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Abstract

Recent work has shown that depth estimation from a

stereo pair of images can be formulated as a supervised

learning task to be resolved with convolutional neural net-

works (CNNs). However, current architectures rely on

patch-based Siamese networks, lacking the means to ex-

ploit context information for finding correspondence in ill-

posed regions. To tackle this problem, we propose PSM-

Net, a pyramid stereo matching network consisting of two

main modules: spatial pyramid pooling and 3D CNN. The

spatial pyramid pooling module takes advantage of the ca-

pacity of global context information by aggregating con-

text in different scales and locations to form a cost volume.

The 3D CNN learns to regularize cost volume using stacked

multiple hourglass networks in conjunction with interme-

diate supervision. The proposed approach was evaluated

on several benchmark datasets. Our method ranked first in

the KITTI 2012 and 2015 leaderboards before March 18,

2018. The codes of PSMNet are available at: https:

//github.com/JiaRenChang/PSMNet.

1. Introduction

Depth estimation from stereo images is essential to com-

puter vision applications, including autonomous driving for

vehicles, 3D model reconstruction, and object detection and

recognition [4, 31]. Given a pair of rectified stereo images,

the goal of depth estimation is to compute the disparity d

for each pixel in the reference image. Disparity refers to the

horizontal displacement between a pair of corresponding

pixels on the left and right images. For the pixel (x, y) in the

left image, if its corresponding point is found at (x − d, y)
in the right image, then the depth of this pixel is calculated

by fB
d

, where f is the camera's focal length and B is the

distance between two camera centers.

The typical pipeline for stereo matching involves the

finding of corresponding points based on matching cost

and post-processing. Recently, convolutional neural net-

works (CNNs) have been applied to learn how to match

corresponding points in MC-CNN [30]. Early approaches

using CNNs treated the problem of correspondence esti-

mation as similarity computation [27, 30], where CNNs

compute the similarity score for a pair of image patches

to further determine whether they are matched. Although

CNN yields significant gains compared to conventional ap-

proaches in terms of both accuracy and speed, it is still

difficult to find accurate corresponding points in inherently

ill-posed regions such as occlusion areas, repeated patterns,

textureless regions, and reflective surfaces. Solely applying

the intensity-consistency constraint between different view-

points is generally insufficient for accurate correspondence

estimation in such ill-posed regions, and is useless in tex-

tureless regions. Therefore, regional support from global

context information must be incorporated into stereo match-

ing.

One major problem with current CNN-based stereo

matching methods is how to effectively exploit context in-

formation. Some studies attempt to incorporate seman-

tic information to largely refine cost volumes or disparity

maps [8, 13, 27]. The Displets [8] method utilizes object

information by modeling 3D vehicles to resolve ambigui-

ties in stereo matching. ResMatchNet [27] learns to mea-

sure reflective confidence for the disparity maps to improve

performance in ill-posed regions. GC-Net [13] employs the

encoder-decoder architecture to merge multiscale features

for cost volume regularization.

In this work, we propose a novel pyramid stereo match-

ing network (PSMNet) to exploit global context information

in stereo matching. Spatial pyramid pooling (SPP) [9, 32]

and dilated convolution [2, 29] are used to enlarge the re-

ceptive fields. In this way, PSMNet extends pixel-level fea-

tures to region-level features with different scales of recep-

tive fields; the resultant combined global and local feature

clues are used to form the cost volume for reliable dispar-

ity estimation. Moreover, we design a stacked hourglass

3D CNN in conjunction with intermediate supervision to

regularize the cost volume. The stacked hourglass 3D CNN

repeatedly processes the cost volume in a top-down/bottom-

up manner to further improve the utilization of global con-

text information.

Our main contributions are listed below:

5410



• We propose an end-to-end learning framework for

stereo matching without any post-processing.

• We introduce a pyramid pooling module for incorpo-

rating global context information into image features.

• We present a stacked hourglass 3D CNN to extend the

regional support of context information in cost volume.

• We achieve state-of-the-art accuracy on the KITTI

dataset.

2. Related Work

For depth estimation from stereo images, many methods

for matching cost computation and cost volume optimiza-

tion have been proposed in the literature. According to [25],

a typical stereo matching algorithm consists of four steps:

matching cost computation, cost aggregation, optimization,

and disparity refinement.

Current state-of-the-art studies focus on how to accu-

rately compute the matching cost using CNNs and how

to apply semi-global matching (SGM) [11] to refine the

disparity map. Zbontar and LeCun [30] introduce a deep

Siamese network to compute matching cost. Using a pair of

9 × 9 image patches, the network is trained to learn to pre-

dict the similarity between image patches. Their method

also exploits typical stereo matching procedures, includ-

ing cost aggregation, SGM, and other disparity map refine-

ments to improve matching results. Further studies improve

stereo depth estimation. Luo et al. [18] propose a notably

faster Siamese network in which the computation of match-

ing costs is treated as a multi-label classification. Shaked

and Wolf [27] propose a highway network for matching cost

computation and a global disparity network for the predic-

tion of disparity confidence scores, which facilitate the fur-

ther refinement of disparity maps.

Some studies focus on the post-processing of the dis-

parity map. The Displets [8] method is proposed based

on the fact that objects generally exhibit regular structures,

and are not arbitrarily shaped. In the Displets [8] method,

3D models of vehicles are used to resolve matching am-

biguities in reflective and textureless regions. Moreover,

Gidaris and Komodakis [6] propose a network architecture

which improves the labels by detecting incorrect labels, re-

placing incorrect labels with new ones, and refining the re-

newed labels (DRR). Gidaris and Komodakis [6] use the

DRR network on disparity maps and achieve good perfor-

mance without other post-processing. The SGM-Net [26]

learns to predict SGM penalties instead of manually-tuned

penalties for regularization.

Recently, end-to-end networks have been developed

to predict whole disparity maps without post-processing.

Mayer et al. [19] present end-to-end networks for the es-

timation of disparity (DispNet) and optical flow (FlowNet).

They also offer a large synthetic dataset, Scene Flow, for

network training. Pang et al. [21] extend DispNet [19] and

introduce a two-stage network called cascade residual learn-

ing (CRL). The first and second stages calculate the dispar-

ity map and its multi-scale residuals, respectively. Then the

outputs of both stages are summed to form the final dis-

parity map. Also, Kendall et al. [13] introduce GC-Net, an

end-to-end network for cost volume regularization using 3D

convolutions. The above-mentioned end-to-end approaches

exploit multiscale features for disparity estimation. Both

DispNet [19] and CRL [21] reuse hierarchical information,

concatenating features from lower layers with those from

higher layers. CRL [21] also uses hierarchical supervision

to calculate disparity in multiple resolutions. GC-Net [13]

applies the encoder-decoder architecture to regularize the

cost volume. The main idea of these methods is to incorpo-

rate context information to reduce mismatch in ambiguous

regions and thus improve depth estimation.

In the field of semantic segmentation, aggregating con-

text information is also essential for labeling object classes.

There are two main approaches to exploiting global context

information: the encoder-decoder architecture and pyra-

mid pooling. The main idea of the encoder-decoder ar-

chitecture is to integrate top-down and bottom-up infor-

mation via skip connections. The fully convolutional net-

work (FCN) [17] was first proposed to aggregate coarse-

to-fine predictions to improve segmentation results. U-

Net [24], instead of aggregating coarse-to-fine predictions,

aggregates coarse-to-fine features and achieves good seg-

mentation results for biomedical images. Further studies

including SharpMask [22], RefineNet [15], and the label

refinement network [12] follow this core idea and propose

more complex architectures for the merging of multiscale

features. Moreover, stacked multiple encoder-decoder net-

works such as [5] and [20] were introduced to improve fea-

ture fusion. In [20], the encoder-decoder architecture is

termed the hourglass architecture.

Pyramid pooling was proposed based on the fact that the

empirical receptive field is much smaller than the theoret-

ical receptive field in deep networks [16]. ParseNet [16]

demonstrates that global pooling with FCN enlarges the em-

pirical receptive field to extract information at the whole-

image level and thus improves semantic segmentation re-

sults. DeepLab v2 [2] proposes atrous spatial pyramid

pooling (ASPP) for multiscale feature embedding, contain-

ing parallel dilated convolutions with different dilated rates.

PSPNet [32] presents a pyramid pooling module to collect

the effective multiscale contextual prior. Inspired by PSP-

Net [32], DeepLab v3 [3] proposes a new ASPP module

augmented with global pooling.

Similar ideas of spatial pyramids have been used in con-

text of optical flow. SPyNet [23] introduces image pyramids

to estimate optical flow in a coarse-to-fine approach. PWC-
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Net [28] improves optical flow estimation by using feature

pyramids.

In this work on stereo matching, we embrace the expe-

rience of semantic segmentation studies and exploit global

context information at the whole-image level. As described

below, we propose multiscale context aggregation via a

pyramid stereo matching network for depth estimation.

3. Pyramid Stereo Matching Network

We present PSMNet, which consists of an SPP [9, 32]

module for effective incorporation of global context and a

stacked hourglass module for cost volume regularization.

The architecture of PSMNet is illustrated in Figure 1.

3.1. Network Architecture

The parameters of the proposed PSMNet are detailed

in Table 1. In contrast to the application of large filters

(7 × 7) for the first convolution layer in other studies [10],

three small convolution filters (3 × 3) are cascaded to con-

struct a deeper network with the same receptive field. The

conv1 x, conv2 x, conv3 x, and conv4 x are the basic resid-

ual blocks [10] for learning the unary feature extraction. For

conv3 x and conv4 x, dilated convolution is applied to fur-

ther enlarge the receptive field. The output feature map size

is 1

4
× 1

4
of the input image size, as shown in Table 1. The

SPP module, as shown in Figure 1, is then applied to gather

context information. We concatenate the left and right fea-

ture maps into a cost volume, which is fed into a 3D CNN

for regularization. Finally, regression is applied to calculate

the output disparity map. The SPP module, cost volume,

3D CNN, and disparity regression are described in later sec-

tions.

3.2. Spatial Pyramid Pooling Module

It is difficult to determine the context relationship solely

from pixel intensities. Therefore, image features rich with

object context information can benefit correspondence es-

timation, particularly for ill-posed regions. In this work,

the relationship between an object (for example, a car) and

its sub-regions (windows, tires, hoods, etc.) is learned by

the SPP module to incorporate hierarchical context infor-

mation.

In [9], SPP was designed to remove the fixed-size con-

straint of CNN. Feature maps at different levels generated

by SPP are flattened and fed into the fully connected layer

for classification, after which SPP is applied to semantic

segmentation problems. ParseNet [16] applies global av-

erage pooling to incorporate global context information.

PSPNet [32] extends ParseNet [16] to a hierarchical global

prior, containing information with different scales and sub-

regions. In [32], the SPP module uses adaptive average

pooling to compress features into four scales and is fol-

lowed by a 1 × 1 convolution to reduce feature dimension,

Table 1. Parameters of the proposed PSMNet architecture. Con-

struction of residual blocks are designated in brackets with the

number of stacked blocks. Downsampling is performed by

conv0 1 and conv2 1 with stride of 2. The usage of batch nor-

malization and ReLU follows ResNet [10], with exception that

PSMNet does not apply ReLU after summation. H and W de-

note the height and width of the input image, respectively, and D

denotes the maximum disparity.

Name Layer setting Output dimension 

input ܪ × ܹ × ͵ 

CNN 

conv0_1 ͵ × ͵, ͵ʹ 
ଵଶܪ × ଵଶܹ × ͵ʹ 

conv0_2 ͵ × ͵, ͵ʹ 
ଵଶܪ × ଵଶܹ × ͵ʹ 

conv0_3 ͵ × ͵, ͵ʹ 
ଵଶܪ × ଵଶܹ × ͵ʹ 

conv1_x 
͵ × ͵, ͵ʹ͵ × ͵, ͵ʹ × ͵ ଵଶܪ × ଵଶܹ × ͵ʹ 

conv2_x 
͵ × ͵, 6Ͷ͵ × ͵, 6Ͷ × ͳ6 ଵସܪ × ଵସܹ × 6Ͷ 

conv3_x 
͵ × ͵, ͳʹ8͵ × ͵, ͳʹ8 × ͵, dila = 2 

ଵସܪ × ଵସܹ × ͳʹ8 

conv4_x 
͵ × ͵, ͳʹ8͵ × ͵, ͳʹ8 × ͵, dila= 4 

ଵସܪ × ଵସܹ × ͳʹ8 

SPP module 

branch_1 

6Ͷ × 6Ͷ avg. pool ͵ × ͵, ͵ʹ  bilinear interpolation ଵସܪ × ଵସܹ × ͵ʹ 

branch_2 

͵ʹ × ͵ʹ avg. pool ͵ × ͵, ͵ʹ  bilinear interpolation ଵସܪ × ଵସܹ × ͵ʹ 

branch_3 

ͳ6 × ͳ6 avg. pool ͵ × ͵, ͵ʹ  bilinear interpolation ଵସܪ × ଵସܹ × ͵ʹ 

branch_4 

8 × 8 avg. pool ͵ × ͵, ͵ʹ  bilinear interpolation ଵସܪ × ଵସܹ × ͵ʹ 

concat[conv2_16, conv4_3, branch_1, 

branch_2, branch_3, branch_4] 
ଵସܪ × ଵସܹ × ͵ʹͲ 

fusion 
͵ × ͵, ͳʹ8ͳ × ͳ, ͵ʹ  

ଵସܪ × ଵସܹ × ͵ʹ 

Cost volume 

Concat left and shifted right 
ଵସܦ × ଵସܪ × ଵସܹ × 6Ͷ 

3D CNN (stacked hourglass) 

3Dconv0 
͵ × ͵ × ͵, ͵ʹ͵ × ͵ × ͵, ͵ʹ 

ଵସܦ × ଵସܪ × ଵସܹ × ͵ʹ 

3Dconv1 
͵ × ͵ × ͵, ͵ʹ͵ × ͵ × ͵, ͵ʹ 

ଵସܦ × ଵସܪ × ଵସܹ × ͵ʹ 

3Dstack1_1 
͵ × ͵ × ͵, 6Ͷ ͵ × ͵ × ͵, 6Ͷ 

ଵ଼ܦ × ଵ଼ܪ × ଵ଼ܹ × 6Ͷ 

3Dstack1_2 
͵ × ͵ × ͵, 6Ͷ ͵ × ͵ × ͵, 6Ͷ 

ଵଵ଺ܦ × ଵଵ଺ܪ × ଵଵ଺ܹ × 6Ͷ 

3Dstack1_3 
deconv ͵ × ͵ × ͵, 6Ͷ 

add 3Dstack1_1 
ଵ଼ܦ × ଵ଼ܪ × ଵ଼ܹ × 6Ͷ 

3Dstack1_4 
deconv ͵ × ͵ × ͵, ͵ʹ 

add 3Dconv1 
ଵସܦ × ଵସܪ × ଵସܹ × ͵ʹ 

3Dstack2_1 
͵ × ͵ × ͵, 6Ͷ ͵ × ͵ × ͵, 6Ͷ 

add 3Dstack1_3 

ଵ଼ܦ × ଵ଼ܪ × ଵ଼ܹ × 6Ͷ 

3Dstack2_2 
͵ × ͵ × ͵, 6Ͷ ͵ × ͵ × ͵, 6Ͷ 

ଵଵ଺ܦ × ଵଵ଺ܪ × ଵଵ଺ܹ × 6Ͷ 

3Dstack2_3 
deconv ͵ × ͵ × ͵, 6Ͷ 

add 3Dstack1_1 
ଵ଼ܦ × ଵ଼ܪ × ଵ଼ܹ × 6Ͷ 

3Dstack2_4 
deconv ͵ × ͵ × ͵, ͵ʹ 

add 3Dconv1 
ଵସܦ × ଵସܪ × ଵସܹ × ͵ʹ 

3Dstack3_1 
͵ × ͵ × ͵, 6Ͷ ͵ × ͵ × ͵, 6Ͷ 

add 3Dstack2_3 

ଵ଼ܦ × ଵ଼ܪ × ଵ଼ܹ × 6Ͷ 

3Dstack3_2 
͵ × ͵ × ͵, 6Ͷ ͵ × ͵ × ͵, 6Ͷ 

ଵଵ଺ܦ × ଵଵ଺ܪ × ଵଵ଺ܹ × 6Ͷ 

3Dstack3_3 
deconv ͵ × ͵ × ͵, 6Ͷ 

add 3Dstack1_1 
ଵ଼ܦ × ଵ଼ܪ × ଵ଼ܹ × 6Ͷ 

3Dstack3_4 
deconv ͵ × ͵ × ͵, ͵ʹ 

add 3Dconv1 
ଵସܦ × ଵସܪ × ଵସܹ × ͵ʹ 

output_1 
͵ × ͵ × ͵, ͵ʹ͵ × ͵ × ͵, ͳ  

ଵସܦ × ଵସܪ × ଵସܹ × ͳ 

output_2 
͵ × ͵ × ͵, ͵ʹ͵ × ͵ × ͵, ͳ  

add output_1 

ଵସܦ × ଵସܪ × ଵସܹ × ͳ 

output_3 
͵ × ͵ × ͵, ͵ʹ͵ × ͵ × ͵, ͳ  

add output_2 

ଵସܦ × ଵସܪ × ଵସܹ × ͳ 

3 output [output_1, outpu_t2, output_3] 

upsampling Bilinear interpolation ܦ × ܪ × ܹ 

Disparity Regression ܪ × ܹ 
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Figure 1. Architecture overview of proposed PSMNet. The left and right input stereo images are fed to two weight-sharing pipelines

consisting of a CNN for feature maps calculation, an SPP module for feature harvesting by concatenating representations from sub-regions

with different sizes, and a convolution layer for feature fusion. The left and right image features are then used to form a 4D cost volume,

which is fed into a 3D CNN for cost volume regularization and disparity regression.

after which the low-dimensional feature maps are upsam-

pled to the same size of the original feature map via bilinear

interpolation. The different levels of feature maps are con-

catenated as the final SPP feature maps.

In the current work, we design four fixed-size average

pooling blocks for SPP: 64 × 64, 32 × 32, 16 × 16, and

8×8, as shown in Figure 1 and Table 1. Further operations,

including 1 × 1 convolution and upsampling, are the same

as in [32]. In an ablation study, we performed extensive

experiments to show the effect of feature maps at different

levels, as described in Section 4.2.

3.3. Cost Volume

Rather than using a distance metric, the MC-CNN [30]

and GC-Net [13] approaches concatenate the left and right

features to learn matching cost estimation using deep net-

work. Following [13], we adopt SPP features to form a cost

volume by concatenating left feature maps with their cor-

responding right feature maps across each disparity level,

resulting in a 4D volume (height×width×disparity×feature

size).

3.4. 3D CNN

The SPP module facilitates stereo matching by involving

different levels of features. To aggregate the feature infor-

mation along the disparity dimension as well as spatial di-

mensions, we propose two kinds of 3D CNN architectures

for cost volume regularization: the basic and stacked hour-

glass architectures. In the basic architecture, as shown in

Figure1, the network is simply built using residual blocks.

The basic architecture contains twelve 3 × 3 × 3 convo-

lutional layers. Then we upsample the cost volume back to

size H×W×D via bilinear interpolation. Finally, we apply

regression to calculate the disparity map with size H ×W ,

which is introduced in Section 3.5.

In order to learn more context information, we use a

stacked hourglass (encoder-decoder) architecture, consist-

ing of repeated top-down/bottom-up processing in conjunc-

tion with intermediate supervision, as shown in Figure 1.

The stacked hourglass architecture has three main hourglass

networks, each of which generates a disparity map. That

is, the stacked hourglass architecture has three outputs and

losses (Loss 1, Loss 2, and Loss 3). The loss function is

described in Section 3.6. During the training phase, the to-

tal loss is calculated as the weighted summation of the three
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losses. During the testing phase, the final disparity map is

the last of three outputs. In our ablation study, the basic ar-

chitecture was used to evaluate the performance of the SPP

module, because the basic architecture does not learn extra

context information through the encoding/decoding process

as in [13].

3.5. Disparity Regression

We use disparity regression as proposed in [13] to esti-

mate the continuous disparity map. The probability of each

disparity d is calculated from the predicted cost cd via the

softmax operation σ(·). The predicted disparity d̂ is calcu-

lated as the sum of each disparity d weighted by its proba-

bility, as

d̂ =

Dmax
∑

d=0

d× σ(−cd). (1)

As reported in [13], the above disparity regression is

more robust than classification-based stereo matching meth-

ods. Note that the above equation is similar to that intro-

duced in [1], in which it is referred to as a soft attention

mechanism.

3.6. Loss

Because of the disparity regression, we adopt the smooth

L1 loss function to train the proposed PSMNet. Smooth L1

loss is widely used in bounding box regression for object

detection because of its robustness and low sensitivity to

outliers [7], as compared to L2 loss. The loss function of

PSMNet is defined as

L(d, d̂) =
1

N

N
∑

i=1

smoothL1
(di − d̂i), (2)

in which

smoothL1
(x) =

{

0.5x2, if |x| < 1
|x| − 0.5, otherwise

,

where N is the number of labeled pixels, d is the ground-

truth disparity, and d̂ is the predicted disparity.

4. Experiments

We evaluated our method on three stereo datasets: Scene

Flow, KITTI 2012, and KITTI 2015. We also performed

ablation studies using KITTI 2015 with our architecture set-

ting to evaluate the influence on performance made by di-

lated convolution, different sizes of pyramid pooling, and

the stacked hourglass 3D CNN. The experimental settings

and network implementation are presented in Section 4.1,

followed by the evaluation results on each of the three stereo

datasets used in this study.

4.1. Experiment Details

We evaluated our method on three stereo datasets:

1. Scene Flow: a large scale synthetic dataset containing

35454 training and 4370 testing images with H = 540
and W = 960. This dataset provides dense and elabo-

rate disparity maps as ground truth. Some pixels have

large disparities and are excluded in the loss computa-

tion if the disparity is larger than the limits set in our

experiment.

2. KITTI 2015: a real-world dataset with street views

from a driving car. It contains 200 training stereo

image pairs with sparse ground-truth disparities ob-

tained using LiDAR and another 200 testing image

pairs without ground-truth disparities. Image size is

H = 376 and W = 1240. We further divided the

whole training data into a training set (80%) and a val-

idation set (20%).

3. KITTI 2012: a real-world dataset with street views

from a driving car. It contains 194 training stereo

image pairs with sparse ground-truth disparities ob-

tained using LiDAR and 195 testing image pairs with-

out ground-truth disparities. Image size is H = 376
and W = 1240. We further divided the whole training

data into a training set (160 image pairs) and a valida-

tion set (34 image pairs). Color images of KITTI 2012

were adopted in this work.

The full architecture of the proposed PSMNet is shown

in Table 1, including the number of convolutional filters.

The usage of batch normalization and ReLU is the same as

in ResNet [10], with exception that PSMNet does not apply

ReLU after summation.

The PSMNet architecture was implemented using Py-

Torch. All models were end-to-end trained with Adam

(β1 = 0.9, β2 = 0.999). We performed color normaliza-

tion on the entire dataset for data preprocessing. During

training, images were randomly cropped to size H = 256
and W = 512. The maximum disparity (D) was set to 192.

We trained our models from scratch using the Scene Flow

dataset with a constant learning rate of 0.001 for 10 epochs.

For Scene Flow, the trained model was directly used for

testing. For KITTI, we used the model trained with Scene

Flow data after fine-tuning on the KITTI training set for 300

epochs. The learning rate of this fine-tuning began at 0.001

for the first 200 epochs and 0.0001 for the remaining 100

epochs. The batch size was set to 12 for the training on four

nNvidia Titan-Xp GPUs (each of 3). The training process

took about 13 hours for Scene Flow dataset and 5 hours for

KITTI datasets. Moreover, we prolonged the training pro-

cess to 1000 epochs to obtain the final model and the test

results for KITTI submission.

5414



Table 2. Evaluation of PSMNet with different settings. We computed the percentage of three-pixel-error on the KITTI 2015 validation set,

and end-point-error on the Scene Flow test set. * denote that we use half the dilated rate of dilated convolution.

Network setting KITTI 2015 Scene Flow

dilated conv
pyramid pooling size

stacked hourglass Val Err (%) End Point Err
64× 64 32× 32 16× 16 8× 8

2.43 1.43√
2.16 1.56√ √ √ √
2.47 1.40√ √
2.17 1.30√ √ √ √ √
2.09 1.28√ √ √ √ √ √
1.98 1.09√

*
√ √ √ √ √

1.83 1.12

Table 3. Influence of weight values for Loss 1, Loss 2, and Loss 3

on validation errors. We empirically found that 0.5/0.7/1.0 yielded

the best performance.

Loss weight KITTI 2015

Loss 1 Loss 2 Loss 3 val error(%)

0.0 0.0 1.0 2.49

0.1 0.3 1.0 2.07

0.3 0.5 1.0 2.05

0.5 0.7 1.0 1.98

0.7 0.9 1.0 2.05

1.0 1.0 1.0 2.01

4.2. KITTI 2015

Ablation study for PSMNet We conducted experiments

with several settings to evaluate PSMNet, including the us-

age of dilated convolution, pooling at different levels, and

3D CNN architectures. The default 3D CNN design was the

basic architecture. As listed in Table 2, dilated convolution

works better when used in conjunction with the SPP mod-

ule. For pyramid pooling, pooling with more levels works

better. The stacked hourglass 3D CNN significantly out-

performed the basic 3D CNN when combined with dilated

convolution and the SPP module. The best setting of PSM-

Net yielded a 1.83% error rate on the KITTI 2015 validation

set.

Ablation study for Loss Weight The stacked hourglass

3D CNN has three outputs for training and can facilitate the

learning process. As shown in Table 3, we conducted exper-

iments with various combinations of loss weights between

0 and 1. For the baseline, we treated the three losses equally

and set all to 1. The results showed that the weight settings

of 0.5 for Loss 1, 0.7 for Loss 2, and 1.0 for Loss 3 yielded

the best performance, which was a 1.98% error rate on the

KITTI 2015 validation set.

Results on Leaderboard Using the best model trained in

our experiments, we calculated the disparity maps for the

200 testing images in the KITTI 2015 dataset and submit-

ted the results to the KITTI evaluation server for the perfor-

mance evaluation. According to the online leaderboard, as

shown in Table 4, the overall three-pixel-error for the pro-

posed PSMNet was 2.32%, which surpassed prior studies

by a noteworthy margin. In this table, “All” means that all

pixels were considered in error estimation, whereas “Noc”

means that only the pixels in non-occluded regions were

taken into account. The three columns “D1-bg”, “D1-fg”

and “D1-all” mean that the pixels in the background, fore-

ground, and all areas, respectively, were considered in the

estimation of errors.

Qualitative evaluation Figure 2 illustrates some exam-

ples of the disparity maps estimated by the proposed PSM-

Net, GC-Net [13], and MC-CNN [30] together with the cor-

responding error maps. These results were reported by the

KITTI evaluation server. PSMNet yields more robust re-

sults, particularly in ill-posed regions, as indicated by the

yellow arrows in Figure 2. Among these three methods,

PSMNet more correctly predicts the disparities for the fence

region, indicated by the yellow arrows in the middle row of

Figure 2.

4.3. Scene Flow

We also compared the performance of PSMNet with

other state-of-the-art methods, including CRL [21], Disp-

NetC [19], GC-Net [13], using the Scene Flow test set. As

shown in Table 5, PSMNet outperformed other methods in

terms of accuracy. Three testing examples are illustrated in

Figure 3 to demonstrate that PSMNet obtains accurate dis-

parity maps for delicate and intricately overlapped objects.

4.4. KITTI 2012

Using the best model trained in our experiments, we cal-

culated the disparity maps for the 195 testing images in the
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Table 4. The KITTI 2015 leaderboard presented on March 18, 2018. The results show the percentage of pixels with errors of more than

three pixels or 5% of disparity error from all test images. Only published methods are listed for comparison.

Rank Method
All (%) Noc (%)

Runtime (s)
D1-bg D1-fg D1-all D1-bg D1-fg D1-all

1 PSMNet (ours) 1.86 4.62 2.32 1.71 4.31 2.14 0.41

3 iResNet-i2e2 [14] 2.14 3.45 2.36 1.94 3.20 2.15 0.22

6 iResNet [14] 2.35 3.23 2.50 2.15 2.55 2.22 0.12

8 CRL [21] 2.48 3.59 2.67 2.32 3.12 2.45 0.47

11 GC-Net [13] 2.21 6.16 2.87 2.02 5.58 2.61 0.90

(a) PSMNet (b) GC-Net (c) MC-CNN

Figure 2. Results of disparity estimation for KITTI 2015 test images. The left panel shows the left input image of stereo image pair. For

each input image, the disparity maps obtained by (a) PSMNet, (b) GC-Net [13], and (c) MC-CNN [30] are illustrated together above their

error maps.

Table 5. Performance comparison with Scene Flow test set. EPE:

End-point-error.

PSMNet CRL [21] DispNetC [19] GC-Net [13]

EPE 1.09 1.32 1.68 2.51

KITTI 2012 dataset and submitted the results to the KITTI

evaluation server for the performance evaluation. Accord-

ing to the online leaderboard, as shown in Table 6, the over-

all three-pixel-error for the proposed PSMNet was 1.89%,

which surpassed prior studies by a noteworthy margin.

Qualitative evaluation Figure 4 illustrates some exam-

ples of the disparity maps estimated by the proposed PSM-

Net, GC-Net [13], and MC-CNN [30] together with the cor-

responding error maps. These results were reported by the

KITTI evaluation server. PSMNet obtains more robust re-

sults, particularly in regions of car windows and walls, as

indicated by the yellow arrows in Figure 4.

5. Conclusions

Recent studies using CNNs for stereo matching have

achieved prominent performance. Nevertheless, it remains

intractable to estimate disparity for inherently ill-posed re-

gions. In this work, we propose PSMNet, a novel end-

to-end CNN architecture for stereo vision which consists

of two main modules to exploit context information: the

SPP module and the 3D CNN. The SPP module incorpo-

rates different levels of feature maps to form a cost volume.

The 3D CNN further learns to regularize the cost volume

via repeated top-down/bottom-up processes. In our exper-

iments, PSMNet outperforms other state-of-the-art meth-

ods. PSMNet ranked first in both KITTI 2012 and 2015

leaderboards before March 18, 2018. The estimated dis-

parity maps clearly demonstrate that PSMNet significantly

reduces errors in ill-posed regions.
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Figure 3. Performance evaluation using Scene Flow test data. (a) left image of stereo image pair, (b) ground truth disparity, and (c) disparity

map estimated using PSMNet.

Table 6. The leaderboard of KITTI 2012 presented on March 18, 2018. PSMNet achieves the best results under all evaluation criteria,

except runtime. Only published methods are listed for comparison.

Rank Method
>2 px >3 px >5 px Mean Error

Runtime (s)
Noc All Noc All Noc All Noc All

1 PSMNet (ours) 2.44 3.01 1.49 1.89 0.90 1.15 0.5 0.6 0.41

2 iResNet-i2 [14] 2.69 3.34 1.71 2.16 1.06 1.32 0.5 0.6 0.12

4 GC-Net [13] 2.71 3.46 1.77 2.30 1.12 1.46 0.6 0.7 0.9

11 L-ResMatch [27] 3.64 5.06 2.27 3.40 1.50 2.26 0.7 1.0 48

14 SGM-Net [26] 3.60 5.15 2.29 3.50 1.60 2.36 0.7 0.9 67

(a) PSMNet (b) GC-Net (c) MC-CNN

Figure 4. Results of disparity estimation for KITTI 2012 test images. The left panel shows the left input image of the stereo image pair.

For each input image, the disparity obtained by (a) PSMNet, (b) GC-Net [13], and (c) MC-CNN [30], is illustrated above its error map.
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