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Abstract

Recently the widely used multi-view learning model,

Canonical Correlation Analysis (CCA) has been gener-

alised to the non-linear setting via deep neural networks.

Existing deep CCA models typically first decorrelate the

feature dimensions of each view before the different views

are maximally correlated in a common latent space. This

feature decorrelation is achieved by enforcing an exact

decorrelation constraint; these models are thus computa-

tionally expensive due to the matrix inversion or SVD op-

erations required for exact decorrelation at each training

iteration. Furthermore, the decorrelation step is often sep-

arated from the gradient descent based optimisation, result-

ing in sub-optimal solutions. We propose a novel deep CCA

model Soft CCA to overcome these problems. Specifically,

exact decorrelation is replaced by soft decorrelation via a

mini-batch based Stochastic Decorrelation Loss (SDL) to be

optimised jointly with the other training objectives. Exten-

sive experiments show that the proposed soft CCA is more

effective and efficient than existing deep CCA models. In

addition, our SDL loss can be applied to other deep models

beyond multi-view learning, and obtains superior perfor-

mance compared to existing decorrelation losses.

1. Introduction

Canonical Correlation Analysis (CCA) [12, 7] is widely

used for multi-view learning. These views could be camera

views, e.g., the images of a face from different view angles,

or modalities, e.g., an image and its caption. CCA aims

to learn a joint embedding space where different views of

a single data item are maximally correlated/aligned. Many

tasks can be accomplished in this space such as cross-view

recognition, retrieval and synthesis [8, 49, 14, 1, 36, 2].

A standard CCA model is linear in the sense that the pro-

jection between the feature space and the embedding space

is linear. For learning richer non-linear embeddings, Ker-

nel CCA (KCCA) [10] extended linear CCA via kernelisa-

tion. Both linear CCA and KCCA are shallow models and

the training procedure usually requires accessing the whole

batch data. As a result, KCCA has poor scalability. The

recently proposed deep CCA [1, 36, 41, 37] aims to learn

nonlinear projections with deep neural networks rather than

kernels and has been shown to be more effective than shal-

low CCA and KCCA.

However, scalability issues remain for deep CCA. This

is because existing deep CCA models [1, 36, 41, 37] aim to

implement an exact or ‘hard’ decorrelation. More precisely,

before being projected into the common embedding space,

the extracted deep feature vector for each view is decor-

related by forcing its correlation matrix over the training

batch to be an identity matrix. This decorrelation operation

is exact but computationally expensive. Either matrix in-

version [1, 36] or singular value decomposition (SVD) [37]

is required at each iteration which severely limits scalabil-

ity. Furthermore, existing deep CCA models such as [37]

typically employ two separate and independent optimisa-

tion steps: The feature representation for each data view is

first decorrelated exactly as described above. These decor-

relation operations do not directly affect the following gra-

dient computation and subsequent backpropagation. With-

out jointly optimising the decorrelation constraint and other

learning objectives, this could lead to sub-optimal solutions.

In this paper, we propose Soft CCA, a novel approach

to deep CCA. In our model, decorrelation is formulated as

a soft constraint to be jointly optimised with other train-

ing objectives. Specifically, a robust decorrelation loss,

called Stochastic Decorrelation Loss (SDL), is introduced,

which is mini-batch based and approximates the full-batch

statistics efficiently and effectively by using stochastic in-

cremental learning. SDL is a softer constraint as the loss is

only minimised rather than enforced to be zero. Comparing

with existing deep CCA models, Soft CCA has two advan-

tages: First, it is more efficient and scalable – by avoid-

ing computationally expensive operations such as SVD, its

cost is quadratic O(k2) rather than cubic O(k3) with a k-

dimensional feature input. Second, by jointly optimising

the decorrelation loss with other losses such as the distance

between views in the embedding space, more globally op-

timal solutions can be achieved resulting in more effective
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correlation analysis and learning of multi-view embeddings.

While our proposed SDL is motivated by the feature

decorrelation required for deep CCA learning, it can also

be applied as an activation regularisation to any deep model

where feature decorrelation is helpful. In this work, we

demonstrate this with two widely used models including

Factorisation Autoencoder (FAE) and convolutional neural

network (CNN) based classifiers. FAE architectures aim to

disentangle latent factors of variation that correspond to dif-

ferent aspects of data items. Here we use SDL-based decor-

relation to ensure representations of distinct factors are in-

deed disentangled, and show that it provides superior dis-

entangling performance compared to prior approaches. As

for the supervised CNN classifier, it was recently shown that

decorrelation losses can be beneficial for maximizing model

capacity and reducing overfitting [5]. In this case, we show

that by whitening the computed deep features in supervised

CNN classifiers, we can train a more effective classifier for

both instance and category-level recognition benchmarks.

We conduct extensive experiments on multi-view corre-

lations analysis. The results show that the proposed soft

deep CCA is much more efficient as well as more effective

than the existing shallow or deep CCA models – and is also

simpler to implement. Moreover, we demonstrate that SDL

can be applied to a number of models for problems beyond

multi-view learning, and improves model performance be-

yond that of existing decorrelation losses.

2. Related Work

2.1. Deep CCA

Canonical Correlation Analysis (CCA) [12] and its vari-

ants including Kernel CCA [10] and multi-view CCA [8]

are one of the most popular multi-view learning approaches.

Inspired by the success of Deep Neural Network (DNNs)

in representation learning [48], Deep CCA has received

increasing interest [1, 36, 37]. A deep CCA architecture

was first proposed by Deep CCA (DCCA) [1] which di-

rectly computes the gradients of CCA objective and re-

quires both a second-order optimisation method [25] and

full-batch training inputs. It thus cannot cope with large

training data sizes. An alternative deep CCA objective and

architecture are proposed in Stochastic Deep CCA (SD-

CCA) [37] which make it suitable for mini-batch stochastic

optimisation. However, due to the exact decorrelation used,

SDCCA still requires a costly SVD operation at each train-

ing iteration. SVD’s O(k3) cost is not scalable to the large

layer sizes k (e.g., k = 1024) common in contemporary

DNNs. In fact, all existing deep CCA models [1, 36, 37]

take an exact decorrelation step, which limits their scalabil-

ity and effectiveness as mentioned earlier. Furthermore, the

exact decorrelating operations often do not directly impact

the following gradient computations and backpropagation,

which could lead to sub-optimal optimisation. In contrast,

our Soft Deep CCA decorrelates by formulating the decor-

relation constraint as a loss which is optimised end-to-end

jointly with other losses in a standard SGD procedure, mak-

ing it both more scalable and more effective.

2.2. Decorrelation Loss

Beyond multi-view learning, many other deep models

benefit from decorrelation of activations in a neural network

layer. For these models, a decorrelation loss such as the pro-

posed SDL can be employed. Two such models are studied

in this work, namely the Factorisation Autoencoder (FAE),

and convolutional neural network (CNN) based classifiers.

For each model, an alternative decorrelation loss exists.

FAE and XCov loss Recently interest has regrown in mod-

els for disentangling the underlying factors of variation in

the appearance of objects in images, for example identity

and viewpoint [49, 38, 15, 34, 16, 24, 23]. FAE achieves

semi-supervised disentangling of latent factors via a two-

branch autoencoder. Recently it has been shown in [4] that

the efficacy of FAE can be improved by adding a decor-

relation loss (termed XCov in [4]) to explicitly decorre-

late the computed latent factor representations. Like our

SDL, computing XCov is also a mini-batch operation. But

it only eliminates correlations across and not within each

factor; and it computes covariance only within each mini-

batch, while our SDL approximates full-batch statistics us-

ing stochastic incremental learning. We show in our exper-

iments (Sec. 4.1) that SDL is more effective than XCov for

helping FAE to disentangle latent factors.

CNN Classifier and DeCov loss Using CNN with a clas-

sification loss (e.g., cross entropy) for object recognition is

perhaps the most popular application of deep learning in

computer vision. CNN classifiers are used for not only

object category recognition tasks [17, 18] but also object

instance/identity recognition/verification tasks such as face

verification [28] and person re-identification [39]. When

training CNNs for classification, avoiding overfitting, satu-

ration and slow convergence are crucial [6]. These problems

are often alleviated by regularisation such as Batch Normal-

isation [13] and dropout [27]. Recently it was shown that

decorrelation losses can also be used for effective overfit-

ting reduction [5]. Compared with the existing decorrela-

tion loss DeCov [5], our SDL has the following advantages:

(1) More accurate covariance statistics due to full-batch ap-

proximation instead of the pure mini-batch statistics used in

DeCov [5]. (2) SDL uses a more robust L1 formuation in-

stead of the L2 one in DeCov [5], which encourages sparser

correlation and thus stronger decorrelation.

Our contributions are as follows: (1) We provide a new

perspective on CCA that allows its objective to be expressed

as a loss to be minimised by gradient descent rather than

as an eigen-decomposition problem. (2) We propose Soft
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CCA, a novel Deep CCA model that is simple to imple-

ment, more efficient and scalable (mini-batch SGD-based

optimisation) and more effective (full batch approximation,

jointly end-to-end) than existing deep CCA models. (3) Be-

yond multi-view learning, our SDL is applicable to a variety

of tasks and models, and is superior to alternative decorre-

lation losses including XCov and DeCov.

3. Soft CCA

3.1. Deep CCA

Deep CCA extends linear CCA model by projecting

views of the same item (here we consider images of the

same objects) from different views to a common latent

space using a DNN with multiple branches, each corre-

sponding to one view (see Fig. 1).

We consider a two-view case for simplicity of notation,

but the multi-view extension is straightforward. Assume

we have 2N images consisting of two views for each of

N objects. They are then organised into mini-batches of

M image pairs and fed into the two DNN branches. The

training images in the two views are denoted as X1 and X2

respectively. The DNN branches aim to learn functions that

project paired input images into a shared latent space where

they are maximally correlated. Denote the DNN projec-

tion function for view i, i = {1, 2} as Pθi : Xi → Zi, or

Pθi(Xi) = Zi where Zi ∈ R
M×k is the projected feature

matrix for M data items for view i in the k-D CCA embed-

ding space and θi are the DNN parameters.

Following [7], CCA can be formulated in multiple ways

and the most relevant one here is:

argmax
θ1,θ2

Tr(PT
θ1
(X1)Pθ2(X2)),

s.t. PT
θ1
(X1)Pθ1(X1) = PT

θ2
(X2)Pθ2(X2) = I,

(1)

where I indicates the identity matrix. The constraints en-

force decorrelation within each of the two input signals.

Eq. 1 can be written into an equivalent form:

arg min
θ1,θ2

1

2
||Pθ1(X1)− Pθ2(X2)||

2

F ,

s.t. PT
θ1
(X1)Pθ1(X1) = PT

θ2
(X2)Pθ2(X2) = I,

(2)

where || · ||F is the Frobenius norm of a matrix. It shows

that the goal of maximising correlation between Pθ1(X1)
and Pθ2(X2) can be achieved by minimising the L2 distance

between the decorrelated signals.

The key idea of our approach is to convert the hard con-

straint in Eq. 2 into a soft cost to be optimised by SGD.

3.2. Stochastic Decorrelation Loss (SDL)

We denote the representations from one branch of a deep

CCA network over a mini-batch as Z ∈ R
m×k, where

X1

DNN   DNN   

X2

Z1 Z2

SDLSDL L2 Loss

Figure 1: Schematic of implementing Soft CCA with SDL.

m is the mini-batch size and k indicates the number of

neurons/feature channels. We further assume that Z has

been batch-normalised, i.e., each activation over the mini-

batch has zero mean and unit variance. This can be easily

achieved by adding a Batch Normalisation (BN) [13] layer.

The mini-batch covariance matrix Ct
mini for the t-th

training step then is given as:

Ct
mini =

1

m− 1
ZTZ. (3)

However, full-batch statistics are required by CCA ob-

jective for decorrelation. Therefore, we approximate the

full-batch covariance matrix Cfull by accumulating statis-

tics collected from each mini-batch. This is achieved by

stochastic incremental learning. More specifically, we first

compute an accumulative covariance matrix:

Ct
accu = αCt−1

accu + Ct
mini, (4)

where α ∈ [0, 1) is a forgetting/decay rate and C0

accu is

initialised with an all-zero matrix. A normalising factor is

also computed accumulatively as ct = αct−1 + 1 (c0 = 0
initially). The final full-batch covariance matrix approxi-

mation is then computed as:

Ct
appx =

Ct
accu

ct
. (5)

If we were to follow an exact decorrelation strategy as in

[1, 36, 37], we need to force the off-diagonal elements of

Ct
appx to zero. However, that has implications on the com-

putational cost and scalability which we shall detail later.

Instead, we follow a soft decorrelation procedure and for-

mulate the decorrelation constraint as a loss. Specifically,

SDL is an L1 loss on the off-diagonal element of Ct
appx:

LSDL =
k

∑

i=1

k
∑

j 6=i

|φt
ij |, (6)

where φt
ij is the element in Ct

appx at (i, j). L1 loss is used

here to encourage sparsity in the off-diagonal elements.

SDL is soft because it only penalises the correlation across
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activations instead of enforcing exact decorrelation. It will

be jointly optimised with any other losses the model may

have.

Gradients and Optimisation The gradient of LSDL

w.r.t. zni (the element in Z at (n, i)) can be computed as

∂LSDL

∂zni
=

1

ct
1

m− 1

k
∑

j

S(i, j)znj ,

S(i, j) =







1, φt
ij > 0

0, i = j or φt
ij = 0

−1, φt
ij < 0

(7)

with the sign matrix S ∈ R
k×k and i, j = 1, ..., k. Eq. 7

can be written in a matrix form:

∂LSDL

∂Z
=

1

ct
1

m− 1
Z · S, (8)

where · indicates matrix multiplication.

Once the SDL gradients are computed, they are passed

through the network during back-propagation and opti-

mised along with other losses in end-to-end training.

3.3. Computational Complexity

Eq. 6 shows that to compute the SDL in a forward pass,

we need matrix multiplication (as in Eq. 3), matrix addi-

tion (as in Eq. 4) and matrix element-wise summation (as in

Eq. 6). Therefore, the forward pass computation complex-

ity of SDL is O(mk2). The gradient computation during

the backward pass is in Eq. 8. It is also a matrix multiplica-

tion and therefore the complexity is O(mk2). The overall

computational complexity of one training iteration is thus

O(mk2). In contrast, existing exact decorrelation computa-

tion [1, 37] has a complexity of O(mk2+k3) due to the use

of SVD. Note that in large scale vision problems, the num-

ber of activations in an FC layer can easily be thousands,

meaning that the alternative hard decorrelation models are

prohibitively expensive.

3.4. SDL for Soft CCA

With the proposed SDL, the constrained optimisation

problem in Eq. 2 can be reformulated as the following un-

constrained objective:

arg min
θ1,θ2

Ldist(Pθ1(X1), Pθ2(X2))

+ λ(LSDL(Pθ1(X1)) + LSDL(Pθ2(X2))),
(9)

where Ldist(Pθ1(X1), Pθ2(X2)) is the L2 distance and λ

weights the alignment versus decorrelation losses. The Soft

CCA architecture is also illustrated in Fig. 1. Note that both

SDL and L2 loss are mini-batch based losses. Therefore,

Soft CCA (deep CCA model with SDL) can be realised us-

ing standard SGD optimisation for end-to-end learning.

Encoder DNN

[y, z]
z

y Decoder 
DNNDNN  X

Lcla

Lrec

SDL

Figure 2: Architecture of FAE with SDL.

4. Applications of SDL to other deep models

4.1. Factorisation Autoencoder with SDL

We describe a two-factor case although the model gen-

eralises to an arbitrary number of factors. The two-factor

FAE model is illustrated in Fig. 2. Its encoder (a deep neu-

ral network) takes image x as input and projects it into an

embedding space/latent code which has two parts: y and

z. We assume y is a factor that is annotated in the train-

ing data, e.g., class label. The other unspecified factors are

thus captured by z. Both y and z are used as input to the

decoder (e.g., a deconvolutional network) which produces

a reconstruction of x, denoted as x̂. The goal is not only

to accurately reconstruct the input x, but also to represent

distinct factors of variation in y and z (e.g., class and style

respectively).

Assume the FAE model is parameterised by θ. Given a

training set D containing images X and their labels Ŷ for

the known factor, the learning objective of FAE is:

argmin
θ

Lrec(X, X̂) + λLcla(Y, Ŷ ), (10)

where Lrec(X, X̂) is the reconstruction loss, which we use

pixel L2 loss here, and Lcla(Y, Ŷ ) is the classification loss,

i.e., cross-entropy loss here. If there is no constraint on the

relation between y and z, they would not necessarily rep-

resent distinct aspects of the input signal. To disentangle

them, we introduce our SDL to the objective:

argmin
θ

Lrec(X, X̂) + λ1Lcla(Y, Ŷ ) + λ2LSDL([Y, Z]).

(11)

As shown in Fig. 2, this means we decorrelate the elements

of the concatenated code [y, z] which decorrelates the two

code parts (factors), as well as the signal within the factors.

4.2. CNN Classifier with SDL

Since decorrelation loss encourages a layer’s activations

to be decorrelated, it reduces activation co-adaptation and

maximises the model’s capacity. Therefore, SDL can be

applied to each layer of a CNN classifier to boost the model

performance. In our experiments, we add SDL to different
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Figure 3: Cross-view digit recognition results on MNIST.

Note that CCA is not scalable to a common space dimen-

sion that is greater than the total dimension of 784. More-

over, DCCA, DCCAE and SDCCA are also intractable with

our GPU resources when the common space dimension be-

comes 1000.

CNN classifiers for different recognition tasks to demon-

strate its general applicability.

5. Experiments

5.1. Soft CCA

Datasets and settings We evaluate the proposed Soft

CCA and alternative deep CCA models on two widely used

datasets. MNIST [19] consists of handwritten digit im-

ages with an image size of 28 × 28. It contains 60,000

training and 10,000 testing images respectively. We follow

the experimental setting in [2] for cross-view recognition.

Deep CCA models are trained on the left and right halves

of a 10,000 sized subset of training images and we do 5-

fold cross validation on the provided test set for recogni-

tion. Multi-PIE [9] is a face dataset composed of 750,000

images of 337 people with various factors contributing to

appearance variation including viewpoint, illumination and

facial expression. We use a subset containing 6,200 images

of all 337 identities in neutral expression and lighting. Con-

structing an analogous experiment to the cross-view recog-

nition benchmark, these images are separated into the left

50 100 200 500 1000

20

40

60

80

Dimension

Ac
c.

 

 

CCA
SDCCA
Soft CCA

(a) Left-to-right
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40

60
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Dimension

Ac
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CCA
SDCCA
Soft CCA

(b) Right-to-left

Figure 4: Cross-view face recognition results on Multi-

PIE. Accuracy (%). Note that SDCCA is intractable with

our GPU resources when the common space dimension be-

comes 1000.

and right view groups according to their viewing angle.

Left-right view angle pairs are then formed exhaustively for

the same identities to train the deep CCA models. We use

half of the images in both views for deep CCA training and

also do 5-fold cross validation for recognition on the rest of

the data.

Implementation details For MNIST cross-view recogni-

tion, the network architecture of each view branch is iden-

tical to that in [2] for fair comparison. Concretely, there are

three hidden layer containing 500, 300, k units/activations

respectively, where the k units are used as the common rep-

resentation (CCA embedding layer). ReLU is applied on

the hidden layers’ activations (except the embedding layer).

Once the CCA model is trained, on the test set, features

from one view (e.g., right) are exacted, embedded with deep

CCA, and then fed to a Linear SVM [3] classifier which is

trained to recognise the images. Finally, the model is evalu-

ated based on features from the other view (e.g., left) being

projected into the shared embedding space, and recognised

by the SVM. Clearly, the performance of the SVM on this

cross-view recognition task depends on the efficacy of the

CCA embedding. An analogous cross-view recognition set-

ting is used for the Multi-PIE dataset. The DNN architec-

ture for Multi-PIE also has three hidden layers: 1024, 512,
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50D 100D 200D 500D 1000D

Upper Bound 50 100 200 500 1000

CCA [12] 28.3 34.2 48.7 74.0 -

DCCA [1] 29.5 44.9 59.0 84.7 -

DCCAE [35] 29.3 44.2 58.1 84.4 -

SDCCA [37] 46.4 89.5 166.1 307.4 -

Soft CCA 45.5 87.0 166.3 356.8 437.7

Table 1: Correlation strength on MNIST. ‘-’ indicates that

the result is not obtainable due to the corresponding model

being intractible with our available hardware.

k units, the k units are used as the CCA embedding layer.

ReLU is applied on the hidden layers’ activations (except

the embedding layer).

Competitors For shallow CCA, we compare the stan-

dard linear CCA [12] and its nonlinear kernelised variant,

KCCA [10]. The KCCA results are obtained from [2].

For the deep CCA models, we compare with CorrNet [2],

DCCA [1], DCCAE [35] and SDCCA [37]. CorrNet [2]

combines correlation maximisation with cross-view autoen-

coder loss and uses Batch Normalisation. Without access

to their code, we can only use the reported result in [2]

which was obtained only on MNIST with k = 50. As far as

we know, SDCCA [37] is the most efficient state-of-the-art

deep CCA model to date.

Results on cross-view recognition Figures 3 and 4 show

the results for cross-view digit and face recognition. We

make the following observations: (1) The deep models

achieve better performance than the shallow ones. (2) Our

Soft CCA achieves the best results on both datasets with all

CCA space dimensions. (3) Increasing the common space

dimension k benefits SDCCA very little and even harms the

performance of other competitors (e.g. CCA). In contrast,

our Soft CCA clearly benefits from larger CCA space di-

mensions.

Results on cross-view correlation Another way to eval-

uate CCA models is to measure the average correlation

strength of each matching pair of data when they are pro-

jected into the common CCA space [37]. We follow the

experimental setting and network architecture of [37] (SD-

CCA) for a fair comparison. The results of MNIST and

Multi-PIE are shown in Table 1 and Table 2 respectively.

We can conclude from the results that: (1) Again the deep

models achieve higher correlation values indicating that

they align the two views much better than the linear CCA

model. (2) For the easier digit classification task in MNIST,

our model is slightly inferior to SDCCA at 50D and 100D,

but better after 200D. For the more challenging face recog-

nition problem in Multi-PIE, Soft CCA consistently outper-

forms SDCCA and the gap increases with the dimension.

50D 100D 200D 500D 1000D

Upper Bound 50 100 200 500 1000

CCA [12] 12.8 23.9 53.4 140.6 207.1

SDCCA [37] 25.7 51.5 151.2 228.3 -

Soft CCA 29.2 60.5 163.2 257.7 283.9

Table 2: Correlation strength on Multi-PIE.

500 1000 1500 2000 2500 3000 3500 4000
0

10

20

30

40

Dimensions

s/
ite

r

 

 

SDCCA
Soft CCA (SDL)

Figure 5: Comparing training time (seconds/iteration) on

MNIST given different CCA space dimensions.

These results suggest that our model is more effective with

higher dimensional embedding space, which is required for

more challenging computer vision tasks.

Evaluation on scalability We compare the training time

for our model and that for the most efficient deep CCA

model proposed to date, SDCCA [37]. Figure 5 shows that

our soft CCA is always more efficient than SDCCA even at

the low dimensions1. Importantly, when the CCA embed-

ding space dimension approaches 4,000 (roughly the same

as the final FC layer size of popular DNNs like AlexNet and

VGGNet), our model is clearly much more efficient to train.

This is due to the O(k2) vs. O(k3) computational complex-

ity difference.

5.2. FAE with SDL

Dataset and settings We use MNIST [19], and follow

the same experimental setting as [4]. The network architec-

ture is 784-1000-1000-{y+z}-1000-1000-784, where 784 is

the dimension of the vectorised image. ReLU is applied on

the hidden layers’ activations (except y, z). As shown in

Fig. 2, among the two factors to be disentangled, y is the

digit class which is annotated with the training data. The

other factor z corresponds to aspects of appearance besides

class – i.e., the unannotated writing style. In our experi-

ments, the dimension of y is fixed to 10 corresponding to

the 10 digit classes and the dimension of z is also set to

10. We compare the performance of a vanilla FAE (basic

network with only reconstruction and classification loss),

1The speedup is significant even under low dimensions; it is just not

very salient in Fig. 5 due to the scaling problem. E.g, at 50D and 100D,

Soft CCA is 2 and 5 time faster to train respectively.
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(a) (b) (c)

Figure 6: Qualitative results of handwriting style transfer with different FAE models. (a) FAE; (b) FAE + XCov [4] ; (c) FAE

+ SDL. The dimension of z is set to 10.

FAE XCov [4] DeCov [5] SDL

z (↓) 43.44 14.51 15.42 11.35

y (↑) 97.23 95.72 97.09 97.33

Table 3: Disentanglement efficacy. Classification accuracy

(%) using representation of each branch in MNIST FAE.

FAE+XCov [4], FAE+DeCov [5] and our FAE+SDL.

Evaluation on disentanglement In the ideal case, the

two factors will be completed disentangled in y and z, i.e.,

y contains no information about the style and z contains

nothing about the class. To quantify this, we compare the

digit classification performance with the inferred y and z

on the test set. Classification based on y is given by the

prediction scores from the FAE classification branch. The

inferred z requires an additional classification model and

we train a linear SVM using z from the training set and test

it on the test set. Predictions based on y and z should thus

ideally give perfect and random chance accuracies respec-

tively. Table 3 shows that with SDL, the style feature z’s

classification performance is close to random guess (10%),

and better (closer to random) than that of XCov and De-

Cov, whilst using with the vanilla FAE with no decorrela-

tion loss, it still contains extensive class information. Mean-

while, the disentangled y provides the highest classification

accuracy using our FAE+SDL. The results suggest that our

model is more effective than the alternative XCov and De-

Cov in disentangling latent factors. This is because our SDL

does a stochastic approximation of the full-batch statistics,

whilst both XCov and DeCov only use information from

each mini-batch.

Qualitative results With the style factor disentangled

from the class factor, we can use the FAE to transfer styles

to a new digit. Given an input image containing a certain

Accuracy

Baseline [11] 91.12

DeCov [5] 91.62

SDL 92.44

Table 4: CIFAR10 classification results (%)

digit with certain handwriting style, we can keep the in-

ferred z and change the value y manually to a different digit

class. After feeding both the original z and the modified y

to the decoder, we can synthesise a new digit with the same

style as the input image. Qualitative results are shown in

Fig. 6. We see the better disentanglement efficacy of our

model in terms of clearer digit reconstruction with clearer

style transfer.

5.3. CNN Classifier with SDL

Experiments on object recognition We use CI-

FAR10 [17] which consists of 60,000 32 × 32 colour im-

ages in 10 categories, with 6000 images per category. We

follow the standard experimental setting in [17]. The DNN

baseline model used is a 20-layer ResNet [11]. We com-

pares SDL with existing decorrelation loss DeCov [5] and

the baseline (with BN but without any decorrelation loss) in

Table 4. The proposed SDL leads to a 1.32% performance

improvement over the baseline model and also outperforms

the alternative DeCov loss by 0.82%.

Person re-identification In this experiment, a CNN clas-

sifier is applied to solve a more challenging recognition

problem. The person re-identification (Re-ID) problem

aims to match pedestrians captured by non-overlapping

CCTV cameras2. We use one of the biggest and most popu-

2Note that although Re-ID can be interpreted as a multi-view learn-

ing problem, state-of-the-art approaches treat it as an identity-supervised

single-view identity classification problem. [39]; we thus follow this
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S-Query M-Query

Method mAP R1 mAP R1

LDEHL [31] – 59.47 – –

Siamese LSTM [33] – – 35.3 61.6

Gated S-CNN [32] 39.55 65.88 48.45 76.04

CNN Embedding [45] 59.87 79.51 70.33 85.84

Spindle [42] - 76.9 - -

HP-net [22] - 76.9 - -

OIM [40] - 82.1 - -

Re-rank [47] 63.6 77.1 - -

DPA [43] 63.4 81.0 - -

SVDNet [29] 62.1 82.3 - -

ACRN [26] 62.6 83.6 - -

Context [20] 57.5 80.3 66.7 86.8

JLML [21] 64.4 83.9 74.5 89.7

LSRO [46] 66.1 84.0 76.1 88.4

DGDNet∗ 64.55 85.06 73.30 89.40

DGDNet+DeCov [5] 65.74 85.86 74.72 90.53

DGDNet+SDL 67.67 86.75 75.77 91.06

Table 5: Market-1501 Results. S-Query means Single

Query, and M-Query means Multiple Query. ‘–’ indi-

cates no reported result. DGDNet∗ refers to the basic net-

work used in DGD [39], but trained from scratch only on

Market-1501, without multi-task learning through the Do-

main Guided Dropout layer using six auxiliary datasets for

fair comparison with the state-of-the-art.

CIFAR 10 Market-1501

DeCov [5] 91.62 85.86

DeCovGC 91.86 86.28

DeCovL1 91.90 86.01

SDL 92.44 86.75

Table 6: Ablation study on the advantage of SDL over De-

Cov. The CIFAR10 classification results are in classifica-

tion accuracy (%) and the Market-1501 results are in R1

accuracy (%) under the single query setting.

lar Re-ID benchmarks. Market-1501 [44] is collected from

6 different cameras. It has 32,668 bounding boxes of 1,501

identities obtained using a Deformable Part Model (DPM)

person detector. Following the standards split [44], we use

751 identities with 12,936 images for training and the rest

750 identities with 19,732 images for testing. Experiments

are conducted under both the single-query and multi-query

evaluation settings. The Rank-1 accuracy is computed to

evaluate all the methods. We also calculate the mean av-

erage precision (mAP) [44]. For the base model, we use

one of the state-of-the-art deep Re-ID models, DGDNet

[39], which is built on Inception modules [30]. Our model

single-view approach.

(DGDNet+SDL) adds SDL on the output of each BN layer

in DGDNet during training.

The results are shown in Table 5, along with some recent

high performing state-of-the-art alternatives. We can see

that: (1) Our model (DGDNet+SDL) outperforms a num-

ber of state-of-the-art alternatives. (2) Compared to the

base model (DGDNet without decorrelation loss), adding

our SDL boosts the performance by a clear margin. (3)

When the alternative DeCov loss is added to the base model,

its performance is also improved, but by a smaller margin.

This result thus indicates that the proposed SDL is more ef-

fective than DeCov.

Ablation study Note that SDL differs from DeCov in

two aspects: (i) SDL approximates the global covariance

by accumulating mini-batch covariance statistics; and (ii)

SDL exploits an L1 instead of L2 formulation as in De-

Cov for robustness and correlation sparsity. In order to gain

some insight on what contribute to SDL’s superior perfor-

mance, we consider two variants of DeCov [5], called De-

CovGC and DeCovL1. DeCovGC is DeCov with added ac-

cumulating covariance statistic only while DeCovL1 adopts

a L1 formulation as in SDL. As shown in Table 6, both De-

Cov variants have better results than DeCov [5] while SDL

(with both accumulating covariance statistic and L1 loss)

achieves the highest performance among them. It suggests

that both differences contribute to the effectiveness of SDL.

6. Conclusions

We have proposed a novel deep CCA model, termed Soft

CCA, which provides an efficient and effective solution to

deep CCA optimisation by introducing a soft decorrelation

loss. Extensive experiments show that the proposed Soft

CCA is more effective and scalable than existing CCA vari-

ants. Compared to exact whitening solutions, Soft CCA is

easy to implement in contemporary learning frameworks,

and therefore is promising for enabling practical use of

CCA techniques in the deep learning community. More-

over, we demonstrated that as a by-product, the developed

SDL loss can be applied beyond CCA as a general purpose

decorrelation loss – to any deep learning task where feature

decorrelation is required. As case studies, SDL was shown

to outperform alternative decorrelation losses in FAE latent

factor disentanglement and CNN object and instance recog-

nition.
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