseNet (both trained for 100 epochs) and the stereo VO

(provided by the dataset). By fusing the stereo VO infor-

mation, MapNet+ and MapNet+PGO further improve the

result. The cumulative distributions of the translation errors

also show the large improvement over the baselines.

Note that there are some outlier predictions in both

LOOP (Fig. 5) and FULL (Fig. 6). These often correspond

to images with large over-exposed regions, and can be fil-

tered out with simple post-processing (e.g. temporal median

filtering) as shown in the supplementary material. We also

computed saliency maps s(x, y) = 1
6 |
∑6

i=1
∂pi

∂I(x,y) | (mag-

nitude gradient of the mean of the 6-element output w.r.t.

input image, maxed over the 3 color channels) for PoseNet
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Figure 6: Comparison of camera localization results on the FULL scene (9562m long) of the Oxford RobotCar dataset [38]. The ground

truth camera trajectory is the black line, and the star indicates the first frame. The red lines show the results of stereo VO (provided by the

dataset), our version of PoseNet+logq, MapNet, and its variations. The caption of each figure shows the mean translation error (m) and

mean rotation error (◦). A plot of the cumulative distribution of the translation error is also included.
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Figure 7: Cumulative distributions of the translation errors (m)

for all the methods evaluated on Oxford RobotCar LOOP. x-axis

is the translation error and y-axis is the percentage of frames with

error less than the value.

and MapNet+ on both the 7-scenes and RobotCar dataset.

We find that compared to PoseNet, MapNet+ focuses more

on geometrically meaningful regions and its saliency map

is more consistent over time. Examples are shown in the

supplementary material.

5. Conclusions and Discussions

In summary, MapNet learns a general, data-driven map

representation for camera localization. Our models bring

geometric constraints widely used in visual SLAM and SfM

into DNN-based learning, which allow us to learn from un-

labeled data and to easily fuse other input sources (e.g., vi-
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Figure 8: Left: Mean translation error (m) and right: mean ro-

tation error (◦) for MapNet+ models trained with varying amounts

of labeled and unlabeled data on the Oxford RobotCar LOOP se-

quence. X-axis indicates the number of labeled sequences (1-2),

Y-axis indicates the number of unlabeled sequences (0-3) and Z-

axis indicates the error.

sual odometry, GPS, IMU). We evaluate our approach on

both indoor and outdoor datasets and show significantly bet-

ter performance than baselines.

Unlike the mapping in traditional visual SLAM systems,

MapNet and MapNet+ cannot expand maps to unknown

space. In future work, a tighter integration with visual

SLAM systems may enable mapping of unknown regions.

Leveraging the recent success in extracting high-level se-

mantic information (e.g., objects and scene composition)

may also improve camera localization.
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