
In-Place Activated BatchNorm for Memory-Optimized Training of DNNs

Samuel Rota Bulò, Lorenzo Porzi, Peter Kontschieder

Mapillary Research

research@mapillary.com

Abstract

In this work we present In-Place Activated Batch Nor-

malization (INPLACE-ABN) – a novel approach to drasti-

cally reduce the training memory footprint of modern deep

neural networks in a computationally efficient way. Our

solution substitutes the conventionally used succession of

BatchNorm + Activation layers with a single plugin layer,

hence avoiding invasive framework surgery while provid-

ing straightforward applicability for existing deep learning

frameworks. We obtain memory savings of up to 50% by

dropping intermediate results and by recovering required

information during the backward pass through the inver-

sion of stored forward results, with only minor increase

(0.8-2%) in computation time. Also, we demonstrate how

frequently used checkpointing approaches can be made

computationally as efficient as INPLACE-ABN. In our ex-

periments on image classification, we demonstrate on-par

results on ImageNet-1k with state-of-the-art approaches.

On the memory-demanding task of semantic segmentation,

we report competitive results for COCO-Stuff and set new

state-of-the-art results for Cityscapes and Mapillary Vis-

tas. Code can be found at https://github.com/

mapillary/inplace_abn.

1. Introduction

High-performance computer vision recognition models

typically take advantage of deep network backbones, gen-

erating rich feature representations for target applications to

operate on. For example, top-ranked architectures used in

the 2017 LSUN or MS COCO segmentation/detection chal-

lenges are predominantly based on ResNet/ResNeXt [9, 30]

models comprising >100 layers.

Obviously, depth/width of networks strongly correlate

with GPU memory requirements and at given hardware

memory limitations, trade-offs have to be made to balance

feature extractor performance vs. application-specific pa-

rameters like network output resolution or training data size.

A particularly memory-demanding task is semantic seg-

mentation, where one has to compromise significantly on

+ +

store buffer

store buffer

store buffer

store buffer

store buffer

store buffer

store buffer

store buffer

store buffer

Figure 1. Example of residual block with identity mapping [10].

Left: Implementation with standard BN and in-place activation

layers, which requires storing 6 buffers for the backward pass.

Right: Implementation with our proposed INPLACE-ABN layer,

which requires storing only 3 buffers. Our solution avoids storing

the buffers that are typically kept for the backward pass through

BN and exhibits a lower computational overhead compared to

state-of-the-art memory-reduction methods.

the number of training crops per minibatch and their spa-

tial resolution. In fact, many recent works based on mod-

ern backbone networks have to set the training batch size to

no more than a single crop per GPU [2, 28], which is par-

tially also due to suboptimal memory management in some

deep learning frameworks. In this work, we focus on in-

creasing the memory efficiency of the training process of

modern network architectures in order to further leverage

performance of deep neural networks in tasks like image

classification and semantic segmentation.

We introduce a novel and unified layer that replaces the

commonly used succession of batch normalization (BN)

and nonlinear activation layers (ACT), which are integral

with modern deep learning architectures like ResNet [9],

15639

https://github.com/mapillary/inplace_abn
https://github.com/mapillary/inplace_abn


ResNeXt [30], Inception-ResNet [26], WideResNet [32],

Squeeze-and-Excitation Networks [11], DenseNet [12], etc.

Our solution is coined INPLACE-ABN and proposes to

merge batch normalization and activation layers in order to

enable in-place computation, using only a single memory

buffer for storing the results (see illustration in Figure 1).

During the backward pass, we can efficiently recover all

required quantities from this buffer by inverting the for-

ward pass computations. Our approach yields a theoreti-

cal memory reduction of up to 50%, and our experiments

on semantic segmentation show additional data throughput

of up to +75% during training, when compared to prevail-

ing sequential execution of BN+ACT. Our memory gains

are obtained without introducing noticeable computational

overhead, i.e. side-by-side runtime comparisons show only

between +0.8-2% increase in computation time.

As additional contribution, we review the checkpoint-

ing memory management strategy [4] and propose a com-

putationally optimized application of this idea in the con-

text of BN layers. This optimization allows us to drop re-

computation of certain quantities needed during the back-

ward pass, eventually leading to reduced computation times

as per our INPLACE-ABN. However, independent of the

proposed optimized application of [4], conventional check-

pointing in general suffers from higher implementation

complexity (with the necessity to invasively manipulate the

computation graph), while our main INPLACE-ABN con-

tribution can be easily implemented as self-contained, stan-

dard plug-in layer and therefore simply integrated in any

modern deep learning framework.

Our experimental evaluations demonstrate on-par perfor-

mance with state-of-the-art models trained for image clas-

sification on ImageNet [25] (in directly comparable mem-

ory settings), and significantly improved results for the

memory-critical application of semantic segmentation.

To summarize, we provide the following contributions:

• Introduction of a novel, self-contained INPLACE-

ABN layer that enables joint, in-place computation of

BN+ACT, approximately halvening the memory require-

ments during training of modern deep learning models.

• A computationally more efficient application of the

checkpointing memory management strategy in the con-

text of BN layers, inspired by optimizations used for

INPLACE-ABN.

• Experimental evaluations for i) image classification

on ImageNet-1k showing approximately on-par perfor-

mance with state-of-the-art models and ii) semantic seg-

mentation on COCO-Stuff, Cityscapes and Mapillary

Vistas, considerably benefiting from the additional avail-

able memory and generating new high-scores on the chal-

lenging Cityscapes and Mapillary Vistas datasets.

2. Related Work

The topic of optimizing memory management in deep

learning frameworks is typically addressed at different lev-

els. Efficient deep learning frameworks like TensorFlow,

MxNet or PyTorch follow distinct memory allocation strate-

gies. Among them is checkpointing [4, 19], which provides

additional memory at the cost of runtime via storing activa-

tion buffers as so-called checkpoints, from where required

quantities can be re-computed during the backward pass.

The paper in [4] describes how to recursively apply such

a variant on sub-graphs between checkpoints. In [8] this is

further optimized with dynamic programming, where a stor-

age policy is determined that minimizes the computational

costs for re-computation at a fixed memory budget.

Virtually all deep learning frameworks based on

NVIDIA hardware exploit low-level functionality libraries

CUDA and cuDNN1, providing GPU-accelerated and

performance-optimized primitives and basic functionalities.

Another line of research has focused on training CNNs

with reduced precision and therefore smaller memory-

footprint datatypes. Such works include (partially) bina-

rized weights/activations/gradients [6, 13, 14], which how-

ever typically lead to degraded overall performance. With

mixed precision training [20], this issue seems to be over-

come and we plan to exploit this as complementary tech-

nique in future work, freeing up even more memory for

training deep networks without sacrificing runtime.

In [7] the authors modify ResNet in a way to contain

reversible residual blocks, i.e. residual blocks whose acti-

vations can be reconstructed backwards. Backpropagation

through reversible blocks can be performed without hav-

ing stored intermediate activations during the forward pass,

which allows to save memory. However, the cost to pay is

twofold. First, one has to recompute each residual function

during the backward pass, thus having the same overhead

as checkpointing [19]. Second, the network design is lim-

ited to using blocks with certain restrictions, i.e. reversible

blocks cannot be generated for bottlenecks where informa-

tion is supposed to be discarded.

Finally, we stress that only training time memory-

efficiency is targeted here while test-time optimization as

done e.g. in NVIDIAs TensorRT 2 is beyond our scope.

3. In-Place Activated Batch Normalization

Here, we describe our contribution to avoid the storage

of a buffer that is typically needed for the gradient computa-

tion during the backward pass through the batch normaliza-

tion layer. As opposed to existing approaches we also show

that our solution minimizes the computational overhead we

have to trade for saving additional memory.

1https://developer.nvidia.com
2https://developer.nvidia.com/tensorrt

5640

https://developer.nvidia.com
https://developer.nvidia.com/tensorrt


3.1. Batch Normalization Review

Batch Normalization has been introduced in [15] as an

effective tool to reduce internal covariate shift in deep net-

works and accelerate the training process. Ever since, BN

plays a key role in most modern deep learning architectures.

The key idea consists in having a normalization layer that

applies an axis-aligned whitening of the input distribution,

followed by a scale-and-shift operation aiming at preserv-

ing the network’s representation capacity. The whitening

operation exploits statistics computed on a minibatch level

only. The by-product of this approximation is an additional

regularizing effect for the training process.

In details, we can fix a particular unit x in the network

and let xB = {x1, . . . , xm} be the set of values x takes from

a minibatch B of m training examples. The batch normal-

ization operation applied to xi first performs a whitening of

the activation using statistics computed from the minibatch:

x̂i = BN(xi) =
xi − µB
√

σ2
B + ǫ

. (1)

Here ǫ > 0 is a small constant that is introduced to prevent

numerical issues, and µB and σ2
B are the empirical mean

and variance of the activation unit x, respectively, computed

with respect to the minibatch B, i.e.

µB =
1

m

m
∑

j=1

xj , σ2
B =

1

m

m
∑

j=1

(xj − µB)
2 .

The whitened activations x̂i are then scaled and shifted by

learnable parameters γ and β, obtaining

yi = BNγ,β(xi) = γx̂i + β .

The BN transformation described above can in principle

be applied to any activation in the network and is typi-

cally adopted with channel-specific (γ, β)-parameters. Us-

ing BN renders training resilient to the scale of parameters,

thus enabling the use of higher learning rates.

At test time, the BN statistics are fixed to µT and σT ,

estimated from the entire training set T . These statistics

are typically updated at training time with a running mean

over the respective minibatch statistics, but could also be re-

computed before starting the testing phase. Also, the com-

putation of networks trained with batch normalization can

be sped up by absorbing BN parameters into the preceding

CONV layer, by performing a simple update of the convo-

lution weights and biases. This is possible because at test-

time BN becomes a linear operation.

3.2. Memory Optimization Strategies

Here we sketch our proposed memory optimization

strategies after introducing both, the standard (memory-

inefficient) use of batch normalization and the state-of-the-

art coined checkpointing [4, 19].

(a) Standard building block (memory-inefficient)

(b) Checkpointing [4, 19]

(c) Checkpointing (proposed version)

(d) In-Place Activated Batch Normalization I (proposed method)

(e) In-Place Activated Batch Normalization II (proposed method)

Figure 2. Comparison of standard BN, state-of-the-art checkpoint-

ing from [4, 19] and our proposed methods. See § 3.2 for a detailed

description.

5641



In Figure 2, we provide diagrams showing the for-

ward and backward passes of a typical building block

BN+ACT+CONV
3 as usually implemented in modern deep

architectures. The activation function (e.g. RELU) is de-

noted by φ. Computations occurring during the forward

pass are shown in green and involve the entire minibatch

B (we omit the subscript B). Computations happening dur-

ing the backward pass are shown in cyan and gray. The

gray part aims at better highlighting the additional compu-

tation that has been introduced to compensate for the mem-

ory savings. Rectangles are in general volatile buffers hold-

ing intermediate results, except for rectangles surrounded

by a dashed frame, which represent buffers that need to be

stored for the backward pass and thus significantly impact

the training memory footprint. E.g., in Figure 2(a) x and z

will be stored for the backward pass, while in Figure 2(b)

only x is stored. For the sake of presentation clarity, we

have omitted two additional buffers holding µB and σB for

the BN backward phase. Nevertheless, these buffers repre-

sent in general a small fraction of the total allocated mem-

ory. Moreover, we have also omitted the gradients with re-

spect to the model parameters (i.e. γ, β and CONV weights).

Standard. In Figure 2(a) we present the standard imple-

mentation of the reference building block, as used in all

deep learning frameworks. During the forward pass both,

the input x to BN and the output of the activation function

φ need to be stored for the backward pass. Variable x is

used during the backward pass through BNγ,β to compute

both the gradient w.r.t. its input and γ, i.e. ∂L
∂x

and ∂L
∂γ

where

L denotes the loss, while z is required for the backward pass

through the activation φ as well as potential subsequent op-

erations like e.g. the convolution shown in the figure.

Checkpointing [4, 19]. This technique allows to trade com-

putation for memory when training neural networks, appli-

cable in a very broad setting. In Figure 2(b), we limit its

application to the building block under consideration like

in [22]. In contrast to the standard implementation, which

occupies two buffers for the backward pass of the shown

building block, checkpointing requires only a single buffer.

The trick consists in storing only x and recomputing z dur-

ing the backward pass by repeating the forward operations

starting from x (see gray-colored operations). Clearly, the

computational overhead to be paid comprises both, recom-

putation of the BN and activation layers. It is worth ob-

serving that recomputing BNγ,β (gray) during the backward

phase can reuse values for µB and σB available from the

forward pass and fuse together the normalization and sub-

sequent affine transformation into a single scale-and-shift

operation. Accordingly, the cost of the second forward pass

over BNγ,β becomes less expensive (see also [22]).

3Having the convolution at the end of the block is not strictly necessary,

but supports comprehension.

The three approaches that follow are all contributions of

this work. The first represents a variation of checkpoint-

ing, which allows us to save additional computations in the

context of BN. The second and third are our main contri-

butions, providing strategies that yield the same memory

savings and even lower computational costs compared to

the proposed, optimized checkpointing, but are both self-

contained and thus much easier to integrate in existing deep

learning frameworks.

Checkpointing (proposed version). Direct application of

the checkpointing technique in the sketched building block,

which is adopted also in [22], is not computationally opti-

mal since additional operations could be saved by storing

x̂, i.e. the normalized value of x as per Eq. (1), instead of

x. Indeed, as we will see in the next subsection, the back-

ward pass through BN requires recomputing x̂ if not already

stored. For this reason, we propose in Figure 2(c) an alter-

native implementation that is computationally more efficient

by retaining x̂ from the forward pass through the BN layer.

From x̂ we can recover z during the backward pass by ap-

plying the scale-and-shift operation πγ,β(x̂) = γx̂+ β, fol-

lowed by the activation function φ (see gray-colored oper-

ations). In this way, the computation of z becomes slightly

more efficient than the one shown in Figure 2(b), for we

save the fusion operation. Finally, an additional saving of

the normalization step derives from using the stored x̂ in the

backward implementation of BN rather than recomputing it

from x. To distinguish the efficient backward implementa-

tion of BN from the standard one we write BN∗
γ,β in place

of BNγ,β (cyan-colored, see additionally § 3.3).

In-Place Activated Batch Normalization I. A limitation

of the memory-reduction strategy described above is that

the last layer, namely CONV in the example, depends on

non-local quantities like x (or x̂) for the computation of the

gradient. This makes the implementation of the approach

within standard frameworks somewhat cumbersome, be-

cause the backward pass of any layer that follows φ, which

relies on the existence of z, has to somehow trigger its

recomputation. To render the implementation of the pro-

posed memory savings easier and self-contained, we sug-

gest an alternative strategy shown in Figure 2(d), which re-

lies on having only z as the saved buffer during the forward

pass, thus operating an in-place computation through the

BN layer (therefrom the paper’s title). By doing so, any

layer that follows the activation φ would have the informa-

tion for the gradient computation locally available. Having

stored z, we need to recompute x̂ backwards, for it will be

needed in the backward pass through the BN layer.4 How-

ever, this operation is only possible if the activation func-

4This solution can technically still be considered as a form of check-

pointing, but instead of recovering information forwards as in [4, 19], we

recover it backwards, thus bearing a similarity to reversible nets [7].

5642



tion is invertible. Even though this requirement does not

hold for RELU, i.e. one of the most dominantly used activa-

tion functions, we show in § 4.1 that an invertible function

like LEAKY RELU [18] with a small slope works well as

a surrogate of RELU without compromising on the model

quality. We also need to invert the scale-and-shift operation

πγ,β , which is in general possible if γ 6= 0.

In-Place Activated Batch Normalization II. The com-

plexity of the computation of x̂ = π−1

γ,β(y) = y−β
γ

used

in the backward pass of INPLACE-ABN I can be further

reduced by rewriting the gradients ∂L
∂γ

and ∂L
∂x

directly as

functions of y instead of x̂. The explicit inversion of πγ,β to

recover x̂ applies m scale-and-shift operations (per feature

channel). If the partial derivatives are however based on y

directly, the resulting modified gradients (derivations given

in [24]) show that the same computation can be absorbed

into the gradient ∂L
∂xi

at O(1) cost (per feature channel).

In Figure 2(e) we show the diagram of this optimization,

where we denote as BN
†
γ,β the implementation of the back-

ward pass as a function of y.

3.3. Technical Details

The key components of our method are the computation

of the inverse of both the activation function (INPLACE-

ABN I & II) and πγ,β (INPLACE-ABN I), and the imple-

mentation of a backward pass through the batch normaliza-

tion layer that depends on y, i.e. the output of the forward

pass through the same layer.

Invertible activation function. Many activation functions

are actually invertible and can be computed in-place (e.g.

sigmoid, hyperbolic tangent, LEAKY RELU, and others),

but the probably most commonly used one, namely RELU,

is not invertible. However, we can replace it with LEAKY

RELU and a small slope without impacting the quality

of the trained models [31]. LEAKY RELU and its in-

verse share the same computational cost, i.e. an element-

wise sign check and scaling operation. Hence, the over-

head deriving from the recomputation of φ in the back-

ward pass of the previously shown, checkpointing-based

approaches and its inverse φ−1 employed in the backward

pass of our method are equivalent. To give further evidence

of the interchangeability of RELU and LEAKY RELU with

slope a = 0.01, we have successfully retrained well-known

models like ResNeXt and WideResNet on ImageNet using

LEAKY RELU (see § 4.1 and [24]).

INPLACE-ABN I: Backward pass through BN. The gra-

dient ∂L
∂x

= { ∂L
∂x1

, . . . , ∂L
∂xm

}, which is obtained from the

backward pass through the BN layer, can be written as a

function of x̂ = {x̂1, . . . , x̂m} and ∂L
∂y

= { ∂L
∂y1

, . . . , ∂L
∂ym

}
as

∂L

∂xi

=

{

∂L

∂yi
−

1

m

∂L

∂γ
x̂i −

1

m

∂L

∂β

}

γ
√

σ2
B + ǫ

,

where the gradients of the BN parameters are given by

∂L

∂γ
=

m
∑

i=1

∂L

∂yi
x̂i ,

∂L

∂β
=

m
∑

i=1

∂L

∂yi
.

The expression above differs from what is found in the orig-

inal BN paper [15], but the refactoring was already used in

the Caffe [16] framework. It is implemented by BN∗
γ,β in

the proposed solutions in Figures 2(c) and 2(d) and does

not depend on µB. Hence, we store during the forward pass

only σB (this dependency was omitted from the diagrams).

Instead, BNγ,β in Figures 2(a) and 2(b), which depends on

x, requires the additional recomputation of x̂ from x via

Eq. (1). Hence, it also requires storing µB. Our solution is

hence memory-wise more efficient than the state-of-the-art

from Figure 2(b).

Inversion of πγ,β. In the configuration of INPLACE-ABN

I, the inversion of πγ,β becomes critical if γ = 0 since

π−1

γ,β(y) = y−β
γ

. While we never encountered such a case

in practice, one can protect against it by preventing γ from

getting less than a given tolerance. We can even avoid this

problem by simply not considering γ a learnable parame-

ter and by fixing it to 1, in case the activation function is

scale covariant (e.g. all RELU-like activations) and when a

CONV layer follows. Indeed, it is easy to show that the net-

work retains the exact same capacity in that case, for γ can

be absorbed into the subsequent CONV layer.

INPLACE-ABN II: Backward pass through BN. We ob-

tain additional memory savings for our solution illustrated

in Figure 2(e) and as outlined in § 3.2. The gradient ∂L
∂x

when written as a function of y instead of x̂ becomes

∂L

∂xi

=

[

∂L

∂yi
−

1

γm

∂L

∂γ
yi −

1

m

(

∂L

∂β
+

β

γ

∂L

∂γ

)]

γ
√

σ2
B + ǫ

.

For the gradients of the BN parameters, ∂L
∂β

remains as

above but we get

∂L

∂γ
=

1

γ





m
∑

j=1

∂L

∂yj
yj − β

∂L

∂β





and we write BN
†
γ,β for the actual backward implemen-

tation in Figure 2(e). Detailed derivations are provided

in [24].

In summary, both of our optimized main contributions

are memory-wise more efficient than the state-of-the-art so-

lution in Figure 2(b) and INPLACE-ABN II is computa-

tionally even more efficient than the proposed, optimized

checkpointing from Figure 2(c).

3.4. Implementation Details

We have implemented the proposed INPLACE-ABN I

layer in PyTorch, by simply creating a new layer that fuses

5643



Algorithm 1 INPLACE-ABN Forward

Require: x, γ, β

1: y, σB ← BNγ,β(x)
2: z ← φ(y)
3: save for backward z, σB

4: return z

Algorithm 2 INPLACE-ABN Backward

Require: ∂L
∂z

, γ, β

1: z, σB ← saved tensors during forward

2:
∂L
∂y
← φbackward(z,

∂L
∂z

)

3: y ← φ−1(z)
4: if INPLACE-ABN I (see Fig. 2(d)) then

5: x̂← π−1

γ,β(y)

6:
∂L
∂x

, ∂L
∂γ

, ∂L
∂β
← BN∗

γ,β(x̂,
∂L
∂y

, σB)
7: else if INPLACE-ABN II (see Fig. 2(e)) then

8:
∂L
∂x

, ∂L
∂γ

, ∂L
∂β
← BN

†
γ,β(y,

∂L
∂y

, σB)

9: return ∂L
∂x

, ∂L
∂γ

, ∂L
∂β

batch normalization with an (invertible) activation function.

In this way we can deal with the computation of x̂ from z

internally in the layer, thus keeping the implementation self-

contained. We have released code at https://github.

com/mapillary/inplace_abn for easy plug-in re-

placement of the block BN+ACT in modern architectures.

The forward and backward implementations are also given

as pseudocode in Algorithm 1 and 2. In the forward pass,

in line 3, we explicitly indicate the buffers that are stored

and needed for the backward pass. Any other buffer can be

overwritten with in-place computations, e.g. x, y and z can

point to the same memory location. In the backward pass,

we recover the stored buffers in line 1 and, again, every

computation can be done in-place if the buffer is not needed

anymore (e.g. ∂L
∂x

, ∂L
∂y

, ∂L
∂z

can share the same memory lo-

cation as well as x̂, y and z).

4. Experiments

We assess the effectiveness of our proposed, memory ef-

ficient INPLACE-ABN layer for the tasks of image classifi-

cation and semantic segmentation in § 4.1 and 4.2, respec-

tively. Additionally, we provide timing analyses in § 4.3.

Experiments were run and timed on machines comprising

four NVIDIA Titan Xp cards (with 12GB of RAM each).

Where not otherwise noted, the activation function used in

all experiments is LEAKY RELU with slope a = 0.01.

4.1. Image Classification

We have trained several residual-unit-based models

on ImageNet-1k [25] to demonstrate the effectiveness

of INPLACE-ABN for the task of image classification.

In particular, we focus our attention on two aspects:

i) whether using an invertible activation function (i.e.

LEAKY RELU in our experiments) impacts on the clas-

sification performance of the models, and ii) how the

memory savings obtained with our method can be ex-

ploited to improve classification accuracy. We have trained

ResNeXt-101/ResNeXt-152 [30] models (using car-

dinality 64, SGD with Nesterov updates, initial learn-

ing rate 0.1, weight decay 10−4 and momentum 0.9,

90 epochs in total and reducing the learning rate every

30 epochs by a factor of 10). We additionally trained

DenseNet-264 [12] and WideResNet-38 [29] with

the same hyperparameters, except for the latter using a lin-

ear learning rate decay from 0.1 to 10−6. For all models, we

proportionally scale input images so that their smallest side

equals 256 pixels, before randomly taking 224× 224 crops.

RGB images are per-channel mean and variance normalized

and color augmentation is applied as described in [30].

Discussion of results. As a baseline, we train

ResNeXt-101with standard Batch Normalization and the

maximum batch size that fits in GPU memory, i.e. 256 im-

ages per batch. Then we consider two different scenarios:

i) using the extra memory to fit more images per training

batch while fixing the network architecture, or ii) fixing

the batch size while training a larger network. For op-

tion i) we double the batch size to 512 (ResNeXt-101,

INPLACE-ABN, 512 in Table 1), while for option ii) we

train ResNeXt-152 and WideResNet-38. Note that

neither ResNeXt-152 nor WideResNet-38 would fit

in memory when using 256 images per training batch and

when using standard BN. As it is clear from the table,

both i) and ii) result in a noticeable performance increase.

Interestingly, training ResNeXt-101 with an increased

batch size results in similar accuracy to the deeper (and

computationally more expensive) ResNeXt-152 model.

As an additional reference, we train ResNeXt-101 with

synchronized Batch Normalization (INPLACE-ABNsync),

which can be seen as a “virtual” increase of batch size ap-

plied to the computation of BN statistics. In this case we

only observe small accuracy improvements when compared

to the baseline model. Finally, we also report results for

DenseNet-264 [12], which was trained with a batch size

of 256 that otherwise also would not fit in GPU memory.

All models can be downloaded from our github page.

4.2. Semantic Segmentation

The goal of semantic segmentation is to assign cate-

gorical labels to each pixel in an image. State-of-the-art

segmentations are typically obtained by combining classi-

fication models pretrained on ImageNet (typically referred

to as body) with segmentation-specific head architectures

and jointly fine-tuning them on suitable, (densely) anno-

tated training data like Cityscapes [5], COCO-Stuff [1],

ADE20K [34] or Mapillary Vistas [21].

5644

https://github.com/mapillary/inplace_abn
https://github.com/mapillary/inplace_abn


Network
2242 center 2242 10-crops 3202 center

batch size top-1 top-5 top-1 top-5 top-1 top-5

ResNeXt-101, STD-BN 256 77.04 93.50 78.72 94.47 77.92 94.28

ResNeXt-101, INPLACE-ABN 512 78.08 93.79 79.52 94.66 79.38 94.67

ResNeXt-152, INPLACE-ABN 256 78.28 94.04 79.73 94.82 79.56 94.67

WideResNet-38, INPLACE-ABN 256 79.72 94.78 81.03 95.43 80.69 95.27

DenseNet-264, INPLACE-ABN 256 78.57 94.17 79.72 94.93 79.49 94.89

ResNeXt-101, INPLACE-ABNsync 256 77.70 93.78 79.18 94.60 78.98 94.56

Conv1 Conv2 Conv3 Conv4

30

40

50 0%

0%

0%

0%

1.8%

2%

1.6%

0.8%

4%

3.7%

3.1%

1.2%

ResNeXt-101 modules

B
at
ch

ti
m
e
(m

s)

BN+Act+Conv forward and backward

Standard

InPlace-ABN I

Checkpointing

Table 1. (Left) Imagenet validation set results using different architectures and training batch sizes. (Right) Computation time required for

a forward and backward pass through basic BN+ACT+CONV blocks from ResNeXt-101, using different BN strategies.

Datasets used for Evaluation. We report results on

Cityscapes [5], COCO-Stuff [1] and Mapillary Vistas [21].

Cityscapes shows street-level images captured in central

Europe and comprises a total of 5k densely annotated im-

ages (19 object categories + 1 void class, all images sized

2048×1024), split into 2975/500/1525 images for training,

validation and test, respectively. We use the additional 20k

training images with so-called coarse annotations only for

the model evaluated on test data (Table 2, bottom), other-

wise we learn only from the high-quality (fine) annotations

in the training set and test on the corresponding valida-

tion set. We also provide results on COCO-Stuff, which

holds stuff -class annotations for the well-known MS COCO

dataset [17]. This dataset comprises 55k COCO images

(with 40k for training, 5k for validation, 5k for test-dev

and 5k as challenge test set) with annotations for 91 stuff

classes and 1 void class. Finally, we report results on Mapil-

lary Vistas (research edition), a novel and large-scale street-

level image dataset comprising 25k densely annotation im-

ages (65 object categories + 1 void class, images have vary-

ing aspect ratios and sizes up to 22 Megapixel), split into

18k/2k/5k images for training, validation and test, respec-

tively. Here, we only use the training set when testing on

validation data, and use both training and validation when

evaluating on test data.

Segmentation approach. We chose to adopt the recently

introduced DeepLabV3 [3] segmentation approach as head,

and evaluate its performance with body networks from

§ 4.1. DeepLabV3 is exploiting atrous (dilated) convo-

lutions in a cascaded way for capturing contextual infor-

mation, together with crop-level features encoding global

context (close in spirit to PSPNet’s [33] global feature).

We follow the parameter choices suggested in [3], assem-

bling the head as 4 parallel CONV blocks with 256 out-

put channels each and dilation rates (1, 12, 24, 36) (with x8

downsampled crop sizes from the body) and kernel sizes

(12, 32, 32, 32), respectively. The global 1 × 1 features

are computed in a channel-specific way and CONVed into

256 additional channels. Each output block is followed

by BatchNorm before all 1280 features are stacked and re-

duced by another CONV+BN+ACT block (into 256 fea-

tures) and finally CONVed to the number of target classes.

We exploit our proposed INPLACE-ABN strategy also in

the head architecture. Finally, we apply bilinear upsam-

pling to the logits to obtain the original input crop resolu-

tion before computing the loss using an online bootstrap-

ping strategy as described in [23, 28] (setting p = 1.0
and m = 25%). We did not apply hybrid dilated convo-

lutions [27] nor added an auxiliary loss as proposed in [33].

Training data is sampled in a uniform way unless other-

wise stated (by shuffling the database in each epoch) and all

Cityscapes experiments are run for 360 epochs using an ini-

tial learning rate of 2.5×10−3 and polynomial learning rate

decay (1− iter
max_iter

)0.9, following [3]. COCO-Stuff exper-

iments were trained only for 30 epochs, which however ap-

proximately matches the number of iterations on Cityscapes

due to the considerably larger dataset size. For optimiza-

tion, we use stochastic gradient descent with momentum

0.9 and weight decay 10−4. For training data augmenta-

tion, we apply random horizontal flipping (with prob. 0.5)

and random scaling selected from 0.7 - 2.0 before cropping

the actual patches.

Discussion of Results. In Table 2 (top), we provide results

(all scores are averaged Jaccard numbers) on validation data

for Cityscapes and COCO-Stuff under different BN layer

configurations. We distinguish between standard BN lay-

ers [15] (coined STD-BN) and our proposed variants us-

ing in-place, activated BN (INPLACE-ABN) as well as its

gradient-synchronized version INPLACE-ABNsync. All ex-

periments are based on LEAKY RELU activations. Train-

ings were conducted in a way to maximize GPU mem-

ory utilization by i) fixing the training crop size and there-

fore pushing the amount of crops per minibatch to the

limit (denoted as FIXED CROP) or ii) fixing the number of

crops per minibatch and maximizing the training crop res-

olutions (FIXED BATCH). Experiments are conducted for

ResNeXt-101 and WideResNet-38 network bodies,

where the latter seems preferable for segmentation tasks.

5645



BATCHNORM
ResNeXt-101 WideResNet-38

Cityscapes COCO-Stuff Cityscapes COCO-Stuff

STD-BN + LEAKY RELU 16× 5122 74.42 16× 4802 20.30 20× 5122 75.82 20× 4962 22.44

INPLACE-ABN, FIXED CROP 28× 5122 [+75%] 75.80 24× 4802 [+50%] 22.63 28× 5122 [+40%] 77.75 28× 4962 [+40%] 22.96

INPLACE-ABN, FIXED BATCH 16× 6722 [+72%] 77.04 16× 6002 [+56%] 23.35 20× 6402 [+56%] 78.31 20× 5762 [+35%] 24.10

INPLACE-ABNsync, FIXED BATCH 16× 6722 [+72%] 77.58 16× 6002 [+56%] 24.91 20× 6402 [+56%] 78.06 20× 5762 [+35%] 25.11

Cityscapes val (single model & scale) 12× 8722 79.16 Cityscapes val (single model & scale) + CLASS-UNIFORM SAMPLING 12× 8722 79.40

Cityscapes test (single Vistas pre-trained model, 5 scales + horizontal flipping, fine + coarse label data) + CLASS-UNIFORM SAMPLING 12× 8722 82.03

Mapillary Vistas val (single model & scale, no horizontal flipping) + CLASS-UNIFORM SAMPLING 12× 7762 53.12

Mapillary Vistas test (single model & scale, no horizontal flipping) + CLASS-UNIFORM SAMPLING 12× 7762 53.37

Table 2. (Top) Validation results (single scale test) for segmentation experiments on Cityscapes and COCO-Stuff, using ResNeXt-101

and WideResNet-38 network bodies and different batch compilations (see text). (Bottom) Validation and test data results using

WideResNet-38+INPLACE-ABNsync models for Cityscapes and Vistas with tuned hyperparameters. All result numbers in [%].

Both body networks were solely trained on ImageNet-1k.

All results at the top of Table 2 derive from single-scale

testing without horizontal image flipping. In general, re-

sults improve when applying more training data (in terms

of both, #training crops per minibatch and input crop res-

olutions). The increase of data (w.r.t. pixels/minibatch) we

can put in GPU memory, relative to the baseline (first row)

is reported in square brackets. We observe that higher input

resolution is in general even more beneficial than adding

more crops to the batch.

Results for tuned WideResNet-38 INPLACE-

ABNsync models using even larger input crops are shown

on the bottom of Table 2 for both, validation and test data.

The combination of using INPLACE-ABNsync with fewer,

but larger crops and an alternative minibatch compilation

strategy coined CLASS-UNIFORM SAMPLING yields

new high scores for both, Cityscapes (model is Vistas

pre-trained, used also coarsely labeled data for training

and multi-scale [1.0, 1.25, 1.5, 1.75, 2.0] + horizontally

flipped testing) and Mapillary Vistas (initial learning rate

of 3.5 × 10−3 and trained for 90 epochs, single scale

inference) test datasets. For CLASS-UNIFORM SAMPLING,

we compiled the minibatches per epoch in a way to show

all classes uniformly instead of randomly perturbing

the dataset (thus following an oversampling strategy for

underrepresented categories).

4.3. Timing analyses

Besides the discussed memory improvements and their

impact on computer vision applications, we also provide

actual runtime comparisons and analyses for the INPLACE-

ABN I setting shown in 2(d), as this is the implementation

we released on github. Isolating a single BN+ACT+CONV

block, we evaluate the computational times required for a

forward and backward pass over it (Figure right to Table 1).

We compare the conventional approach of serially execut-

ing layers and storing intermediate results (STANDARD),

our proposed INPLACE-ABN I and the CHECKPOINT-

ING approach. In order to obtain fair timing compar-

isons, we re-implemented the checkpointing idea in Py-

Torch. The results are obtained by running all opera-

tions over a batch comprising 32-images and setting the

meta-parameters (number of feature channels, spatial di-

mensions) to those encountered in the four modules of

ResNeXt-101, denoted as CONV1-CONV4. The actual

runtimes were averaged over 200 iterations.

We observe consistent speed advantages in favor of our

method when comparing against CHECKPOINTING, with

the actual percentage difference depending on block’s meta-

parameters. As we can see, INPLACE-ABN induces com-

putation time increase between 0.8 − 2% over STANDARD

while CHECKPOINTING is almost doubling our overheads.

5. Conclusions

In this work we have presented INPLACE-ABN, which

is a novel, computationally efficient fusion of batch

normalization and activation layers, targeting memory-

optimization for modern deep neural networks during train-

ing time. We reconstruct necessary quantities for the back-

ward pass by inverting the forward computation from the

storage buffer, and manage to free up almost 50% of the

memory needed in conventional BN+ACT implementations

at little additional computational costs. In contrast to state-

of-the-art checkpointing attempts, our method is recon-

structing discarded buffers backwards during the backward

pass, thus allowing us to encapsulate BN+ACT as self-

contained layer, which is easy to implement and deploy in

virtually all modern deep learning frameworks. We have

validated our approach with experiments for image clas-

sification on ImageNet-1k and semantic segmentation on

Cityscapes, COCO-Stuff and Mapillary Vistas. Our ob-

tained networks have performed consistently and consider-

ably better when trained with larger batch sizes (or training

crop sizes), leading to new high-scores on the challenging

Cityscapes and Mapillary Vistas datasets.

Acknowledgements. We acknowledge financial support

from project DIGIMAP, funded under grant #860375 by the

Austrian Research Promotion Agency (FFG).

5646



References

[1] H. Caesar, J. R. R. Uijlings, and V. Ferrari. COCO-Stuff:

Thing and stuff classes in context. CoRR, abs/1612.03716,

2016. 6, 7
[2] L. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L.

Yuille. Deeplab: Semantic image segmentation with deep

convolutional nets, atrous convolution, and fully connected

CRFs. CoRR, abs/1606.00915, 2016. 1
[3] L. Chen, G. Papandreou, F. Schroff, and H. Adam. Re-

thinking atrous convolution for semantic image segmenta-

tion. CoRR, abs/1706.05587, 2017. 7
[4] T. Chen, B. Xu, C. Zhang, and C. Guestrin. Training deep

nets with sublinear memory cost. CoRR, abs/1604.06174,

2016. 2, 3, 4
[5] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler,

R. Benenson, U. Franke, S. Roth, and B. Schiele. The

Cityscapes dataset for semantic urban scene understanding.

In (CVPR), 2016. 6, 7
[6] M. Courbariaux, Y. Bengio, and J.-P. David. Binaryconnect:

Training deep neural networks with binary weights during

propagations. In (NIPS). 2015. 2
[7] A. N. Gomez, M. Ren, R. Urtasun, and R. B. Grosse. The re-

versible residual network: Backpropagation without storing

activations. In (NIPS), December 2017. 2, 4
[8] A. Gruslys, R. Munos, I. Danihelka, M. Lanctot, and

A. Graves. Memory-efficient backpropagation through time.

In (NIPS), 2016. 2
[9] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning

for image recognition. CoRR, abs/1512.03385, 2015. 1
[10] K. He, X. Zhang, S. Ren, and J. Sun. Identity mappings in

deep residual networks. CoRR, abs/1603.05027, 2016. 1
[11] J. Hu, L. Shen, and G. Sun. Squeeze-and-excitation net-

works. CoRR, abs/1709.01507, 2017. 2
[12] G. Huang, Z. Liu, L. van der Maaten, and K. Q. Weinberger.

Densely connected convolutional networks. In (CVPR), July

2017. 2, 6
[13] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and

Y. Bengio. Binarized neural networks. In (NIPS). 2016. 2
[14] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and

Y. Bengio. Quantized neural networks: Training neural net-

works with low precision weights and activations. CoRR,

abs/1609.07061, 2016. 2
[15] S. Ioffe and C. Szegedy. Batch normalization: Accelerating

deep network training by reducing internal covariate shift.

CoRR, abs/1502.03167, 2015. 3, 5, 7
[16] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Gir-

shick, S. Guadarrama, and T. Darrell. Caffe: Convolu-

tional architecture for fast feature embedding. arXiv preprint

arXiv:1408.5093, 2014. 5
[17] T. Lin, M. Maire, S. J. Belongie, L. D. Bourdev, R. B.

Girshick, J. Hays, P. Perona, D. Ramanan, P. Dollár, and

C. L. Zitnick. Microsoft COCO: Common objects in con-

text. CoRR, abs/1405.0312, 2014. 7

[18] A. L. Maas, A. Y. Hannun, and A. Y. Ng. Rectifier non-

linearities improve neural network acoustic models. In in

ICML Workshop on Deep Learning for Audio, Speech and

Language Processing, 2013. 5
[19] J. Martens and I. Sutskever. Training Deep and Recurrent

Networks with Hessian-Free Optimization, pages 479–535.

Springer Berlin Heidelberg, 2012. 2, 3, 4
[20] P. Micikevicius, S. Narang, J. Alben, G. F. Diamos,

E. Elsen, D. Garcia, B. Ginsburg, M. Houston, O. Kuchaiev,

G. Venkatesh, and H. Wu. Mixed precision training. CoRR,

abs/1710.03740, 2017. 2
[21] G. Neuhold, T. Ollmann, S. Rota Bulò, and P. Kontschieder.

The mapillary vistas dataset for semantic understanding of

street scenes. In (ICCV), October 2017. 6, 7
[22] G. Pleiss, D. Chen, G. Huang, T. Li, L. van der Maaten,

and K. Q. Weinberger. Memory-efficient implementation of

densenets. CoRR, abs/1707.06990, 2017. 4
[23] S. Rota Bulò, G. Neuhold, and P. Kontschieder. Loss max-

pooling for semantic image segmentation. In (CVPR), July

2017. 7
[24] S. Rota Bulò, L. Porzi, and P. Kontschieder. In-place acti-

vated batchnorm for memory-optimized training of DNNs.

CoRR, abs/1712.02616, December 2017. 5
[25] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,

S. Ma, Z. Huang, A. Karphathy, A. Khosla, M. Bernstein,

A. C. Berg, and L. Fei-Fei. Imagenet large scale visual recog-

nition challenge. (IJCV), 2015. 2, 6
[26] C. Szegedy, S. Ioffe, and V. Vanhoucke. Inception-v4,

inception-resnet and the impact of residual connections on

learning. CoRR, abs/1602.07261, 2016. 2
[27] P. Wang, P. Chen, Y. Yuan, D. Liu, Z. Huang, X. Hou, and

G. W. Cottrell. Understanding convolution for semantic seg-

mentation. CoRR, abs/1702.08502, 2017. 7
[28] Z. Wu, C. Shen, and A. van den Hengel. High-performance

semantic segmentation using very deep fully convolutional

networks. CoRR, abs/1604.04339, 2016. 1, 7
[29] Z. Wu, C. Shen, and A. van den Hengel. Wider or deeper:

Revisiting the resnet model for visual recognition. CoRR,

abs/1611.10080, 2016. 6
[30] S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He. Aggregated

residual transformations for deep neural networks. CoRR,

abs/1611.05431, 2016. 1, 2, 6
[31] B. Xu, N. Wang, T. Chen, and M. Li. Empirical evalua-

tion of rectified activations in convolutional network. CoRR,

abs/1505.00853, 2015. 5
[32] S. Zagoruyko and N. Komodakis. Wide residual networks.

In (BMVC), 2016. 2
[33] H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia. Pyramid scene

parsing network. CoRR, abs/1612.01105, 2016. 7
[34] B. Zhou, H. Zhao, X. Puig, S. Fidler, A. Barriuso, and

A. Torralba. Semantic understanding of scenes through the

ADE20K dataset. CoRR, abs/1608.05442, 2016. 6

5647


